/usr/share/psychtoolbox-3/PsychDemos/OpenGL4MatlabDemos/SpinningMovieCube.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | function SpinningMovieCube(moviename)
% SpinningMovieCubeDemo - Demonstrate use of MATLAB-OpenGL toolbox
%
% This demo demonstrates use of OpenGL commands in a Matlab script together
% with the movie playback functions of PTB. It shows a randomly
% spinning, three dimensional textured cube. The six sides of the cube
% show a quicktime video, loaded and played from a quicktime movie file.
%
% Stop the demo any time by pressing any key.
%
% Notable implementation details:
%
% The implementation is nearly identical as SpinningCubeDemo, so make sure
% you understand that file first.
%
% This demo uses the Screen('GetOpenGLTexture') function to make a
% Psychtoolbox texture (loaded from the movie) available to
% OpenGL for 3D texture mapping.
%
% It opens a movie file and then - in a loop - fetches video images frame
% by frame. The images which are stored as Psychtoolbox textures are then
% made available as standard OpenGL textures for drawing onto the sides of
% the spinning cube.
%
% 15-Dec-2005 -- created (RFM)
% 21-Jan-2006 -- Modified for use with OpenGL-Psychtoolbox (MK)
% 16-Feb-2006 -- Modified for use with new MOGL (MK)
% 05-Mar-2006 -- Cleaned up for public consumption (MK)
% 23-Aug-2012 -- Adapt to PTB 3.0.10 file structure, cleanup. (MK)
% 06-Apr-2013 -- Make compatible with OpenGL-ES1.1. (MK)
% Assign default movie file, if none provided:
if nargin < 1
moviename= [ PsychtoolboxRoot 'PsychDemos/MovieDemos/DualDiscs.mov' ];
end;
moviename %#ok<NOPRT>
% Is the script running in OpenGL Psychtoolbox?
AssertOpenGL;
% Find the screen to use for display:
screenid=max(Screen('Screens'));
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper:
InitializeMatlabOpenGL(1);
% Open a double-buffered full-screen window on the main displays screen.
[win , winRect] = Screen('OpenWindow', screenid);
% Open movie file, get a handle to the movie and start playback:
movie=Screen('OpenMovie', win, moviename);
Screen('PlayMovie', movie, 1, 1, 1);
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
% Get the aspect ratio of the screen:
ar=winRect(4)/winRect(3);
% Turn on OpenGL local lighting model: The lighting model supported by
% OpenGL is a local Phong model with Gouraud shading.
glEnable(GL_LIGHTING);
% Enable the first local light source GL_LIGHT_0. Each OpenGL
% implementation is guaranteed to support at least 8 light sources.
glEnable(GL_LIGHT0);
% Enable two-sided lighting - Back sides of polygons are lit as well.
glLightModelfv(GL_LIGHT_MODEL_TWO_SIDE,GL_TRUE);
% Enable proper occlusion handling via depth tests:
glEnable(GL_DEPTH_TEST);
% Define the cubes light reflection properties by setting up reflection
% coefficients for ambient, diffuse and specular reflection:
glMaterialfv(GL_FRONT_AND_BACK,GL_AMBIENT, [ .33 .22 .03 1 ]);
glMaterialfv(GL_FRONT_AND_BACK,GL_DIFFUSE, [ .78 .57 .11 1 ]);
glMaterialfv(GL_FRONT_AND_BACK,GL_SHININESS,27.8);
% Set projection matrix: This defines a perspective projection,
% corresponding to the model of a pin-hole camera - which is a good
% approximation of the human eye and of standard real world cameras --
% well, the best aproximation one can do with 3 lines of code ;-)
glMatrixMode(GL_PROJECTION);
glLoadIdentity;
% Field of view is 25 degrees from line of sight. Objects close than
% 0.1 distance units or farther away than 100 distance units get clipped
% away, aspect ratio is adapted to the monitors aspect ratio:
gluPerspective(25,1/ar,0.1,100);
% Setup modelview matrix: This defines the position, orientation and
% looking direction of the virtual camera:
glMatrixMode(GL_MODELVIEW);
glLoadIdentity;
% Cam is located at 3D position (3,3,5), points upright (0,1,0) and fixates
% at the origin (0,0,0) of the worlds coordinate system:
gluLookAt(3,3,5,0,0,0,0,1,0);
% Setup position and emission properties of the light source:
% Set background color to 'black':
glClearColor(0,0,0,0);
% Point lightsource at (1,2,3)...
glLightfv(GL_LIGHT0,GL_POSITION,[ 1 2 3 0 ]);
% Emits white (1,1,1,1) diffuse light:
glLightfv(GL_LIGHT0,GL_DIFFUSE, [ 1 1 1 1 ]);
% There's also some white, but weak (R,G,B) = (0.1, 0.1, 0.1)
% ambient light present:
glLightfv(GL_LIGHT0,GL_AMBIENT, [ .1 .1 .1 1 ]);
% initialize amount and direction of rotation
theta=0;
rotatev=[ 0 0 1 ];
% Setup global variables needed for texture mapping:
global target;
global tu
global tv
% Run playback loop until key pressed:
while (1)
% Fetch next video frame from movie file and return a Psychtoolbox
% texture handle to it:
Screen('EndOpenGL', win);
texid = Screen('GetMovieImage', win, movie);
Screen('BeginOpenGL', win);
% Valid texture?
if texid<=0
% No. Abort.
break;
end;
% Retrieve and assign textures for each cube face... Here we assign six
% times the same image...
for i=1:6
% Retrieve size of movie texture image:
[ imw imh] = Screen('WindowSize', texid);
% Retrieve an OpenGL texture handle and texture mapping parameters:
% texname(i) contains the OpenGL texture id, target is the texture
% type, tu and tv are the texture coodinates of the (imw,imh)
% position of the texture:
[ texname(i) target tu tv] = Screen('GetOpenGLTexture', win, texid, imw, imh); %#ok<*AGROW>
end;
% calculate rotation angle and axis of cube for this frame:
theta=mod(theta+1,360);
rotatev=rotatev+0.1*[ sin((pi/180)*theta) sin((pi/180)*2*theta) sin((pi/180)*theta/5) ];
rotatev=rotatev/sqrt(sum(rotatev.^2));
% Draw cube:
glPushMatrix;
glRotatef(theta,rotatev(1),rotatev(2),rotatev(3));
glClear;
cubeface([ 4 3 2 1 ],texname(1));
cubeface([ 5 6 7 8 ],texname(2));
cubeface([ 1 2 6 5 ],texname(3));
cubeface([ 3 4 8 7 ],texname(4));
cubeface([ 2 3 7 6 ],texname(5));
cubeface([ 4 1 5 8 ],texname(6));
glPopMatrix;
% End OpenGL rendering and check for OpenGL errors.
Screen('EndOpenGL', win);
% Show rendered image on next retrace:
Screen('Flip', win);
% Close the texture after drawing so we don't use up system memory:
Screen('Close', texid);
% Switch to OpenGL rendering again for drawing of next frame:
Screen('BeginOpenGL', win);
% Abort on keypress:
if KbCheck
break;
end;
end
% End of the show:
% Disable OpenGL drawing:
Screen('EndOpenGL', win);
% Stop movie playback and close movie:
Screen('CloseMovie', movie);
% Close onscreen window and release all ressources:
Screen('CloseAll');
return
% draw one face of a textured cube
function cubeface( i, tx )
v=[ 0 0 0 ; 1 0 0 ; 1 1 0 ; 0 1 0 ; 0 0 1 ; 1 0 1 ; 1 1 1 ; 0 1 1 ]'-0.5;
n=cross(v(:,i(2))-v(:,i(1)),v(:,i(3))-v(:,i(2)));
global GL
global target
global tu
global tv
% Enable and bind proper texture:
glEnable(target);
glBindTexture(target,tx);
glTexEnvfv(GL.TEXTURE_ENV,GL.TEXTURE_ENV_MODE,GL.MODULATE);
% Setup filtering for the textures:
glTexParameterfv(GL.TEXTURE_2D,GL.TEXTURE_MAG_FILTER,GL.NEAREST);
glTexParameterfv(GL.TEXTURE_2D,GL.TEXTURE_MIN_FILTER,GL.NEAREST);
% Begin drawing of a new quad:
glBegin(GL.QUADS);
% Assign n as normal vector for this polygons surface normal:
glNormal3f(n(1), n(2), n(3));
% Define vertex 1 by assigning a texture coordinate and a 3D position:
glTexCoord2f(0, 0);
glVertex3f(v(1,i(1)),v(2,i(1)),v(3,i(1)));
% Define vertex 2 by assigning a texture coordinate and a 3D position:
glTexCoord2f(tu, 0);
glVertex3f(v(1,i(2)),v(2,i(2)),v(3,i(2)));
% Define vertex 3 by assigning a texture coordinate and a 3D position:
glTexCoord2f(tu, tv);
glVertex3f(v(1,i(3)),v(2,i(3)),v(3,i(3)));
% Define vertex 4 by assigning a texture coordinate and a 3D position:
glTexCoord2f(0, tv);
glVertex3f(v(1,i(4)),v(2,i(4)),v(3,i(4)));
glEnd;
return
|