/usr/share/psychtoolbox-3/PsychOpenGL/PsychGLSLShaders/gpgpuGVF.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 | function gpgpuGVF(singlefbo, trials)
if nargin < 1
singlefbo=1;
end;
if nargin < 2
trials = 1;
end;
% Is the script running in OpenGL Psychtoolbox?
AssertOpenGL;
% Find the screen to use for display:
screenid=max(Screen('Screens'));
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper:
InitializeMatlabOpenGL(1);
% Open a double-buffered full-screen window on the main displays screen.
[win , winRect] = Screen('OpenWindow', screenid);
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
% Read test input image...
%impath = [PsychtoolboxRoot '/PsychDemos/konijntjes1024x768.jpg']
impath = [PsychtoolboxRoot '/PsychDemos/OpenGL4MatlabDemos/earth_512by256.jpg']
inputimage = imread(impath);
% ...convert into grayscale image...
inputimage = transpose(rgb2gray(inputimage));
%inputimage = inputimage(1:128, 1:128);
% Pad it to be a square, power-of-two image:
msize = pow2(ceil(log2(max(size(inputimage)))))
tmpimage = zeros(msize, msize);
xpad = int16(floor((msize - size(inputimage,1))/2))+1;
ypad = int16(floor((msize - size(inputimage,2))/2))+1;
tmpimage(xpad:xpad+size(inputimage,1)-1, ypad:ypad+size(inputimage,2)-1) = inputimage(:,:);
inputimage = tmpimage;
% Compute edge-map:
inputimage = uint8(edge(inputimage, 'canny'));
% TEST TEST TEST
%inputimage(:,:)=0;
%inputimage(100:105,:)=255;
Screen('EndOpenGL', win);
% ...and convert it to texture:
size(inputimage)
inputtex = Screen('MakeTexture', win, inputimage);
% Retrieve an OpenGL handle to it:
texin = Screen('GetOpenGLTexture', win, inputtex);
Screen('BeginOpenGL', win);
maxattachnr = glGetIntegerv(GL.MAX_COLOR_ATTACHMENTS_EXT)
% Use
if glGetIntegerv(GL.MAX_COLOR_ATTACHMENTS_EXT)<2 || singlefbo==0
singlefbo=0;
else
singlefbo=1;
end;
precision = GL.RGBA_FLOAT16_APPLE;
% Create framebuffer objects and color buffer textures:
if singlefbo==0
% Hw only supports one color attachment per FBO. Need to create three
% FBOs for pingpong:
[fbos(1), tex(1)]=moglCreateFBO(msize, msize, 1, 4, precision);
[fbos(2), tex(2)]=moglCreateFBO(msize, msize, 1, 4, precision);
[fbos(3), tex(3)]=moglCreateFBO(msize, msize, 1, 4, precision);
else
% We use one FBO with two color attachments for pingpong.
[fbos(1), tex ]=moglCreateFBO(msize, msize, 2, 4, precision);
% Set fbos(2) = 0 to signal not to use fbo(2).
fbos(2)=0;
% We create one FBO for the static b, c1 and c2 arrays:
[fbos(3), tex(3) ]=moglCreateFBO(msize, msize, 1, 4, precision);
end;
% Load our bias and rescale shader:
glslnormalizer = LoadGLSLProgramFromFiles('ScaleAndBiasShader');
prebias = glGetUniformLocation(glslnormalizer, 'prescaleoffset');
postbias = glGetUniformLocation(glslnormalizer, 'postscaleoffset');
scalefactor = glGetUniformLocation(glslnormalizer, 'scalefactor');
% Activate it for following blit op:
glUseProgram(glslnormalizer);
% Set no bias to be applied:
glUniform1f(prebias, 0.0);
glUniform1f(postbias, 0.0);
% Multiply all luminance values by 255, so they are in usual range 0-255
% instead of 0-1. We do this to reduce numeric roundoff errors.
glUniform1f(scalefactor, 255.0);
% Bind FBO 1, colorbuffer 1:
moglChooseFBO(fbos(1), 1);
% Blit input image into it, scaling it from 0-1 to 0-255:
moglBlitTexture(texin);
% Disable shader:
glUseProgram(0);
% Read it back (only the RED channel, it is a grayscale image, so
% red, green and blue contain the same content. We read it back to make
% sure we can compare Matlabs results to the GPU results:
inputimage = glReadPixels(0, 0, msize, msize, GL_RED, GL_FLOAT);
imshow(inputimage);
figure;
% Unbind FBO, reset to normal framebuffer:
moglChooseFBO(0);
% Perform reduce operation to compute image properties: We need the maximum
% and minimum luminance value:
[minv, maxv, meanv] = moglComputeMinMaxMeanOfTexture(moglGetTexForFBO(fbos(1), 1), fbos(1), fbos(2), 1);
glFinish;
tic;
for c=1:trials
% We use the texture of fbo(1) as input image, as we know that fbo-1
% will not be used as drawing target in first iteration. We provide
% fbo(1) and fbo(2) as ping-pong buffers for iterative reduce
% operation:
[dminv, dmaxv, dmeanv] = moglComputeMinMaxMeanOfTexture(moglGetTexForFBO(fbos(1), 1), fbos(1), fbos(2), 1);
end;
durationgpu = toc / trials;
minc=min(min(inputimage));
maxc=max(max(inputimage));
meanc=mean(mean(inputimage));
tic;
minc=min(min(inputimage));
maxc=max(max(inputimage));
meanc=mean(mean(inputimage));
durationcpu = toc;
fprintf('Minimum CPU = %f , OpenGL = %f\n', minc, minv);
fprintf('Maximum CPU = %f , OpenGL = %f\n', maxc, maxv);
fprintf('Mean CPU = %f , OpenGL = %f\n', meanc, meanv);
fprintf('Time/pass CPU = %f ms, OpenGL = %f ms\n', durationcpu * 1000, durationgpu * 1000);
% Compute GVF in C-Code:
mu = 0.1
numiters = 100
% GVFC needs double input, not float input!
gvfcinput = double(inputimage);
tic
[gvfc_v,gvfc_u] = GVFC(gvfcinput, mu, numiters);
gvfcduration = toc * 1000
gvfcdurationperiter = gvfcduration / numiters
% This performs stage 1 of GVF initialization: Normalize all edge map
% values, remapping it so they span the whole range of
% [min ; max] to interval [0 ; 1]. Compute initial edge map gradient by
% taking central differences as derivatives.
% We use a special shader for this that combines these two operations,
% drawing the input edge map texture into FBO 1 again:
tic;
% Load our remap, normalize and gradient map shader:
glslgradientshader = LoadGLSLProgramFromFiles('ScaleBiasAndGradientShader');
prebias = glGetUniformLocation(glslgradientshader, 'prescaleoffset');
postbias = glGetUniformLocation(glslgradientshader, 'postscaleoffset');
scalefactor = glGetUniformLocation(glslgradientshader, 'scalefactor');
% Draw into FBO 1:
moglChooseFBO(fbos(1), 1);
% Activate gradient shader for following blit op:
glUseProgram(glslgradientshader);
% Compute bias and scale to be used:
minv = minv / 255;
maxv = maxv / 255;
sf = 1.0 / (maxv - minv);
% Set bias to be applied: This maps the minimum value to zero:
glUniform1f(prebias, -minv);
% No post-scale bias:
glUniform1f(postbias, 0.0);
% Scale factor to spread out everything into range 0.0 - 1.0:
glUniform1f(scalefactor, sf);
% Blit input image into it, remapping/normalizing it to range 0.0 - 1.0 and
% then computing the gradient image on it. The RED channel will contain gx,
% the GREEN channel will contain gy, BLUE and ALPHA are unused.
moglBlitTexture(texin);
% Disable shader:
glUseProgram(0);
% Read blitted textures back from FBOs:
% This shows the normalized 0-1 edge-map:
img = glReadPixels(0, 0, msize, msize, GL_RGB, GL_FLOAT);
% Red is dx:
imshow(img(:,:,1), [-0.5 0.5]);
figure
% Green is dy:
imshow(img(:,:,2), [-0.5 0.5]);
figure
% Blue is remapped intensity:
imshow(img(:,:,3), [0 1]);
figure
% GVF Step 2: Initial flow field (u,v) is stored in (R,G) channels of
% FBO1-1's texture. Compute constant magnitude, c1 and c2 arrays in FBO 3:
% Bind FBO 3-1 for drawing. We could do fast-binding here, as dimensions
% match previously bound FBO 1-1:
moglChooseFBO(fbos(3),1);
% Load and activate our b=1-magnitude, c1, c2 shader:
glslGVFInitshader = LoadGLSLProgramFromFiles('GVFInitShader');
glUseProgram(glslGVFInitshader);
% Blit the flow field in FBO 1-1 into it:
moglBlitTexture(moglGetTexForFBO(fbos(1), 1));
% Disable shader:
glUseProgram(0);
% Read blitted textures back from FBOs:
% This shows the b=1-mag, c1 and c2 fields:
img = glReadPixels(0, 0, msize, msize, GL_RGB, GL_FLOAT);
% Red is b = 1 - mag (Range 0.5 to 1.0)
imagesc(img(:,:,1));
figure
% Green is c1:
imagesc(img(:,:,2));
figure
% Blue is c2:
imagesc(img(:,:,3));
figure
% FBO 1-1 contains initial (u,v) flow field.
% FBO 3-1 contains (b,c1,c2) static field.
% GVF iteration will bounce data between FBO 1-1 and FBO 1-2, the
% intermediate result of last iteration bound as texture to texture unit 0,
% the static field bound as texture to texture unit 1:
% Load GVF Update shader:
glslGVFUpdateshader = LoadGLSLProgramFromFiles('GVFUpdateShader');
ingradient = glGetUniformLocation(glslGVFUpdateshader, 'ingradient');
bc1c2field = glGetUniformLocation(glslGVFUpdateshader, 'bc1c2field');
% Activate update shader:
glUseProgram(glslGVFUpdateshader);
glUniform1i(ingradient, 0);
glUniform1i(bc1c2field, 1);
% Retrieve handle to mu constant and set it to reasonable value:
fourmu = glGetUniformLocation(glslGVFUpdateshader, 'fourmu');
glUniform1f(fourmu, 4 * mu);
% Bind FBO 1-2 as target for first iteration:
% We could do fast-binding as dimensions of all buffers match!
moglChooseFBO(fbos(1), 2);
% Source textures for iterations are cached in buffertex:
buffertex(1) = moglGetTexForFBO(fbos(1), 1);
buffertex(2) = moglGetTexForFBO(fbos(1), 2);
% Need to setup 2nd texture unit for constant input image:
b_c1_c2_tex = moglGetTexForFBO(fbos(3), 1);
% Unbind our constant texture:
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, 0);
% Select the 2nd texture unit (unit 1) for setup:
glActiveTexture(GL.TEXTURE1);
% Switch it into RECTANGLE texture mapping mode:
glDisable(GL.TEXTURE_2D);
glEnable(GL.TEXTURE_RECTANGLE_EXT);
% Bind our constant texture:
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, b_c1_c2_tex);
% Make sure we use nearest neighbour sampling:
glTexParameteri(GL.TEXTURE_RECTANGLE_EXT, GL.TEXTURE_MIN_FILTER, GL.NEAREST);
glTexParameteri(GL.TEXTURE_RECTANGLE_EXT, GL.TEXTURE_MAG_FILTER, GL.NEAREST);
% And that we clamp to edge:
glTexParameteri(GL.TEXTURE_RECTANGLE_EXT, GL.TEXTURE_WRAP_S, GL.CLAMP);
glTexParameteri(GL.TEXTURE_RECTANGLE_EXT, GL.TEXTURE_WRAP_T, GL.CLAMP);
% Choose texture application function to be a neutral REPLACE:
glTexEnvfv(GL.TEXTURE_ENV,GL.TEXTURE_ENV_MODE,GL.REPLACE);
% Unit 1 is ready, switch back to Unit 0, the first unit:
glActiveTexture(GL.TEXTURE0);
% Switch it into RECTANGLE texture mapping mode:
glDisable(GL.TEXTURE_2D);
glEnable(GL.TEXTURE_RECTANGLE_EXT);
inputtex = buffertex(1);
glFinish;
gvfinitduration = toc * 1000
tic;
% GVF iterative ping-pong update loop:
bufferid = 0;
for i=1:numiters
%tic
% Compute drawbuffers id and its texturehandle:
bufferid = 1 - bufferid;
futuretex = buffertex(bufferid + 1);
% Bind proper FBO as target for intermediate reduce results:
if singlefbo == 0
% Use two FBO's for pingpong:
if bufferid==0
glBindFramebufferEXT(GL.FRAMEBUFFER_EXT, fbos(1));
else
glBindFramebufferEXT(GL.FRAMEBUFFER_EXT, fbos(2));
end;
else
% Use one dual-buffer FBO for pingpong:
% We only switch the draw-buffer to keep the overhead as low as
% possible:
glDrawBuffer(GL.COLOR_ATTACHMENT0_EXT + bufferid);
end;
% Do it: We use fast-blit mode (1) because we did texture setup
% ourselves:
moglBlitTexture(inputtex, 0, 0, msize, msize, 1);
% Assign source texture for next pass:
inputtex = futuretex;
%glFinish;
%gpupass = toc * 1000
end;
glFinish
gvfduration = toc * 1000
gvfperiteration = gvfduration / numiters
% Shut down the GVF iteration shader...
glUseProgram(0);
% ...and both texture units:
glDisable(GL.TEXTURE_RECTANGLE_EXT);
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, 0);
glActiveTexture(GL.TEXTURE1);
glDisable(GL.TEXTURE_RECTANGLE_EXT);
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, 0);
glActiveTexture(GL.TEXTURE0);
% Assign read buffer for GVF readout:
glReadBuffer(GL.COLOR_ATTACHMENT0_EXT + bufferid);
% Readout final result: RED = flow_x, GREEN = flow_y:
gvf_finalimg = glReadPixels(0, 0, msize, msize, GL_RGB, GL_FLOAT);
% Final flow_x:
imagesc(gvf_finalimg(:,:,1));
figure
% Final flow_y:
imagesc(gvf_finalimg(:,:,2));
figure
% Unbind FBO, reset to normal framebuffer:
moglChooseFBO(0);
% Delete all FBO's:
for i=1:length(fbos)
moglDeleteFBO(fbos(i));
end;
% Shut down OpenGL rendering:
Screen('EndOpenGL', win);
% Close onscreen window and release all other ressources:
Screen('CloseAll');
%minu = min(min(gvfc_u))
minu = min(min(gvf_finalimg(:,:,1)))
%maxu = max(max(gvfc_u))
maxu = max(max(gvf_finalimg(:,:,1)))
return
imagesc(gvfc_u);
figure;
imagesc(gvfc_v);
figure;
diff_u = gvfc_u - gvf_finalimg(:,:,1);
diff_v = gvfc_v - gvf_finalimg(:,:,2);
imagesc(diff_u);
figure;
imagesc(diff_v);
maxdiff=max(max(abs(diff_u) + abs(diff_v)))
avgdiff=mean(mean(abs(diff_u) + abs(diff_v)))
% Well done!
return
|