/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/GLSLDemo.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 | function GLSLDemo
% GLSLDemo - Demonstrate use of the GLSL OpenGL Shading language in the
% Psychtoolbox.
%
% The OpenGL shading language (GLSL) allows to write specialized programs
% which are uploaded into the graphics hardware itself. These programs
% are then executed very efficiently in the grahpics hardware. So called
% Vertex-Shaders are executed on a per-vertex basis. They calculate and
% manipulate per-vertex properties, e.g., displacement, color, normal
% vectors. So called Fragment-Shaders are executed for each single fragment
% or pixel that is drawn into the backbuffer. They allow, e.g., to implement
% your own lighting model or perform image processing on your image.
%
% GLSL programs are very similar in their syntax to the C programming language,
% its basically C, extended by functions for matrix and vector math and for
% typical graphics purpose.
%
% A specific piece of graphics hardware may only support either vertex-shaders,
% or fragment-shaders or none at all, as these features are pretty new in the
% world of computer-graphics, so this demo may not run at all or at least some
% shaders will either fail or give unexpected results. If you want to make
% use of GLSL you'll need to equip your computer with up to date graphics
% hardware.
%
% This demo loads a collection of shaders. It applies the shaders to a
% collection of objects, demonstrating some visual effects. This is early
% beta code, so don't expect too much. It mostly demonstrates how to get
% started with shader-programming in Psychtoolbox.
%
% Press the 'n' key to toggle between different objects.
% Press the SPACE key to toggle between the different shaders.
% Stop the demo by pressing any other key.
% Online specs for GLSL can be found under:
% <http://www.opengl.org/documentation/glsl/>
%
% This:
% <http://www.lighthouse3d.com/opengl/glsl/index.php?intro>
% is a very nice introduction into GLSL.
%
% Apart from that, theres the standard book on GLSL by Addison Wesley:
% "OpenGL(R) Shading Language (2nd Edition)" this is also known as
% "The Orange book".
%
% Written by Mario Kleiner.
% Is the script running in OpenGL Psychtoolbox?
AssertOpenGL;
% Find the screen to use for display:
screenid=max(Screen('Screens'));
% Disable Synctests for this simple demo:
Screen('Preference','SkipSyncTests',1);
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper:
InitializeMatlabOpenGL(1);
% Open a double-buffered full-screen window on the main displays screen.
[win , winRect] = Screen('OpenWindow', screenid);
% Make sure we run on a GLSL capable system. Abort if not.
AssertGLSL;
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
% Get the aspect ratio of the screen:
ar=winRect(4)/winRect(3);
% Turn on OpenGL local lighting model: The lighting model supported by
% OpenGL is a local Phong model with Gouraud shading.
glEnable(GL_LIGHTING);
glEnable(GL_NORMALIZE);
% Enable the first local light source GL_LIGHT_0. Each OpenGL
% implementation is guaranteed to support at least 8 light sources.
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
% Enable two-sided lighting - Back sides of polygons are lit as well.
glLightModelfv(GL_LIGHT_MODEL_LOCAL_VIEWER, GL_TRUE);
% Enable proper occlusion handling via depth tests:
glEnable(GL_DEPTH_TEST);
% Define the cubes light reflection properties by setting up reflection
% coefficients for ambient, diffuse and specular reflection:
glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT, [ 0.88 0.1 0.88 1 ]);
glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE, [ .22 .27 .9 1 ]);
glMaterialfv(GL_FRONT_AND_BACK,GL_SPECULAR, [ 1 1 1 1 ]);
glMaterialfv(GL_FRONT_AND_BACK,GL_SHININESS, 2);
% Set projection matrix: This defines a perspective projection,
% corresponding to the model of a pin-hole camera - which is a good
% approximation of the human eye and of standard real world cameras --
% well, the best aproximation one can do with 3 lines of code ;-)
glMatrixMode(GL_PROJECTION);
glLoadIdentity;
% Field of view is +/- 25 degrees from line of sight. Objects close than
% 0.1 distance units or farther away than 100 distance units get clipped
% away, aspect ratio is adapted to the monitors aspect ratio:
gluPerspective(25,1/ar,0.1,100);
% Setup modelview matrix: This defines the position, orientation and
% looking direction of the virtual camera:
glMatrixMode(GL_MODELVIEW);
glLoadIdentity;
% Cam is located at 3D position (0,0,10), points upright (0,1,0) and fixates
% at the origin (0,0,0) of the worlds coordinate system:
gluLookAt(0,0,10,0,0,0,0,1,0);
% Setup position and emission properties of the light source:
% Set background color to 'black':
glClearColor(0,0,0,0);
% Point lightsource at (1,2,3)...
glLightfv(GL_LIGHT0,GL_POSITION,[ 20 200 20 0 ]);
% Emits white (1,1,1,1) diffuse light:
glLightfv(GL_LIGHT0,GL_DIFFUSE, [ 0.4 0.4 0.9 1 ]);
% Emits reddish (1,1,1,1) specular light:
glLightfv(GL_LIGHT0,GL_SPECULAR, [ 1 1 1 1 ]);
% There's also some blue, but weak (R,G,B) = (0.1, 0.1, 0.1)
% ambient light present:
glLightfv(GL_LIGHT0,GL_AMBIENT, [ .0 .0 .9 1 ]);
% Point lightsource at (1,2,3)...
glLightfv(GL_LIGHT1,GL_POSITION,[ 20 -200 20 0 ]);
% Emits white (1,1,1,1) diffuse light:
glLightfv(GL_LIGHT1,GL_DIFFUSE, [ 0.8 0.8 0.2 1 ]);
% Emits reddish (1,1,1,1) specular light:
glLightfv(GL_LIGHT1,GL_SPECULAR, [ 1 1 1 1 ]);
% There's also some blue, but weak (R,G,B) = (0.1, 0.1, 0.1)
% ambient light present:
glLightfv(GL_LIGHT1,GL_AMBIENT, [ .0 .0 .9 1 ]);
glEnable(GL_NORMALIZE);
% GLSL setup:
glGetError;
% Load all pairs of GLSL shaders from the directory of demo shaders and
% create GLSL programs for them: LoadGLSLProgramFromFiles is a convenience
% function. It loads single shaders or multiple shaders from text files,
% compiles and links them into a GLSL program, checks for errors and - if
% everything is fine - returns a handle that can be used to enable the
% GLSL program via glUseProgram():
shaderpath = [PsychtoolboxRoot '/PsychDemos/OpenGL4MatlabDemos/GLSLDemoShaders/'];
glsl(1)=LoadGLSLProgramFromFiles([shaderpath 'Flattenshader'],1);
glsl(2)=LoadGLSLProgramFromFiles([shaderpath 'Pointlightshader'],1);
glsl(3)=LoadGLSLProgramFromFiles([shaderpath 'Toonshader'],1);
glsl(4)=LoadGLSLProgramFromFiles([shaderpath 'Brickshader'],1);
gluErrorString
% Activate program:
glUseProgram(glsl(1));
programid = glsl(1);
programmax = length(glsl);
gluErrorString
% Initialize amount and direction of rotation
theta=0;
rotatev=[ 0 0 1 ];
objectid=0;
% Animation loop: Run until key press...
while (1)
% Calculate rotation angle for next frame:
theta=mod(theta+0.03,360);
rotatev=rotatev+0.01*[ sin((pi/180)*theta) sin((pi/180)*2*theta) sin((pi/180)*theta/5) ];
rotatev=rotatev/sqrt(sum(rotatev.^2));
% Setup cubes rotation around axis:
glPushMatrix;
glRotated(theta,rotatev(1),rotatev(2),rotatev(3));
% Clear out the backbuffer: This also cleans the depth-buffer for
% proper occlusion handling:
glClear;
switch mod(objectid, 8)
case 0
glutSolidCube(1.0);
case 1
glutSolidTeapot(1.0);
case 2
glutSolidSphere(1, 50, 10);
case 3
glutSolidTorus( 0.7, 1, 100, 100 )
case 4
glutWireCube(1.0);
case 5
glutWireTeapot(1.0);
case 6
glutWireSphere(1, 50, 10);
case 7
glutWireTorus( 0.7, 1, 100, 100 )
end;
glPopMatrix;
% Finish OpenGL rendering into PTB window and check for OpenGL errors.
Screen('EndOpenGL', win);
% Show rendered image at next vertical retrace:
Screen('Flip', win);
% Switch to OpenGL rendering again for drawing of next frame:
Screen('BeginOpenGL', win);
% Check for keyboard press and exit, if so:
[keydown secs keycode]=KbCheck;
if keydown
if keycode(KbName('n'))
% Toggle objectid:
objectid=objectid+1;
elseif keycode(KbName('space'))
% Toggle/Switch use of GLSL shaders:
programid = mod(programid + 1, programmax+1);
if programid > 0
% Enable shaders:
glUseProgram(glsl(programid));
else
% Disable shaders:
glUseProgram(0);
end;
else
break;
end;
% Debounce keys:
while KbCheck; end;
end;
end
% Shut down OpenGL rendering:
Screen('EndOpenGL', win);
% Close onscreen window and release all other ressources:
Screen('CloseAll');
% Reenable Synctests after this simple demo:
Screen('Preference','SkipSyncTests',1);
% Well done!
return
|