This file is indexed.

/usr/share/psychtoolbox-3/PsychCal/CompareMonCalOverTime.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
% CompareMonCalOverTime
%
% Compare two calibrations of a display.
%
% Refits all files to with common number of primary bases and gamma fitting method.
% These are prompted for.
%
% 1/20/05	dhb, bx		Wrote it.
% 2/12/10   dhb         Don't ask for load code, just prompt for name.
%           dhb         Better plots.  And, ask for which times to compare.
% 2/15/10   dhb         Fix input, not a string.
% 3/1/10    dhb         Allow drawing from different files, refitting data, etc.
% 6/23/11   dhb         Make a chromaticity plot of the comparison as well.

%% Clear and close
clear; close all;

%% Get first calibration file and extract desired calibration
defaultFileName = 'LCDScreen';
thePrompt = sprintf('Enter first calibration filename [%s]: ',defaultFileName);
thenFileName = input(thePrompt,'s');
if (isempty(thenFileName))
    thenFileName = defaultFileName;
end
fprintf(1,'\nLoading from %s.mat\n',thenFileName);
[cal,cals] = LoadCalFile(thenFileName);
fprintf('Calibration file %s read\n',thenFileName);

% Print out available dates
fprintf('Calibration file contains %d calibrations\n',length(cals));
fprintf('Dates:\n');
for i = 1:length(cals)
    fprintf('\tCalibration %d, date %s\n',i,cals{i}.describe.date);
end

% Get which to compare
defaultThen = length(cals)-1;
thenIndex = input(sprintf('Enter number of first calibration to compare [%d]: ',defaultThen));
if (isempty(thenIndex))
    thenIndex = defaultThen;
end
if (thenIndex < 1 || thenIndex > length(cals))
    error('Calibration number out of range\n');
end
calThen = cals{thenIndex};

%% Get second calibration file and extract desired calibration.
% This can be the same file, or a different one.
defaultFileName = thenFileName;
thePrompt = sprintf('\nEnter second calibration filename [%s]: ',defaultFileName);
nowFileName = input(thePrompt,'s');
if (isempty(nowFileName))
    nowFileName = defaultFileName;
end
fprintf(1,'\nLoading from %s.mat\n',nowFileName);
[cal,cals] = LoadCalFile(nowFileName);
fprintf('Calibration file %s read\n',nowFileName);

% Print out available dates
fprintf('Calibration file contains %d calibrations\n',length(cals));
fprintf('Dates:\n');
for i = 1:length(cals)
    fprintf('\tCalibration %d, date %s\n',i,cals{i}.describe.date);
end

defaultNow = length(cals);
nowIndex = input(sprintf('Enter number of second calibration to compare [%d]: ',defaultNow));
if (isempty(nowIndex))
    nowIndex = defaultNow;
end
if (nowIndex < 1 || nowIndex > length(cals))
    error('Calibration number out of range\n');
end
calNow = cals{nowIndex};

%% Put them on common fitting basis, so that we are comparing the underlying
% data and not how it happened to be fit.
%
% Linear model basis
defaultNPrimaryBases = calNow.nPrimaryBases;
nPrimaryBases = input(sprintf('\nEnter number of primary bases [%d]: ',defaultNPrimaryBases));
if (isempty(nPrimaryBases))
    nPrimaryBases = defaultNPrimaryBases;
end
calThen.nPrimaryBases = nPrimaryBases;
calNow.nPrimaryBases = nPrimaryBases;
calThen = CalibrateFitLinMod(calThen);
calNow = CalibrateFitLinMod(calNow);

% Gamma type
defaultFitType = calNow.describe.gamma.fitType;
fitType = input(sprintf('Enter gamma fit type [%s]: ',defaultFitType),'s');
if (isempty(fitType))
    fitType = defaultFitType;
end
calThen.describe.gamma.fitType = fitType;
calNow.describe.gamma.fitType = fitType;
calThen = CalibrateFitGamma(calThen);
calNow = CalibrateFitGamma(calNow);

%% Say what we're doing
fprintf('\nComparing calibrations:\n');
fprintf('\t%s, %d, %s\n',thenFileName,thenIndex,calThen.describe.date);
fprintf('\t%s, %d, %s\n',nowFileName,nowIndex,calNow.describe.date);

%% Plot spectral power distributions.
%
% Plot as one plot if 3 or fewer primaries.
% Otherwise separate main measurements from what
% are probably the linear model correction terms.
if (size(calNow.gammaTable,2) <= calNow.nDevices)
    figure; clf; hold on
    plot(SToWls(calThen.S_device),calThen.P_device,'r');
    plot(SToWls(calNow.S_device),calNow.P_device,'g-');
    xlabel('Wavelength (nm)');
    ylabel('Power');
    title('Primaries');
else
    figure; clf;
    subplot(1,2,1); hold on
    plot(SToWls(calThen.S_device),calThen.P_device(:,1:calNow.nDevices),'r');
    plot(SToWls(calNow.S_device),calNow.P_device(:,1:calNow.nDevices),'g-');
    xlabel('Wavelength (nm)');
    ylabel('Power');
    title('Primaries');
    subplot(1,2,2); hold on
    plot(SToWls(calThen.S_device),calThen.P_device(:,calNow.nDevices+1:end),'r');
    plot(SToWls(calNow.S_device),calNow.P_device(:,calNow.nDevices+1:end),'g-');
    xlabel('Wavelength (nm)');
    ylabel('Power');
    title('Primaries (high order)');
end

%% Plot ambient
figure; clf; hold on
plot(SToWls(calThen.S_ambient),calThen.P_ambient,'r');
plot(SToWls(calNow.S_ambient),calNow.P_ambient,'g-');
xlabel('Wavelength (nm)');
ylabel('Power');
title('Ambient');

%% Explicitly compute and report ratio of R, G, and B full on spectra
rRatio = calThen.P_device(:,1)\calNow.P_device(:,1);
gRatio = calThen.P_device(:,2)\calNow.P_device(:,2);
bRatio = calThen.P_device(:,3)\calNow.P_device(:,3);
fprintf('Phosphor intensity ratios (now/then): %0.3g, %0.3g, %0.3g\n', ...
	rRatio,gRatio,bRatio);

%% Plot gamma functions
%
% Plot as one plot if 3 or fewer primaries.
% Otherwise separate main measurements from what
% are probably the linear model correction terms.
if (size(calNow.gammaTable,2) <= calNow.nDevices)
    figure; clf; hold on
    plot(calThen.gammaInput,calThen.gammaTable,'r');
    plot(calNow.gammaInput,calNow.gammaTable,'g-');
    xlabel('Input');
    ylabel('Output');
    title('Gamma');
    ylim([0 1.2]);
else
    figure; clf;
    subplot(1,2,1); hold on
    plot(calThen.gammaInput,calThen.gammaTable(:,1:calNow.nDevices),'r');
    plot(calNow.gammaInput,calNow.gammaTable(:,1:calNow.nDevices),'g-');
    xlabel('Input');
    ylabel('Output');
    title('Gamma');
    ylim([0 1.2]);
    subplot(1,2,2); hold on
    plot(calThen.gammaInput,calThen.gammaTable(:,calNow.nDevices+1:end),'r');
    plot(calNow.gammaInput,calNow.gammaTable(:,calNow.nDevices+1:end),'g-');
    xlabel('Input');
    ylabel('Output');
    title('Gamma (high order)');
    ylim([-1.2 1.2]);
end

%% Let's print some luminance information
load T_xyzJuddVos;
T_xyz = SplineCmf(S_xyzJuddVos,683*T_xyzJuddVos,calThen.S_device);
S_xyz = calThen.S_device;
lumsThen = T_xyz(2,:)*calThen.P_device;
maxLumThen = sum(lumsThen(1:calNow.nDevices));
lumsNow = T_xyz(2,:)*calNow.P_device;
maxLumNow = sum(lumsNow(1:calNow.nDevices));
fprintf('Maximum luminance summing primaries: then %0.3g; now %0.3g\n',maxLumThen,maxLumNow);
minLumThen = T_xyz(2,:)*calThen.P_ambient;
minLumNow = T_xyz(2,:)*calNow.P_ambient;
fprintf('Minimum luminance: then %0.3g; now %0.3g\n',minLumThen,minLumNow);

%% Get max lum using calibration routines
calThen = SetSensorColorSpace(calThen,T_xyz,S_xyz);
calNow = SetSensorColorSpace(calNow,T_xyz,S_xyz);
maxXYZThen1 = SettingsToSensor(calThen,[1 1 1]');
maxXYZThen2 = SettingsToSensorAcc(calThen,[1 1 1]');
maxXYZNow1 = SettingsToSensor(calNow,[1 1 1]');
maxXYZNow2 = SettingsToSensorAcc(calNow,[1 1 1]');
fprintf('Maximum luminance SettingsToSensor: then %0.3g; now %0.3g\n',maxXYZThen1(2),maxXYZNow1(2));
fprintf('Maximum luminance SettingsToSensorAcc: then %0.3g; now %0.3g\n',maxXYZThen2(2),maxXYZNow2(2));

%% Plot new and old white point and channel chromaticities
figure; clf; hold on
maxxyYThen = XYZToxyY(maxXYZThen1);
maxxyYNow = XYZToxyY(maxXYZNow1);
plot(maxxyYThen(1),maxxyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(maxxyYNow(1),maxxyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);

redxyYThen = XYZToxyY(SettingsToSensor(calThen,[1 0 0]'));
greenxyYThen = XYZToxyY(SettingsToSensor(calThen,[0 1 0]'));
bluexyYThen = XYZToxyY(SettingsToSensor(calThen,[0 0 1]'));
redxyYNow = XYZToxyY(SettingsToSensor(calNow,[1 0 0]'));
greenxyYNow = XYZToxyY(SettingsToSensor(calNow,[0 1 0]'));
bluexyYNow = XYZToxyY(SettingsToSensor(calNow,[0 0 1]'));
plot(redxyYThen(1),redxyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(redxyYNow(1),redxyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);
plot(greenxyYThen(1),greenxyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(greenxyYNow(1),greenxyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);
plot(bluexyYThen(1),bluexyYThen(2),'ro','MarkerFaceColor','r','MarkerSize',10);
plot(bluexyYNow(1),bluexyYNow(2),'go','MarkerFaceColor','g','MarkerSize',10);
axis('square');
axis([0.0 0.8 0.0 0.8]);
xlabel('x chromaticity');
ylabel('y chromaticity');