This file is indexed.

/usr/share/psychtoolbox-3/PsychDemos/CalDemo.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
% CalDemo
%
% Demonstrates basic use of the PsychCal calibraiton structure and routines.
%
% See also PsychCal, DKLDemo, RenderDemo, DumpMonCalSpd
%
% 1/15/07	dhb		Wrote it.
% 9/27/08   dhb     Prompt for filename.  Clean up plot labels
%           dhb     Prompt for gamma method.

% Clear
clear; close all

%% Load
% Load a calibration file. You can make this with CalibrateMonSpd if
% you have a supported radiometer.
defaultFileName = 'PTB3TestCal';
thePrompt = sprintf('Enter calibration filename [%s]: ',defaultFileName);
newFileName = input(thePrompt,'s');
if (isempty(newFileName))
    newFileName = defaultFileName;
end
fprintf(1,'\nLoading from %s.mat\n',newFileName);
cal = LoadCalFile(newFileName);
fprintf('Calibration file %s read\n\n',newFileName);

%% Plot what is in the calibration file
% Print a description of the calibration to the command window.
DescribeMonCal(cal);

% Plot underlying spectral data of the three device primaries
wls = SToWls(cal.S_device);
figure; clf; hold on
plot(wls,cal.P_device(:,1),'r');
plot(wls,cal.P_device(:,2),'g');
plot(wls,cal.P_device(:,3),'b');
xlabel('Wavelength (nm)');
ylabel('Power');
title('Device Primary Spectra');

% Plot gamma functions together with raw gamma data.  The smooth fit is
% performed at calibration time, but can be redone with RefitCalGamma.
figure; clf;
subplot(1,3,1); hold on
plot(cal.gammaInput,cal.gammaTable(:,1),'r');
plot(cal.rawdata.rawGammaInput,cal.rawdata.rawGammaTable(:,1),'ro','MarkerFaceColor','r','MarkerSize',3);
axis([0 1 0 1]); axis('square');
xlabel('Input value');
ylabel('Linear output');
title('Device Gamma');
subplot(1,3,2); hold on
plot(cal.gammaInput,cal.gammaTable(:,2),'g');
plot(cal.rawdata.rawGammaInput,cal.rawdata.rawGammaTable(:,2),'go','MarkerFaceColor','g','MarkerSize',3);
axis([0 1 0 1]); axis('square');
xlabel('Input value');
ylabel('Linear output');
title('Device Gamma');
subplot(1,3,3); hold on
plot(cal.gammaInput,cal.gammaTable(:,3),'b');
plot(cal.rawdata.rawGammaInput,cal.rawdata.rawGammaTable(:,3),'bo','MarkerFaceColor','b','MarkerSize',3);
axis([0 1 0 1]); axis('square');
xlabel('Input value');
ylabel('Linear output');
title('Device Gamma');

%% Gamma correction without worrying about color
% Show how to linearize a gamma table.  If there were no
% quantization in the DAC, these values would linearize perfectly.
% Actually linearization will be affected by the precision of the DACs.

% Set inversion method.  See SetGammaMethod for information on available
% methods.
defaultGammaMethod = 0;
gammaMethod = input(sprintf('Enter gamma method [%d]:',defaultGammaMethod));
if (isempty(gammaMethod))
    gammaMethod = defaultGammaMethod;
end
cal = SetGammaMethod(cal,gammaMethod);

% Make the desired linear output, then convert.
linearValues = ones(3,1)*linspace(0,1,256);
clutValues = PrimaryToSettings(cal,linearValues);
predValues = SettingsToPrimary(cal,clutValues);

% Make a plot of the inverse lookup table.
figure; clf;
subplot(1,3,1); hold on
plot(linearValues,clutValues(1,:)','r');
axis([0 1 0 1]); axis('square');
xlabel('Linear output');
ylabel('Input value');
title('Inverse Gamma');
subplot(1,3,2); hold on
plot(linearValues,clutValues(2,:)','g');
axis([0 1 0 1]); axis('square');
xlabel('Linear output');
ylabel('Input value');
title('Inverse Gamma');
subplot(1,3,3); hold on
plot(linearValues,clutValues(3,:)','b');
axis([0 1 0 1]); axis('square');
xlabel('Linear output');
ylabel('Input value');
title('Inverse Gamma');

% Make a plot of the obtained linear values.
figure; clf;
subplot(1,3,1); hold on
plot(linearValues,predValues(1,:)','r');
axis([0 1 0 1]); axis('square');
xlabel('Desired value');
ylabel('Predicted value');
title('Gamma Correction');
subplot(1,3,2); hold on
plot(linearValues,predValues(2,:)','g');
axis([0 1 0 1]); axis('square');
xlabel('Desired value');
ylabel('Predicted value');
title('Gamma Correction');
subplot(1,3,3); hold on
plot(linearValues,predValues(3,:)','b');
axis([0 1 0 1]); axis('square');
xlabel('Desired value');
ylabel('Predicted value');
title('Gamma Correction');

%% Color space conversions  - CIE 1931
% Let's see how to do some standard color conversions

% Choose color matching functions.  Here CIE 1931, with a unit
% constant so that luminance is in cd/m2.
load T_xyz1931
T_xyz = 683*T_xyz1931;
calXYZ = SetSensorColorSpace(cal,T_xyz,S_xyz1931);

% Dump out min, mid, and max XYZ settings.  In general
% the calibration structure records the ambient light so
% that the min output is not necessarily zero light.
minXYZ = PrimaryToSensor(calXYZ,[0 0 0]'); minxyY = XYZToxyY(minXYZ);
midXYZ = PrimaryToSensor(calXYZ,[0.5 0.5 0.5]'); midxyY = XYZToxyY(midXYZ);
maxXYZ = PrimaryToSensor(calXYZ,[1 1 1]'); maxxyY = XYZToxyY(maxXYZ);
fprintf('Device properties in XYZ\n');
fprintf('\tMin xyY = %0.3g, %0.3g, %0.2f\n',minxyY(1),minxyY(2),minxyY(3));
fprintf('\tMid xyY = %0.3g, %0.3g, %0.2f\n',midxyY(1),midxyY(2),midxyY(3));
fprintf('\tMax xyY = %0.3g, %0.3g, %0.2f\n',maxxyY(1),maxxyY(2),maxxyY(3));

% Find actual settings to produce a desired colorimetric response.   Note
% that there are two ways to think about this.
%   a) If you've linearized the display using the lookup table, then pass
%   to the framebuffer the desiredPrimary triplet computed below.  This is
%   then mapped via the clut to produce the desired effect.
%   b) If you're maninpulating the clut directly, then you care what goes
%   into the clut entry corresponding to the region you're displaying.  In
%   that case, use the desiredSettings triplet computed below and stick it
%   into the clut.
% If you don't understand the distinction between a frame buffer and a
% lookup table, you might want to read Brainard, D. H., Pelli, D.G., and
% Robson, T. (2002). Display characterization. In the Encylopedia of Imaging
% Science and Technology. J. Hornak (ed.), Wiley. 172-188.  You can
% download a PDF from http://color.psych.upenn.edu/brainard/characterize.pdf.
desiredxyY = [0.4 0.3 40]';
desiredXYZ = xyYToXYZ(desiredxyY);
desiredPrimary = SensorToPrimary(calXYZ,desiredXYZ);
desiredSettings = SensorToSettings(calXYZ,desiredXYZ);
fprintf('To get xyY = %0.3g, %0.3g, %0.2f\n',desiredxyY(1),desiredxyY(2),desiredxyY(3))
fprintf('\tLinear weights on primaries should be %0.2g, %0.2g, %0.2g\n',desiredPrimary(1),desiredPrimary(2),desiredPrimary(3));
fprintf('\tActual settings values passed to driver (via clut) should be %0.2g, %0.2g, %0.2g\n',desiredSettings(1),desiredSettings(2),desiredSettings(3));

%% Color space conversions - Cone space and isoluminance
% Now let's do some examples in cone space.  See DKLDemo for more
% colorimetric stuff.

% Load cone spectral sensitivities
load T_cones_ss2
T_cones = T_cones_ss2;
calLMS = SetSensorColorSpace(cal,T_cones,S_cones_ss2);

% Choose monitor white point as a background around which to modulate
bgPrimary = [0.55 0.45 0.5]';
bgLMS = PrimaryToSensor(calLMS,bgPrimary);

% Choose a modulation direction. [0 1 0] isolates the M cones.
directionLMS = [0 1 0]';

% Figure out maximum within gamut modulation in this direction.  This
% is best done in primary color space.  The calculation as executed below
% works even with non-zero ambient light and when the background is not
% in the middle of the device space.
%
% The resulting modulation +/- gamutScalar*directionLMS is symmetric around
% the background and takes us from the background exactly to the edge of the gamut.  
targetLMS = bgLMS+directionLMS;             
targetPrimary = SensorToPrimary(calLMS,targetLMS);
directionPrimary = targetPrimary-bgPrimary;
gamutScalar = MaximizeGamutContrast(directionPrimary,bgPrimary);
minLMS = bgLMS-gamutScalar*directionLMS;
maxLMS = bgLMS+gamutScalar*directionLMS;
minPrimary = SensorToPrimary(calLMS,minLMS);
maxPrimary = SensorToPrimary(calLMS,maxLMS);
minSettings = SensorToSettings(calLMS,minLMS);
maxSettings = SensorToSettings(calLMS,maxLMS);
contrastLMS1 = (maxLMS-bgLMS)./bgLMS;
contrastLMS2 = (maxLMS-minLMS)./(maxLMS+minLMS);
fprintf('Primary values at low edge of moduluation: %0.2f %0.2f %0.2f\n',minPrimary(1),minPrimary(2),minPrimary(3));
fprintf('Primary values at high edge of moduluation: %0.2f %0.2f %0.2f\n',maxPrimary(1),maxPrimary(2),maxPrimary(3));
fprintf('Cone contrast of modulation: %0.2f, %0.2f %0.2f\n',contrastLMS1(1),contrastLMS1(2),contrastLMS1(3));
if (max(abs(contrastLMS1-contrastLMS2)) > 1e-12)
    fprintf('Uh-oh, two ways of computing contrast don''t agree.\n');
end