/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/FDFDemo.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | function FDFDemo(dotDensity, dotLifetime)
% FDFDemo(dotDensity, dotLifetime) - Demo of "formless dot field" stimulus
% via moglFDF.
%
% This demo generates a simple "formless dot field" random dot motion
% stimulus to create "structure from motion" percept by use of the moglFDF
% function for formless dot field rendering. See "help moglFDF" for more
% details.
%
% The demo shows a simple spinning 3D sphere, rendered as random dot
% stimulus.
%
% The following optional parameters can be provided to FDFDemo:
%
% dotDensity = Number of dots to use for both, the background- and
% foreground distribution. Defaults to 10000.
%
% dotLifetime = Lifetime of dots in frames. Defaults to 10 frames.
%
%
% Control keys:
%
% ESCape key finishes the demo.
%
% SPACE key toggles between a slowly rotating sphere and a static sphere.
%
% 'd' toggles the display between the formless dot field stimulus and some
% debug visualization.
%
% 't' toggles drawing of foreground dots in the colors defined by the
% texture map of the drawn object.
%
% 'r' resets the distribution to empty, then incrementally recreates it.
%
% 'h' resets the distribution to a completely new random one.
%
% Arrow left/right control the density of dots, the 'dotDensity' paramter
% in decrements/increments of 5%.
%
% Arrow up-/down controls the 'dotLifetime' in steps of +/- 1.
%
% History:
% 05/02/08 Written (MK).
% 11/03/08 Documentation update, preparation for public release (MK).
% 11/15/08 Demonstrate new features of moglFDF, allow runtime change of
% some params (MK).
% Setup default settings:
if nargin < 1 || isempty(dotDensity)
% 10000 dots by default:
dotDensity = 10000;
end
if nargin < 2 || isempty(dotLifetime)
% 10 frames lifetime per dot by default:
dotLifetime = 10;
end
debug = 0;
% Is the script running in OpenGL Psychtoolbox? Abort, if not.
AssertOpenGL;
% Setup unified keyboard mapping:
KbName('UnifyKeyNames');
escape = KbName('ESCAPE');
space = KbName('space');
dKey = KbName('d');
rkey = KbName('r');
hkey = KbName('h');
tkey = KbName('t');
upArrow = KbName('UpArrow');
downArrow = KbName('DownArrow');
leftArrow = KbName('LeftArrow');
rightArrow = KbName('RightArrow');
% Find the screen to use for display:
screenid=max(Screen('Screens'));
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper:
InitializeMatlabOpenGL([], 0);
% Open a double-buffered full-screen window on the main displays screen,
% with fast Offscreen window support enabled and black background clear
% color. Fast Offscreen windows support is needed for moglFDF to work.
PsychImaging('PrepareConfiguration');
PsychImaging('AddTask', 'General', 'UseFastOffscreenWindows');
[win , winRect] = PsychImaging('OpenWindow', screenid, 0);
try
% Prepare texture to by applied to the sphere: Load & create it from an image file:
myimg = imread([PsychtoolboxRoot 'PsychDemos/OpenGL4MatlabDemos/earth_512by256.jpg']);
% Make a special power-of-two texture from the image by setting the enforcepot - flag to 1
% when calling 'MakeTexture'. GL_TEXTURE_2D textures (==power of two textures) are
% especially easy to handle in OpenGL. If you use the enforcepot flag, it is important
% that the texture image 'myimg' has a width and a height that is exactly a power of two,
% otherwise this command will fail: Allowed values for image width and height are, e.g.,
% 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and on some high-end gfx cards
% 4096 pixels. Our example image has a size of 512 by 256 pixels...
mytex = Screen('MakeTexture', win, myimg, [], 1);
% Retrieve OpenGL handles to the PTB texture. These are needed to use the texture
% from "normal" OpenGL code:
[gltex, gltextarget] = Screen('GetOpenGLTexture', win, mytex);
% Debug output settings for moglFDF: Most useful are -1 for real object
% render and 1 for silhouette render, as well as 0 for normal op.
moglFDF('DebugFlag', 0);
% Stimulus parameters:
% Size of the final output window to be drawn to:
rect = Screen('Rect', win);
% Texture coordinates on the surface of our demo object are in the
% range 0.0 to 1.0 in both x- and y- direction:
texCoordMin = [0.0 , 0.0];
texCoordMax = [1.0 , 1.0];
% Resolve motion with 512 x 512 resolution:
texResolution = [256 , 256];
% Probability with which a randomly located dot within the silhouette
% is drawn -- Kind of "Signal to noise" ratio within the objects
% silhouette, if the "object-induced dot motion" is considered the
% signal and the noise is considered the noise.
% Values between 0 - 1 are meaningful:
BGSilhouetteAcceptanceProbability = 0.0;
% Use max 'dotDensity' foreground dots for sampling the objects
% surface: In the current moglFDF implementation, maxFGDots must be an
% integral multiple of the dotLifetime!
maxFGDots = (1 - BGSilhouetteAcceptanceProbability) * dotDensity;
% Use max 'dotDensity' dots for background distribution:
maxBGDots = dotDensity;
% Init texture mapping toggle flag to "texturemapping off":
textoggle = 0;
% Use occlusion culling: Dots that would stick to the occluded part of
% the 3D objects surface are not drawn. By default - if this parameter
% is omitted or set > 1 - all dots are drawn, even "occluded" ones.
zThreshold = 0.0001;
fdf = moglFDF('CreateContext', win, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime, zThreshold, BGSilhouetteAcceptanceProbability);
% Define actual string of commands that renders the 3D object or scene:
% This command sequence will draw our sphere 'mysphere' at its current
% orientation. See setup code below for the definition of 'mysphere'.
callbackEvalString = 'gluSphere(mysphere, 0.7, 100, 100);';
fdf = moglFDF('SetRenderCallback', fdf, callbackEvalString);
% If texture mapping is on, load a texture mapping shader to
% demonstrate mixing static color with texture:
if textoggle > 0
drawShader = LoadGLSLProgramFromFiles('moglFDFTexturedDotsRenderShader.frag', 1);
glUseProgram(drawShader);
glUniform1i(glGetUniformLocation(drawShader, 'Image'), 0);
% Tell shader that it should roll its own pointsprite based
% anti-aliasing, instead of leaving the job up to the GPU:
% Very recent GPU's may be able to do this themselves, e.g., NVidia
% Geforce 8800 and later on OS/X 10.5.6 and later. In such a case,
% setting doPointSprites to zero may provide a slight speedup:
doPointSprites = 1;
glUniform1i(glGetUniformLocation(drawShader, 'doSmooth'), doPointSprites);
% Assign mixweight: 0.0 = static color only, 1.0 = texture only,
% intermediate levels provide a mix between 0% and 100% texture:
glUniform1f(glGetUniformLocation(drawShader, 'texWeight'), 0.5);
glUseProgram(0);
% Assign shader for 2D foreground dot draw:
fdf = moglFDF('SetDrawShader', fdf, drawShader, [], doPointSprites);
% Enable texture:
fdf = moglFDF('SetColorTexture', fdf, gltex, gltextarget);
else
drawShader = [];
end
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
% Get the aspect ratio of the screen:
ar=winRect(4)/winRect(3);
% Setup default drawing color to white (R,G,B)=(1,1,1):
glColor3f(1,1,1);
% Enable proper occlusion handling via depth tests:
glEnable(GL.DEPTH_TEST);
% Set projection matrix: This defines a perspective projection,
% corresponding to the model of a pin-hole camera - which is a good
% approximation of the human eye and of standard real world cameras --
% well, the best aproximation one can do with 3 lines of code ;-)
glMatrixMode(GL.PROJECTION);
glLoadIdentity;
% Field of view is 25 degrees from line of sight. Objects closer than
% 0.1 distance units or farther away than 100 distance units get clipped
% away, aspect ratio is adapted to the monitors aspect ratio:
gluPerspective(25,1/ar,0.1,100);
% Setup modelview matrix: This defines the position, orientation and
% looking direction of the virtual camera:
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% Reposition camera: Sitting at (x,y,z)==(0,0,5), looking at the origin
% (0,0,0), in an upright (0,1,0) orientation:
gluLookAt(0,0,5,0,0,0,0,1,0);
% Set background clear color to 'black' (R,G,B,A)=(0,0,0,0):
glClearColor(0,0,0,0);
% Clear out the backbuffer: This also cleans the depth-buffer for
% proper occlusion handling: You need to glClear the depth buffer whenever
% you redraw your scene, e.g., in an animation loop. Otherwise occlusion
% handling will screw up in funny ways...
glClear;
% Enable texture mapping for this type of textures...
glEnable(gltextarget);
% Bind our texture, so it gets applied to all following objects:
% Btw. this whole texture setup is pretty futile for random dot field
% rendering as we don't apply any textures, we only use the texture
% coordinates! We apply a texture anyway, so the users sees something
% nice if one of the debug modes is enabled where the object is
% renderered in a "normal way" for illustrative purposes.
glBindTexture(gltextarget, gltex);
% Textures color texel values shall modulate the color computed by lighting model:
glTexEnvfv(GL.TEXTURE_ENV,GL.TEXTURE_ENV_MODE,GL.MODULATE);
% Clamping behaviour shall be a cyclic repeat:
glTexParameteri(gltextarget, GL.TEXTURE_WRAP_S, GL.REPEAT);
glTexParameteri(gltextarget, GL.TEXTURE_WRAP_T, GL.REPEAT);
% Set up minification and magnification filters. This is crucial for the thing to work!
glTexParameteri(gltextarget, GL.TEXTURE_MIN_FILTER, GL.LINEAR);
glTexParameteri(gltextarget, GL.TEXTURE_MAG_FILTER, GL.LINEAR);
% Create the sphere as a quadric object. This is needed because the simple glutSolidSphere
% command does not automatically assign texture coordinates for texture mapping onto a sphere:
% mysphere is a handle that you need to pass to all quadric functions:
mysphere = gluNewQuadric;
% Enable automatic generation of texture coordinates for our quadric object:
gluQuadricTexture(mysphere, GL.TRUE);
% Apply some static rotation to the object to have a nice view onto it:
% This basically rotates our spinning earth into an orientation that
% roughly matches the real orientation in space...
% First -90 degrees around its x-axis...
glRotatef(-90, 1,0,0);
% ...then 18 degrees around its new (rotated) y-axis...
glRotatef(18,0,1,0);
% OpenGL setup done: Switch back to 2D mode:
Screen('EndOpenGL', win);
% Init the rotation 'toggle' flag (see above) to "rotation enabled":
toggle = 1;
% Our framecounter, we love stats ;-)
fcount = 0;
% Toggle reset of dot distribution at first loop iteration:
resetDistribution = 1;
% Initial Flip to have a nice black display, and to record the 'tstart'
% timestamp of this demo animation:
tstart = Screen('Flip', win);
% Now for our little animation loop. This loop will run until a key is pressed.
% It rotates the object by a few degrees (actually: Applies a rotation transformation
% to all objects to be drawn) and then redraws it at its new
% orientation:
while 1
% Want to reinit the dot distribution?
if resetDistribution
if resetDistribution == 2
% Perform a single initial object-render, update & recompute cycle for
% set of dots. moglFDF will compute the new dot distribution, based on
% the current 3D scene appearance, but it won't draw the new dot
% distribution for the next frame yet. The special flag '1' asks
% 'Update' to generate a full initial distribution:
fdf = moglFDF('Update', fdf, 1);
else
% Reset state to empty distribution, so it can recreate from scratch:
fdf = moglFDF('ResetState', fdf);
end
resetDistribution = 0;
end
% Update rotation angle of rotating sphere for this redraw cycle:
% glRotate the object by 0.1 degrees around its z-axis if toggle is set to 1.
Screen('BeginOpenGL', win);
glRotatef(toggle * 0.1, 0, 0, 1);
Screen('EndOpenGL', win);
% Perform object-render, update & recompute cycle for set of dots.
% moglFDF will compute the new dot distribution, based on the
% current 3D scene appearance, but it won't draw the new dot
% distribution for the next frame yet:
fdf = moglFDF('Update', fdf);
% Wanna have nice looking random dots?
if 1
% Enable alpha blending and smooth dots for nice looking
% anti-aliased dots:
glBlendFunc(GL.SRC_ALPHA, GL.ONE_MINUS_SRC_ALPHA);
glEnable(GL.BLEND);
glPointSize(5.0);
glEnable(GL.POINT_SMOOTH);
end
% Render 2D dot set in white:
glColor3f(1,1,1);
% This performs the actual high-speed drawing of the dot field into
% window 'win':
fdf = moglFDF('Render', fdf, win, [1 1]);
% Set to 1 for readback of dots and "manual" visualization:
if 0
% This is a slow alternative to moglFDF('Render'):
% The final dot distribution is read back from the GPU into a
% Matlab dot matrix 'xydots'...
xydots = moglFDF('GetResults', fdf);
% For the fun of it, some stats of the xydots are computed and
% printed -- here the minimum and maximum 2D dot locations...
minx=min(xydots(1,:)) %#ok<NOPRT,NASGU>
miny=min(xydots(2,:)) %#ok<NOPRT,NASGU>
maxx=max(xydots(1,:)) %#ok<NOPRT,NASGU>
maxy=max(xydots(2,:)) %#ok<NOPRT,NASGU>
% And good'ol Screen('DrawDots') is used to draw the 'xydots'
% vector of dots:
Screen('DrawDots', win, xydots, 2, [255 0 0], [], 1);
end
% Done with drawing, disable alpha blending again:
glDisable(GL.BLEND);
% Check for and handle keyboard input:
[pressed secs keyCode] = KbCheck;
if pressed
% Pressing ESCape finishes the demo by breaking out of the
% animation loop:
if keyCode(escape)
break;
end
% Pressing SPACE toggles the 3D rotation of the sphere. As soon
% as rotation stops and motion information therefore gets lost,
% the perception of the sphere will quickly degrade into random
% dot blinking:
if keyCode(space)
KbReleaseWait;
toggle = 1 - toggle;
end
if keyCode(tkey)
KbReleaseWait;
textoggle = 1 - textoggle;
if textoggle
% Enable texture mapping:
fdf = moglFDF('SetColorTexture', fdf, gltex, gltextarget);
if ~isempty(drawShader)
fdf = moglFDF('SetDrawShader', fdf, drawShader);
end
else
% Disable texture mapping:
fdf = moglFDF('SetColorTexture', fdf, [], []);
fdf = moglFDF('SetDrawShader', fdf, []);
end
end
% 'r' key resets the distribution:
if keyCode(rkey)
resetDistribution = 1;
end
% 'h' key resets the distribution and reinits it immediately:
if keyCode(hkey)
resetDistribution = 2;
end
% Arroy keys control dot density and lifetime:
if any(keyCode([leftArrow, rightArrow, upArrow, downArrow]))
% Change of distribution parameters requested:
if keyCode(leftArrow)
dotDensity = max(dotLifetime, round(dotDensity * 0.95));
end
if keyCode(rightArrow)
dotDensity = min(1000000, round(dotDensity * 1.05));
end
if keyCode(upArrow)
dotLifetime = min(500, dotLifetime + 1);
end
if keyCode(downArrow)
dotLifetime = max(1, dotLifetime - 1);
end
% Recompute number of dots in distribution:
maxFGDots = (1 - BGSilhouetteAcceptanceProbability) * dotDensity;
% Use max 'dotDensity' dots for background distribution:
maxBGDots = dotDensity;
% Reinit context with new settings, but disable debug
% output while doing so, so we don't clutter the Matlab
% window:
olddebug = moglFDF('DebugFlag', -2);
fdf = moglFDF('ReinitContext', fdf, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime, zThreshold, BGSilhouetteAcceptanceProbability);
moglFDF('DebugFlag', olddebug);
% Hotstart the context, as if 'h' key is pressed:
resetDistribution = 2;
end
if keyCode(dKey)
KbReleaseWait;
debug = mod(debug+1, 3);
switch debug
case 0,
moglFDF('DebugFlag', 0);
case 1,
moglFDF('DebugFlag', 1);
case 2,
moglFDF('DebugFlag', -1);
end
end
end
% Show new image at next retrace:
Screen('Flip', win);
% Update framecounter:
fcount = fcount + 1;
% Ready for next draw loop iteration...
end;
% End of animation loop: Take end-timestamp:
tend = Screen('Flip', win);
% Compute and show average framerate:
avgfps = fcount / (tend - tstart) %#ok<NOPRT>
avgdur = 1000/avgfps %#ok<NASGU,NOPRT>
% Enable OpenGL context for cleanup work:
Screen('BeginOpenGL', win);
% Delete our sphere object:
gluDeleteQuadric(mysphere);
% Unselect our texture...
glBindTexture(gltextarget, 0);
% ... and disable texture mapping:
glDisable(gltextarget);
% End of OpenGL rendering...
Screen('EndOpenGL', win);
% Destroy FDF context, release all ressources:
moglFDF('DestroyContext', fdf);
% Close onscreen window and release all other ressources:
Screen('CloseAll');
catch
% In case of error, a Screen('CloseAll') will also do a good
% post-mortem cleanup job:
Screen('CloseAll');
psychrethrow(psychlasterror);
end
% Well done!
return
|