/usr/share/psychtoolbox-3/PsychOpenGL/moglFDF.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 | function varargout = moglFDF(cmd, varargin)
% moglFDF(cmd [, arg1][, arg2][, ...]) - "MOGL FormlessDotFields"
%
% Implementation of Sheinberg et al. inspired random dot structure from motion
% rendering. This routine is a fast implementation of "Formless dot field
% structure-from-motion stimuli". It is based on - and very similar in
% behaviour, although not identical in implementation - the algorithm
% proposed by Jedediah M. Singer and David L. Sheinberg in their
% Journal of Vision paper "A method for the real-time rendering of
% formless dot field structure-from-motion stimuli" (Journal of Vision, 8,
% 1-8)
%
% This algorithm takes the idea of the above mentioned paper and pushes it
% one step further by moving nearly all stimulus computation onto the GPU.
%
% All compute intense tasks are carried out by vertex- and fragment-shaders
% on the GPU and all heavy data structures are stored within the GPU's fast
% local VRAM memory, reducing the amount of communication between host
% system and graphics card to an absolute minimum. The Matlab code on the
% CPU only controls the flow of operations on the GPU and generates a
% matrix with random numbers to update the sample distribution. This should
% provide a significant speedup beyond what the Singer et al. algorithm
% achieves, at least for complex and demanding stimuli.
%
%
% The algorithm makes heavy use of GPU based image processing for maximum
% speed, so it needs at least NVidia Geforce 6000 series or ATI Radeon
% X1000 series graphics hardware (and any later models or equivalent
% hardware) to work. It also needs the PTB imaging pipeline enabled, at
% least fast offscreen window support. You do this, e.g., by replacing a
% call to ...
%
% [win, winRect] = Screen('OpenWindow', screenid, 0);
%
% ... with a call sequence like this ...
%
% PsychImaging('PrepareConfiguration');
% PsychImaging('AddTask', 'General', 'UseFastOffscreenWindows');
% [win , winRect] = PsychImaging('OpenWindow', screenid, 0);
%
%
% A minimal example of how to use moglFDF to render a "dotfield"
% representation of a rotating 3D sphere can be found in the FDFDemo.m
% file.
%
%
% Subcommands, their syntax & meaning:
% ====================================
%
% [oldflag, oldgain] = moglFDF('DebugFlag', flag [, debugGain]);
% - Set debug flag to value 'flag'. Default is zero. Non-zero values enable
% different visualizations that may aid debugging non-working setups.
% 1 = Show silhouette buffer, 2 = Show trackbuffer, 3 = Show random noise
% sampling texture, 4 = Show sampleBuffer, 5 = Show FGDots buffer. A
% setting of -1 shows the real rendered image, instead of the random dot
% visualization. A value of -2 disables any kind of textual warnings.
%
% The optional 'debugGain' parameter must be a 4 component [R G B A] color
% vector with modulation gains for the drawn "debug images" - simply to
% scale each color channel in intensity to allow for display of values
% outside the standard displayable range between zero and one.
%
%
% context = moglFDF('CreateContext', window, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime [,zThreshold=Off] [,BGSilhouetteAcceptanceProbability=0.0]);
% - Create a "rendercontext" for a single 3D object. Returns a 'context'
% handle to it which needs to be passed in to all other functions as
% reference. All following parameters are required and don't have any
% defaults:
%
% 'window' Handle of masterwindow - The onscreen window used for rendering.
% This is not neccessarily the window to which final stimulus will be drawn
% to, but it is needed as a "parent" for all ressources.
%
% 'rect' A Psychtoolbox rectangle [left top right bottom] that describes
% the size and shape of the final stimulus window. This rect must have the
% same size as the 3D window and final stimulus window -- Lots of internal
% calculations depend on this geometry spec.
%
% 'texCoordMin' Two element vector which contains the minimum texture
% coordinate values contained in the 3D scene for x- resp. y-direction.
%
% 'texCoordMax' Two element vector which contains the maximum texture
% coordinate values contained in the 3D scene for x- resp. y-direction.
%
% 'texResolution' Two element vector which contains the internal resolution
% for x- resp. y-direction of the 3D object surface. Higher values mean finer
% resolution and less aliasing, but also higher storage requirements and
% longer processing times.
%
% 'maxFGDots' Maximum number of foreground (object shape) dots to use for
% random shape sampling. This must be an integral multiple of
% 'dotLifetime'. If it isn't, it will get adjusted to become an integral
% multiple.
%
% 'maxBGDots' Maximum number of background dots to use for random background
% sampling. This must be an integral multiple of 'dotLifetime'. If it
% isn't, it will get adjusted to become an integral multiple. If you don't
% want to have structure cues in your stimulus, you should set 'maxBGDots'
% equal to 'maxFGDots' to keep overall dot density on the display constant.
%
% 'dotLifetime' Lifetime of each foreground- or background dot in 'Update'
% cycles. Each dot is replace by a new random sample after that many
% invocations of the 'Update' function.
%
% 'zThreshold' Optional zThreshold for occlusion test: By default, it is
% 10.0 ie. occlusion test disabled. A value between 0.0 and 1.0 will enable
% occlusion testing -- Dots that would correspond to occluded surfaces are
% not drawn. Small numbers (close to zero) make the test more sensitive but
% can cause artifacts due to internal numeric roundoff errors. Bigger
% numbers (closer to one) make it more robust but less powerful. The
% "sweet-spot" depends on your hardware and 3D scene. Empirically a setting
% of 0.0001 is a good value for ATI Radeon X1000 series hardware.
% The default setting (bigger than 1.0) will disable occlusion test --
% "Hidden dots" are not hidden, but drawn.
%
% 'BGSilhouetteAcceptanceProbability' Optional BGSilhouetteAcceptanceProbability
% This is the probability with which a dot from the "background distribution"
% will be drawn if it is actually located in the area of the objects
% silhouette. A value of 0.0 (which is the default) will not draw any
% background dots within the objects silhouette. Values between 0 and 1
% correspond to acceptance probabilities between 0% and 100%. If you want
% to keep the overall dot density of foreground dots and background dots
% constant (in order to not provide segmentation cues based on structure),
% you should set the 'maxFGDots' parameter like this:
%
% maxFGDots = (1 - BGSilhouetteAcceptanceProbability) * maxBGDots;
%
%
% context = moglFDF('SetRenderCallback', context, callbackEvalString);
% - Define the 'eval' string for this context to be used as rendercallback.
% Pass in a Matlab command string (for evaluation via eval() function in the
% Workspace of the calling function). This string is called/executed during
% each 'Update' cycle. It has to contain the code that performs the actual
% rendering of the 3D scene or object.
%
% The called rendering code *must not* glClear() the framebuffer or mess
% around with alpha-blending state or depth-buffer/depth-test settings, nor
% should it bind any shaders! It makes sense to disable any kind of
% lighting or texture mapping, as no photorealistic image is rendered, so
% it would be a waste of computation time.
%
%
% context = moglFDF('ReinitContext', context, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime [,zThreshold=Off] [,BGSilhouetteAcceptanceProbability=0.0]);
% - Reinitialize an already existing context with new stimulus parameters.
% The parameters are identical to the ones in 'CreateContext', except for
% the first one: You don't pass a windowhandle of a parent window, as this
% stays the same for the reinitialized context. Instead you pass the handle
% of the 'context' to reinitialize.
%
% 'ReinitContext' is the same as a sequence of 'DestroyContext', followed
% by a new 'CreateContext', except that it is optimized for speed --
% Reinitialization with new parameters is typically at least 3 times faster
% than a full destroy & recreate operation.
%
%
% context = moglFDF('DestroyContext', context);
% - Destroy a processing context, release all of its ressources.
%
%
% context = moglFDF('ResetState', context);
% - Reset processing contexts state to initial state, just as if it was
% just created. Useful at start of a new trial. Another way to start a new
% trial, but with a full distribution already initialized, is to use the
% moglFDF('Update') call with the 'instantOn' flag set to 1 for the first
% iteration of your stimulus loop, instead of the default of zero.
%
%
% context = moglFDF('SetColorTexture', context, textureId, textureTarget);
% - Assign a regular color texture map with handle 'textureId' and texture
% mapping target 'textureTarget' to 'context'. This will enable assignment
% of colors to drawn 2D dots (in moglFDF('Render',...);) and fetch the
% relevant per-dot colors from the assigned texture map 'textureId'.
%
% Assigning an empty or negative textureId will disable texture mapping.
% Texture mapping is disabled by default, i.e. at context creation time.
%
%
% context = moglFDF('SetDrawShader', context, fgShaderId [, bgShaderId] [, needSprites]);
% - Assign a GLSL shader with handle 'fgShaderId' during 2D drawing of
% foreground dots in moglFDF('Render',...); Passing a 'fgShaderId' which is
% empty or negative disables shading. Shading is disabled by default.
%
% The optional 'bgShaderId' assigns potential shaders for drawing of
% background dots.
%
% The optional flag 'needSprites' if set to 1, will enable generation of
% point-sprite texture coordinates on texture unit 1 while using a shader
% with point-smoothing enabled. A setting of 0 disables point sprites.
% Point sprites plus special code within your drawing fragment shader are
% needed if you want to draw nicely anti-aliased dots on GPUs that don't
% support simultaneous use of fragment shaders and anti-aliased dots. On
% such systems you can roll your own anti-aliasing via point-sprites.
% Please note that almost all consumer class GPU's don't support
% anti-aliased dots in conjunction with fragment shaders.
%
%
% context = moglFDF('Update', context [, instantOn=0]);
% - Perform an 'update' cycle for given context. A new "3D frame" is rendered
% via the rendercallback function, then analysed, resampled etc. to create
% a new complete distribution of 2D random dots, ready for drawing or
% readback. If the optional 'instantOn' flag is provided and non-zero, then
% the whole distribution is generated at once for a quick start at the
% beginning of a new trial, otherwise only one batch of samples is updated.
% By default, only one batch is updated, as required for the algorithm to
% work.
%
%
% context = moglFDF('Render', context [, targetWindow] [, drawSpec=[1,1]]);
% - Render current 2D random dot cloud (as defined by processing of last
% 'Update' call) quickly and efficiently into window 'targetWindow'.
% 'targetWindow' can be any onscreen- or offscreen window and is allowed to
% change at each invocation of 'Render'. By default, the 'window' from the
% 'CreateContext' call is used.
%
% 'drawSpec' is an optional two-element vector to select if only foreground
% dots should be rendered [1 0], only background dots should be rendered [0 1],
% or both [1 1] -- which is the default.
%
% Before calling 'Render' you can define dot sizes, colors, alpha-blending
% state, texture coordinates, anti-aliasing settings, or define texture
% mapping, point-sprite modes or texture mapping setups however you like.
% The internal 'Render' routine just defines 2D point locations, then
% invokes the render op.
%
%
% [xyFGdots, xyBGdots, uvFGdots] = moglFDF('GetResults', context); - Returns a 2 row
% by n columns vector of all random dot positions, for processing within
% Matlab/Octave. Row 1 is x-locations, Row 2 is y-locations of dots, each
% column defines one dot. The 'xyFGDots' contains all foreground dots which
% define the object, whereas the 'xyBGdots' vector contains the background
% dots. These vectors are suitable for direct drawing via
% Screen('DrawDots'); However, invocation of moglFDF('Render',...); is a
% more efficient method of rendering these dot fields, unless you have very
% special needs.
%
% The optional 'uvFGdots' argument returns 2D texture coordinates as
% assigned to the rendered 3D object.
%
% History:
% 05/02/08 Initial "proof of concept" implementation (MK).
% -05/10/08 Various improvements (MK).
% 11/03/08 Documentation update, preparation for public release (MK).
% 11/15/08 Improvements: New 'instantOn' mode for 'Update' method, new
% 'ReinitContext' function (MK).
% Need OpenGL constants:
global GL;
% Internal state:
global moglFDF_OriginalContext;
persistent contextcount;
persistent debug;
persistent debugGain;
if nargin < 1
error('You must provide a "cmd" subcommand to execute!');
end
if isempty(contextcount)
contextcount = 0;
moglFDF_OriginalContext = [];
debug = 0;
if isempty(GL)
% If OpenGL not initialized, do a full init for 3D mode:
error('OpenGL mode not initialized! You *must* call InitializeMatlabOpenGL before the first call to this routine or any Screen() function!')
end
end
% Subcommand dispatch:
% Initialization of a new context: Allocate and setup all ressources:
if strcmpi(cmd, 'CreateContext') || strcmpi(cmd, 'ReinitContext')
% Fetch all arguments - They are all required.
if nargin < 9
error(sprintf('Some mandatory input arguments to "%s" are missing. Please provide them!', cmd)); %#ok<SPERR>
end
if strcmpi(cmd, 'CreateContext')
createContext = 1;
else
createContext = 0;
end
% First time init? I.e. is this the first context to be created?
if contextcount == 0
% Yes. Perform all one-time initialization work and create a
% template context from which all other contexts can be derived:
end
% Type of expected first argument depends if this is a 'CreateContext'
% call or a 'ReinitContext' call:
if createContext
% Parent window: Provides OpenGL master-/slave- contexts for our
% operations, shaders and buffers, as well as reference for
% rendertarget size:
ctx.parentWin = varargin{1};
if ~isscalar(ctx.parentWin) || ~ismember(ctx.parentWin, Screen('Windows'))
disp(ctx.parentWin);
error('Invalid "window" argument provided to "CreateContext" - No such window (see above)!');
end
else
% Old 'ctx' handle of context to reparameterize / reinit:
ctx = varargin{1};
% Make sure we've got a valid handle:
if ~isstruct(ctx)
disp(ctx);
error('Invalid "context" argument provided to "ReinitContext" - This is not a valid moglFDF context handle!');
end
if ~isfield(ctx, 'moglFDFMagic')
disp(ctx);
error('Invalid "context" argument provided to "ReinitContext" - This is not a valid moglFDF context handle!');
end
% Release all buffers, but not the shaders!
% Delete all offscreen windows, gloperators and buffers like IBO's
% VBO's, PBO's, FBO's etc, so they can get recreated, based on the
% new context parameters:
deleteContextBuffers(ctx);
RestoreGL;
% Decrement contextcount, so it can be reincremented at end of this
% function:
contextcount = max(contextcount - 1, 0);
end
% Assign our magic cookie...
ctx.moglFDFMagic = 'Funky magic-cookie';
% Get all other arguments and perform parameter type and range checks:
ctx.rect = varargin{2};
if ~isnumeric(ctx.rect) || length(ctx.rect)~=4
disp(ctx.rect);
error('Invalid "rect" argument provided to "CreateContext" - Must be a 4 component vector that describes the size and shape of the target rectangle [left top right bottom]');
end
ctx.rect = double(ctx.rect);
if IsEmptyRect(ctx.rect)
disp(ctx.rect);
error('Invalid "rect" argument provided to "CreateContext" - Must be a non-empty rect that describes the size and shape of the target rectangle [left top right bottom]');
end
ctx.texCoordMin = varargin{3};
if ~isnumeric(ctx.texCoordMin) || length(ctx.texCoordMin)~=2
disp(ctx.texCoordMin);
error('Invalid "texCoordMin" argument provided to "CreateContext" - Must be a 2 component vector of minimal texture coordinates in x- and y- direction!');
end
ctx.texCoordMax = varargin{4};
if ~isnumeric(ctx.texCoordMax) || length(ctx.texCoordMax)~=2
disp(ctx.texCoordMax);
error('Invalid "texCoordMax" argument provided to "CreateContext" - Must be a 2 component vector of maximal texture coordinates in x- and y- direction!');
end
ctx.texResolution = varargin{5};
if ~isnumeric(ctx.texResolution) || length(ctx.texResolution)~=2
disp(ctx.texResolution);
error('Invalid "texResolution" argument provided to "CreateContext" - Must be a 2 component vector of integral numbers with processing resolution in x- and y- direction!');
end
if round(ctx.texResolution) ~= ctx.texResolution
disp(ctx.texResolution);
error('Invalid "texResolution" argument provided to "CreateContext" - Must be integral numbers for resolution in x- and y- direction!');
end
if min(ctx.texResolution) < 2
disp(ctx.texResolution);
error('Invalid "texResolution" argument provided to "CreateContext" - Each component must be at least 2 units!');
end
ctx.maxFGDots = round(varargin{6});
if ~isscalar(ctx.maxFGDots)
disp(ctx.maxFGDots);
error('Invalid "maxFGDots" argument provided to "CreateContext" - Must be a positive integral number of maximum foreground dots!');
end
if ctx.maxFGDots < 1
disp(ctx.maxFGDots);
fprintf('Invalid "maxFGDots" argument provided to "CreateContext" - Must be at least 1! Changed to 1.\n');
ctx.maxFGDots = 1;
end
ctx.maxBGDots = round(varargin{7});
if ~isscalar(ctx.maxBGDots)
disp(ctx.maxBGDots);
error('Invalid "maxBGDots" argument provided to "CreateContext" - Must be a positive integral number of maximum background dots!');
end
if ctx.maxBGDots < 1
disp(ctx.maxBGDots);
fprintf('Invalid "maxBGDots" argument provided to "CreateContext" - Must be at least 1! Changed to 1.\n');
ctx.maxBGDots = 1;
end
ctx.dotLifetime = round(varargin{8});
if ~isscalar(ctx.dotLifetime)
disp(ctx.dotLifetime);
error('Invalid "dotLifetime" argument provided to "CreateContext" - Must be a positive integral number of how many update cycles a dot lives before replacement!');
end
if ctx.dotLifetime < 1
disp(ctx.dotLifetime);
error('Invalid "dotLifetime" argument provided to "CreateContext" - Must be at least 1!');
end
% Basic checks passed: Now check for inter-parameter consistency:
if rem(ctx.maxFGDots, ctx.dotLifetime)
% Doesn't divide without remainder.
if debug ~= -2
fprintf('In moglFDF:%s:\n', cmd);
fprintf('maxFGDots=%i , dotLifetime=%i --> remainder of maxFGDots / dotLifetime is not zero, as required!\n', ctx.maxFGDots, ctx.dotLifetime);
end
% Modify it to satisfy condition:
ctx.maxFGDots = max(ceil(ctx.maxFGDots / ctx.dotLifetime) * ctx.dotLifetime, ctx.dotLifetime);
if debug ~= -2
fprintf('"maxFGDots" must be an integral multiple of "dotLifetime". Changed "maxFGDots" to a value of %i to satisfy this condition.\n', ctx.maxFGDots);
end
end
if rem(ctx.maxBGDots, ctx.dotLifetime)
% Doesn't divide without remainder.
if debug ~= -2
fprintf('In moglFDF:%s:\n', cmd);
fprintf('maxBGDots=%i , dotLifetime=%i --> remainder of maxBGDots / dotLifetime is not zero, as required!\n', ctx.maxBGDots, ctx.dotLifetime);
end
% Modify it to satisfy condition:
ctx.maxBGDots = max(ceil(ctx.maxBGDots / ctx.dotLifetime) * ctx.dotLifetime, ctx.dotLifetime);
if debug ~= -2
fprintf('"maxBGDots" must be an integral multiple of "dotLifetime". Changed "maxBGDots" to a value of %i to satisfy this condition.\n', ctx.maxBGDots);
end
end
if nargin >= 10
ctx.zThreshold = varargin{9};
if ~isscalar(ctx.zThreshold)
disp(ctx.zThreshold);
error('Invalid "zThreshold" argument provided to "CreateContext" - Must be a positive number in range 0.0 - 1.0 for z-Test, and bigger for z-Test disabled!');
end
else
% Default: z-Test disabled:
ctx.zThreshold = 10.0;
end
if nargin >= 11
ctx.BGSilhouetteAcceptanceProbability = varargin{10};
if ~isscalar(ctx.BGSilhouetteAcceptanceProbability)
disp(ctx.BGSilhouetteAcceptanceProbability);
error('Invalid "BGSilhouetteAcceptanceProbability" argument provided to "CreateContext" - Must be a positive number in range 0.0 - 1.0!');
end
else
ctx.BGSilhouetteAcceptanceProbability = 0.0;
end
% Backup current GL context binding:
BackupGL;
% Make sure our Screen context is active:
SwitchToPTB;
% Retrieve info about our hosting window. This will implicitely enable
% our parents OpenGL context, so we can do GL query commands safely:
winfo = Screen('GetWindowInfo', ctx.parentWin);
% Retrieve maximum width or height of textures and offscreen windows
% supported by this GL implementation:
maxtexsize = glGetIntegerv(GL.MAX_RECTANGLE_TEXTURE_SIZE_EXT);
% Width of a line in samplebuffer:
ctx.samplesPerLine = min(maxtexsize, 2048);
ctx.samplesPerLine = min(ctx.samplesPerLine, round(ctx.maxFGDots / ctx.dotLifetime));
% Check requested internal resolution against hw-limit:
if max(ctx.texResolution) > maxtexsize
disp(ctx.texResolution)
error(sprintf('Requested "texResolution" parameter too big in at least one dimension - Your graphics card can not handle that! Maximum is %i\n', maxtexsize)); %#ok<SPERR>
end
% Need these checks only on original context creation:
if createContext
% Imaging pipeline active in at least minimum configuration?
if ~bitand(winfo.ImagingMode, mor(kPsychNeedFastBackingStore, kPsychNeedFastOffscreenWindows))
% Neither basic pipeline, nor fast offscreen window support
% activated in parent window. This is a no-go!
error('In "CreateContext": The PTB imaging pipeline is not active for provided parent window - this will not work! Need at least support for fast offscreen windows.');
end
if winfo.GLSupportsFBOUpToBpc < 32 || winfo.GLSupportsTexturesUpToBpc < 32
error('In "CreateContext": Your gfx-hardware is not capable of handling textures and buffers with the required precision - this function will not work on your hardware!');
end
% Check for all required extensions:
if ~(~isempty(findstr(glGetString(GL.EXTENSIONS), '_vertex_buffer_object')) && ...
~isempty(findstr(glGetString(GL.EXTENSIONS), '_pixel_buffer_object')) && ...
~isempty(findstr(glGetString(GL.EXTENSIONS), '_framebuffer_object')) && ...
~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_shading_language')) && ...
~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_shader_objects')) && ...
~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_fragment_shader')) && ...
~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_vertex_shader')) && ...
(~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_APPLE_float_pixels')) || ...
~isempty(findstr(glGetString(GL.EXTENSIONS), '_color_buffer_float'))))
% At least one of the required extensions is missing!
error('In "CreateContext": Your gfx-hardware does not support all required OpenGL extensions - this function will not work on your hardware!');
end
end
% Ok, all checks passed.
% Create all relevant FBO buffers, aka Offscreen windows:
% Sample buffer: Contains all foreground random dot samples.
% The buffer is split into ctx.dotLifetime blocks, each
% ctx.samplesPerLine wide and ctx.sampleLinesperBatch high. Each
% pixel in the buffer encodes one foreground sampe - and thereby one
% potential foreground dot in the next rendered frame.
%
% The algorithm will at each update cycle replace one of these blocks
% or "batches" with a new distribution of samples -- the old dots in
% that batch will die and get replaced by new samples from the
% foreground distribution iff they actually hit the silhouette of the
% 3D object to be "visualized" - otherwise that samples will be invalid
% and inactive. Each update cycle a different batch is selected for
% update in a round-robin fashion, so each sample has a lifetime of
% ctx.dotLifetime update cycles as requested.
%
% Each pixel codes as follows: Red channel == x position of 3D object
% surface to which the sample is attached, encoded as 32 bit float --
% technically it is the s-texture coordinate of the 3D surface at the
% point of impact of our sample. Green channel == y position, aka
% t-texture coordinate on objects surface. Blue channel == "Valid"
% flag: Non-zero means: Visualize this samples final tracked position
% -- draw corresponding dot. Zero means: Ignore this sample.
%
% Our buffer is implemented as a FBO backed floating point offscreen
% window with a pixel size of 128 bits, aka 32 bpc float.
ctx.sampleLinesPerBatch = ceil((round(ctx.maxFGDots / ctx.dotLifetime)) / ctx.samplesPerLine);
ctx.sampleLinesTotal = ctx.sampleLinesPerBatch * ctx.dotLifetime;
ctx.sampleBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], double([0 0 ctx.samplesPerLine ctx.sampleLinesTotal]), 128, 32);
ctx.maxFGDots = ctx.sampleLinesTotal * ctx.samplesPerLine;
% Silhouette buffer: Contains the "perspective correct image space"
% image of the rendered 3D object. The object is rendered "normally" in
% a first render pass to get its silhouette, except that the color of
% each rendered pixel is not a shaded/lit color, but its encoded
% interpolated surface texture coordinate. This will be done by a
% proper fragment shader during render pass.
% The buffer is an FBO backed offscreen window the same size as the
% parent window, but with 32bpc float format to store accurate texture
% coordinates in the pixel colors. Red channel encodes s-coord, Green
% channel encodes t-coord of 2D texture coordinate, blue encodes
% interpolated z-buffer depths.
[ctx.silhouetteWidth, ctx.silhouetteHeight] = RectSize(ctx.rect);
ctx.silhouetteBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], [0, 0, ctx.silhouetteWidth, ctx.silhouetteHeight], 128, 32);
% Retrieve OpenGL texture handle for the sihouetteBuffer:
ctx.silhouetteTexture = Screen('GetOpenGLTexture', ctx.parentWin, ctx.silhouetteBuffer);
% Tracking buffer: Contains the unwarped/flattened image of the 3D
% objects surface, created by a 2nd rendering pass of the 3D object,
% but with special vertex-/fragment shaders attached.
%
% Pixel location (x,y) encodes for object surface texture coordinate
% (s,t): Its R, G and B channels encode interpolated X, Y, Z coordinate
% of the unwarped object surface. This way a lookup at position (s,t)
% provides the image space 3D coordinate of surface point (s,t) in
% "normal" camera centered and projected (X,Y,Z) space -- (X,Y) are
% projected image coordinates, (Z) is depths component. This allows to
% lookup the tracked/updated (X,Y) image position of a sample dot.
%
% Again a 32bpc float offscreen window FBO, but the resolution is
% chosen per user spec to be fine enough in texture coordinate space to
% avoid aliasing artifacts as good as possible:
ctx.trackingBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], [0, 0, ctx.texResolution(1), ctx.texResolution(2)], 128, 32);
% Final buffer with foreground dot positions. This one will get filled
% by the createFGDotShader. It will later get either read back to
% Matlab on usercode request, or converted to a VBO and then rendered.
ctx.FGDotsBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], Screen('Rect', ctx.sampleBuffer), 128, 32);
% Final buffer with background dot positions. This one will get filled
% by the createBGDotShader. It will later get either read back to
% Matlab on usercode request, or converted to a VBO and then rendered.
% Width of a line in buffer:
ctx.BGsamplesPerLine = min(maxtexsize, 2048);
ctx.BGsamplesPerLine = min(ctx.BGsamplesPerLine, round(ctx.maxBGDots / ctx.dotLifetime));
ctx.BGsampleLinesPerBatch = ceil((round(ctx.maxBGDots / ctx.dotLifetime)) / ctx.BGsamplesPerLine);
ctx.BGsampleLinesTotal = ctx.BGsampleLinesPerBatch * ctx.dotLifetime;
ctx.BGDotsBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], double([0 0 ctx.BGsamplesPerLine ctx.BGsampleLinesTotal]), 128, 32);
ctx.maxBGDots = ctx.BGsampleLinesTotal * ctx.BGsamplesPerLine;
ctx.BGSampleSet = zeros(ctx.BGsampleLinesTotal, ctx.BGsamplesPerLine, 3);
% Load all our shaders - Need to do this only on original context
% creation, as shaders are recycled across context reinits. However, we
% can only recycle shaders from one existing context, not across
% different contexts, because each shader object also encapsulates
% per-context state like the settings of all Uniforms etc. and we can't
% share these!
if createContext
% Basepath to shaders:
% shaderpath = [fileparts(mfilename('fullpath')) filesep ];
shaderpath = '';
% Shader for 1st object renderpass: Encode texcoords and depths into
% color channel -- to fill silhouetteBuffer:
ctx.silhouetteRenderShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFSilhouetteRenderShader'], 1);
% Shader for 2nd object renderpass: Fill trackingBuffer
ctx.trackingRenderShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFTrackingRenderShader'], 1);
% Shader for update of distribution in sampleBuffer:
ctx.samplingShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFSamplingShader'], 1);
% Shader for final creation of foreground dots VBO spec from
% distribution in sampleBuffer and trackingBuffer:
ctx.createFGDotsShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFForegroundDotsRenderShader'], 1);
% Shader for creation of background dots VBO spec:
ctx.createBGDotsShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFBackgroundDotsRenderShader'], 1);
% Setup default coloring mode: No textures, no texture mapping:
ctx.colorTexId = -1;
ctx.colorTexTarget = -1;
% Also disable 2D dot drawing shaders by default:
ctx.draw2DShaderFG = -1;
ctx.draw2DShaderBG = -1;
ctx.needSprites = 0;
end
% Setup trackingRenderShader:
glUseProgram(ctx.trackingRenderShader)
% Compute texture coordinate offset and multiplier to apply in order to
% remap the real texture coordinate range into the normalized [-1:+1]
% interval that can pass through vertex clipping:
glUniform4f(glGetUniformLocation(ctx.trackingRenderShader, 'TextureOffsetBias'), ctx.texCoordMin(1), ctx.texCoordMin(2), 2.0/(ctx.texCoordMax(1) - ctx.texCoordMin(1)), 2.0/(ctx.texCoordMax(2) - ctx.texCoordMin(2)));
% Bind texunit 1 to object coordinates texture:
glUniform4f(glGetUniformLocation(ctx.trackingRenderShader, 'Viewport'), 0, 0, ctx.silhouetteWidth/2, ctx.silhouetteHeight/2);
% Setup shader for update of distribution in sampleBuffer:
glUseProgram(ctx.samplingShader);
% Bind texunit 0 to random sample position texture:
glUniform1i(glGetUniformLocation(ctx.samplingShader, 'SilSamplePositions'), 0);
% Bind texunit 1 to silhouette image texture:
glUniform1i(glGetUniformLocation(ctx.samplingShader, 'Silhouette'), 1);
% Define remapping of texture coordinates into range 0-texResolution --
% The size of the trackingBuffer:
glUniform4f(glGetUniformLocation(ctx.samplingShader, 'TextureOffsetBias'), ctx.texCoordMin(1), ctx.texCoordMin(2), ctx.texResolution(1)/(ctx.texCoordMax(1) - ctx.texCoordMin(1)), ctx.texResolution(2)/(ctx.texCoordMax(2) - ctx.texCoordMin(2)));
% Setup shader for final creation of foreground dots VBO spec from
% distribution in sampleBuffer and trackingBuffer:
glUseProgram(ctx.createFGDotsShader)
% Bind texunit 0 to Samplebuffer texture:
glUniform1i(glGetUniformLocation(ctx.createFGDotsShader, 'SampleBuffer'), 0);
% Bind texunit 1 to object coordinates texture:
glUniform1i(glGetUniformLocation(ctx.createFGDotsShader, 'GeometryBuffer'), 1);
% Bind texunit 2 to silhouette texture for last rendered frame:
glUniform1i(glGetUniformLocation(ctx.createFGDotsShader, 'Silhouette'), 2);
% Assign zThreshold for depths testing of foreground dots before
% output to handle occlusions correctly:
glUniform1f(glGetUniformLocation(ctx.createFGDotsShader, 'zThreshold'), ctx.zThreshold);
% Assign height of final output window + 1 to allow shader to invert
% y-coordinate of final dots properly to account for difference in
% y-axis direction of Screen()'s reference frame vs. OpenGL default
% frame:
glUniform1f(glGetUniformLocation(ctx.createFGDotsShader, 'ViewportHeight'), ctx.silhouetteHeight + 1);
% Define size of GeometryBuffer -- wrapAround values for interpolated
% texture lookup coordinates:
glUniform2f(glGetUniformLocation(ctx.createFGDotsShader, 'texWrapAround'), ctx.texResolution(1), ctx.texResolution(2));
% Define inverse remapping of texture coordinates into range
% 0-texResolution -- The size of the trackingBuffer. N.B.: A neutral
% mapping would be (0, 0, 1, 1) - That would pass trackingBuffer
% texture coordinates instead of object texture coordinates.
glUniform4f(glGetUniformLocation(ctx.createFGDotsShader, 'TextureOffsetBias'), ctx.texCoordMin(1), ctx.texCoordMin(2), 1 / (ctx.texResolution(1)/(ctx.texCoordMax(1) - ctx.texCoordMin(1))), 1 / (ctx.texResolution(2)/(ctx.texCoordMax(2) - ctx.texCoordMin(2))));
% Set default 'clipVertex' position to (x,y,u,v) = (-1, 0, 0, 0): This
% will prevent any vertex to which this is applied from drawing,
% because it is clipped away due to its negative x-location outside viewport:
glUniform4f(glGetUniformLocation(ctx.createFGDotsShader, 'clipVertex'), -1, 0, 0, 0);
glUseProgram(0);
% Create gloperator from shader for later use by Screen('TransformTexture'):
ctx.createFGDotsoperator = CreateGLOperator(ctx.parentWin, [], ctx.createFGDotsShader, 'Create foreground dots.');
% Setup shader for creation of background dots VBO spec:
glUseProgram(ctx.createBGDotsShader)
% Bind texunit 0 to random sample position texture:
glUniform1i(glGetUniformLocation(ctx.createBGDotsShader, 'SilSamplePositions'), 0);
% Bind texunit 1 to silhouette image texture:
glUniform1i(glGetUniformLocation(ctx.createBGDotsShader, 'Silhouette'), 1);
% Assign height of final output window + 1 to allow shader to invert
% y-coordinate of final dots properly to account for difference in
% y-axis direction of Screen()'s reference frame vs. OpenGL default
% frame:
glUniform1f(glGetUniformLocation(ctx.createBGDotsShader, 'ViewportHeight'), ctx.silhouetteHeight + 1);
% Assign [0;1] acceptance threshold value for accepting a background
% distribution dot which lies within the objects silhouette:
glUniform1f(glGetUniformLocation(ctx.createBGDotsShader, 'SilAcceptThreshold'), ctx.BGSilhouetteAcceptanceProbability);
glUseProgram(0);
% Ok, all PTB managed buffers and shaders loaded and set up.
% Lets create the VBO that we need to actually render anything in the
% end. VBO's are not supported yet by PTB's Screen, so we need to
% switch to our GL context for setup:
SwitchToGL(ctx.parentWin);
ctx.FGvbo = glGenBuffers(1);
glBindBuffer(GL.ARRAY_BUFFER, ctx.FGvbo);
% Calculate size of VBO in bytes: Number of potential foreground dots
% times 4 components per dot (RGBA == xyzw) times 4 Bytes per float
% component:
buffersize = ctx.maxFGDots * 4 * 4;
% Allocate but don't initialize it, ie NULL pointer == 0
glBufferData(GL.ARRAY_BUFFER, buffersize, 0, GL.STREAM_COPY);
% Done.
glBindBuffer(GL.ARRAY_BUFFER, 0);
% Setup another VBO for the vertex indices:
ctx.FGibo = glGenBuffers(1);
glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.FGibo);
% Allocate buffer for number of vertex indices,
% each taking up 4 Bytes (== sizeof(uint32)) of memory.
% Initialize immediately with indices and tell
% OpenGL that this won't change at all during operation
% (STATIC_DRAW):
fgdotindices = uint32(0:ctx.maxFGDots-1);
glBufferData(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.maxFGDots * 4, fgdotindices, GL.STATIC_DRAW);
glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, 0);
ctx.BGvbo = glGenBuffers(1);
glBindBuffer(GL.ARRAY_BUFFER, ctx.BGvbo);
% Calculate size of VBO in bytes: Number of potential background dots
% times 4 components per dot (RGBA == xyzw) times 4 Bytes per float
% component:
buffersize = ctx.maxBGDots * 4 * 4;
% Allocate but don't initialize it, ie NULL pointer == 0
glBufferData(GL.ARRAY_BUFFER, buffersize, 0, GL.STREAM_COPY);
% Done.
glBindBuffer(GL.ARRAY_BUFFER, 0);
% Setup another VBO for the vertex indices:
ctx.BGibo = glGenBuffers(1);
glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.BGibo);
% Allocate buffer for number of vertex indices,
% each taking up 4 Bytes (== sizeof(uint32)) of memory.
% Initialize immediately with indices and tell
% OpenGL that this won't change at all during operation
% (STATIC_DRAW):
bgdotindices = uint32(0:ctx.maxBGDots-1);
glBufferData(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.maxBGDots * 4, bgdotindices, GL.STATIC_DRAW);
glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, 0);
% Done with VBO setup.
% Restore previous GL context binding:
RestoreGL;
% Set batch zero as starting batch:
ctx.currentBatch = 0;
% Clear vbosready state:
ctx.vbosready = 0;
% We're ready for the show!
contextcount = contextcount + 1;
% Init for this 'ctx' context done: Return it to usercode:
varargout{1} = ctx;
return;
end
% Assign color texture handle and target to context, enable texture mapping
% during 2D dot drawing:
if strcmpi(cmd, 'SetColorTexture')
if nargin < 4
error('In "SetColorTexture": You must provide the "context", "textureId" and "textureTarget"!');
end
% Get context object:
ctx = varargin{1};
% Get texture handle and target:
ctx.colorTexId = varargin{2};
ctx.colorTexTarget = varargin{3};
% Empty or negative assignment resets to "no texture assigned":
if isempty(ctx.colorTexId) || ctx.colorTexId < 0
ctx.colorTexId = -1;
ctx.colorTexTarget = -1;
end
% Return updated 'ctx' to usercode:
varargout{1} = ctx;
return;
end
% Assign shader handle for application of a GLSL shader during 2D dot
% drawing:
if strcmpi(cmd, 'SetDrawShader')
if nargin < 3
error('In "SetDrawShader": You must provide the "context" and shader handle!');
end
% Get context object:
ctx = varargin{1};
% Get texture handle and target:
ctx.draw2DShaderFG = varargin{2};
if nargin >= 4
ctx.draw2DShaderBG = varargin{3};
end
% Optional sprite enable flag provided?
if nargin >= 5 && ~isempty(varargin{4})
ctx.needSprites = varargin{4};
if ctx.needSprites ~= 1
ctx.needSprites = 0;
end
% Enable or disable point-sprite coord generation on texture unit
% 1, depending if point sprites shall be enabled or disabled:
glActiveTexture(GL.TEXTURE1);
if ctx.needSprites == 1
% Enable point sprite coordinate generation on unit 1:
glTexEnvi(GL.POINT_SPRITE, GL.COORD_REPLACE, GL.TRUE);
else
% Disable point sprite coordinate generation on unit 1:
glTexEnvi(GL.POINT_SPRITE, GL.COORD_REPLACE, GL.FALSE);
end
glActiveTexture(GL.TEXTURE0);
end
% Empty or negative assignment resets to "no shader assigned":
if isempty(ctx.draw2DShaderFG) || ctx.draw2DShaderFG <= 0
% Detach shader:
ctx.draw2DShaderFG = -1;
end
if isempty(ctx.draw2DShaderBG) || ctx.draw2DShaderBG <= 0
% Detach shader:
ctx.draw2DShaderBG = -1;
end
% Return updated 'ctx' to usercode:
varargout{1} = ctx;
return;
end
% Destroy processing context -- Release all ressources and shaders:
if strcmpi(cmd, 'DestroyContext')
if nargin < 2
error('In "DestroyContext": You must provide the "context" to destroy!');
end
% Get context object:
ctx = varargin{1};
% Delete all offscreen windows, gloperators and buffers like IBO's
% VBO's, PBO's, FBO's etc...
deleteContextBuffers(ctx);
% Delete all shaders:
glDeleteProgram(ctx.createBGDotsShader);
glDeleteProgram(ctx.createFGDotsShader);
glDeleteProgram(ctx.samplingShader);
glDeleteProgram(ctx.trackingRenderShader);
glDeleteProgram(ctx.silhouetteRenderShader);
RestoreGL;
% Shutdown done.
contextcount = max(contextcount - 1, 0);
% Return destroyed context:
ctx = [];
varargout{1} = ctx;
return;
end
% Set string to call via feval() to initiate a 3D render cycle for the 3D
% scene/object to be visualized:
if strcmpi(cmd, 'SetRenderCallback')
if nargin < 3
error('In "SetRenderCallback": You must provide the "context" and callback string!');
end
% Get context object:
ctx = varargin{1};
% Get the eval string:
renderCallback = varargin{2};
if ~ischar(renderCallback)
error('In "SetRenderCallback": Callback string must be a string, nothing else!');
end
% Assign:
ctx.renderCallback = renderCallback;
varargout{1} = ctx;
return;
end
% Set state of engine to initial setting for a trial:
if strcmpi(cmd, 'ResetState')
if nargin < 2
error('In "ResetState": You must provide the "context"!');
end
% Get context object:
ctx = varargin{1};
BackupGL;
% Reset to starting batch zero:
ctx.currentBatch = 0;
% Zero-out background sample matrix:
ctx.BGSampleSet(:, :, :) = 0;
% Clear out all buffers:
SwitchToPTB;
Screen('FillRect', ctx.BGDotsBuffer, [0 0 0 0])
Screen('FillRect', ctx.FGDotsBuffer, [0 0 0 0])
Screen('FillRect', ctx.trackingBuffer, [0 0 0 0])
Screen('FillRect', ctx.silhouetteBuffer, [0 0 0 0])
Screen('FillRect', ctx.sampleBuffer, [0 0 0 0])
% Clear vbosready state:
ctx.vbosready = 0;
RestoreGL;
varargout{1} = ctx;
return;
end
% Update cycle, possibly followed by a render operation:
if strcmpi(cmd, 'Update')
if nargin < 2
error(sprintf('In "%s": You must provide the "context"!', cmd)); %#ok<SPERR>
end
% Get context object:
ctx = varargin{1};
if nargin >= 3 && ~isempty(varargin{2})
instantOn = varargin{2};
else
instantOn = 0;
end
BackupGL;
% Switch to OpenGL rendering context to be used for 3D scene rendering,
% and specifically for our silhouette render buffer:
SwitchToPTB;
Screen('BeginOpenGL', ctx.silhouetteBuffer);
% Backup 3D context state:
glPushAttrib(GL.ALL_ATTRIB_BITS);
% Perform 1st 3D render pass:
% Need zBuffer occlusion testing for silhouette rendering:
glEnable(GL.DEPTH_TEST);
% Need cleared buffer, including z buffer:
glClearColor(0,0,0,0);
glClear;
% Bind shader for silhouette rendering:
if debug~=-1
% We skip this if debug flag == -1 -- In that case the user wants
% to see the real rendered image instead of our silhouette
% encoding.
glUseProgram(ctx.silhouetteRenderShader);
end
% Set viewport and scissor to full target window area:
glViewport(0, 0, ctx.silhouetteWidth, ctx.silhouetteHeight);
glScissor(0, 0, ctx.silhouetteWidth, ctx.silhouetteHeight);
% Call the render callback function in workspace of our caller. We did
% not touch the modelview- or projection matrices, so the projections
% et al. should be ok...
evalin('caller', ctx.renderCallback);
% Don't need depth testing anymore:
glDisable(GL.DEPTH_TEST);
Screen('EndOpenGL', ctx.silhouetteBuffer);
% Silhouette should be ready in silhouette buffer...
if abs(debug) == 1
Screen('DrawTexture', ctx.parentWin, ctx.silhouetteBuffer, [], [], [], [], [], debugGain);
end
% Perform 2nd "pseudo 3D" render pass into trackingBuffer. This will
% again render the geometry, but with different encoding. A unwrapped
% texture map will be output, where each pixel corresponds to a surface
% point on the 3D object (aka texture coordinate). The color of each
% pixel encodes interpolated screen space (x,y,z) coordinates:
Screen('BeginOpenGL', ctx.trackingBuffer);
% No depth test here, as fragment depths doesn't encode anything
% meaningful during this pass:
glDisable(GL.DEPTH_TEST);
% Bind shader for tracking image rendering:
glUseProgram(ctx.trackingRenderShader);
% Set viewport and scissor to full trackbuffer window area:
glViewport(0, 0, ctx.texResolution(1), ctx.texResolution(2));
glScissor(0, 0, ctx.texResolution(1), ctx.texResolution(2));
% Call the render callback function in workspace of our caller. We did
% not touch the modelview- or projection matrices, so the projections
% et al. should be ok...
evalin('caller', ctx.renderCallback);
% Unbind all shaders:
glUseProgram(0);
% Just to make sure it's still off:
glDisable(GL.DEPTH_TEST);
% Restore 3D context state:
glPopAttrib;
% Trackingbuffer should be ready:
Screen('EndOpenGL', ctx.trackingBuffer);
if debug == 2
Screen('DrawTexture', ctx.parentWin, ctx.trackingBuffer, [], [], [], [], [], debugGain);
end
% We are in Screen()'s rendering context. Do the 2D image processing
% stuff:
% Need to attach the silhouette Buffers
% color buffer texture to texture units 1 and 2: As the texture is part of a
% color buffer attachment, it is set to nearest neighbour sampling -
% which is what we want:
glActiveTexture(GL.TEXTURE1);
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, ctx.silhouetteTexture);
glActiveTexture(GL.TEXTURE2);
glBindTexture(GL.TEXTURE_RECTANGLE_EXT, ctx.silhouetteTexture);
glActiveTexture(GL.TEXTURE0);
% --- BACKGROUND DOTS COMPUTATION ---
% Perform update of background sample buffer with random samples:
% Compute random sample locations in image via Matlabs/Octaves uniform
% random number generator:
if instantOn
% Create new samples for full set:
randomSamples = rand(size(ctx.BGSampleSet, 1), ctx.BGsamplesPerLine, 3);
else
% Create new samples for current batch:
randomSamples = rand(ctx.BGsampleLinesPerBatch, ctx.BGsamplesPerLine, 3);
end
% Layers 1 and 2 contain properly scaled (x,y) screen coordinates of
% our random "darts":
randomSamples(:,:,1) = randomSamples(:,:,1) * ctx.silhouetteWidth;
randomSamples(:,:,2) = randomSamples(:,:,2) * ctx.silhouetteHeight;
% Layer 3 contains a uniformly distributed number between 0 and 1 for
% use as random per-sample variable by internal random sampling...
if instantOn
% Assign new samples for full set:
ctx.BGSampleSet(:, :, :) = randomSamples;
else
% Assign new samples for current batch:
sline = ctx.currentBatch * ctx.BGsampleLinesPerBatch + 1;
eline = sline + ctx.BGsampleLinesPerBatch - 1;
ctx.BGSampleSet(sline:eline, :, :) = randomSamples;
end
% Background batch in background sample buffer updated. Convert whole
% buffer to texture, with background sampling shader bound:
BGsampleTex = Screen('MakeTexture', ctx.parentWin, ctx.BGSampleSet, [], [], 2, 0, ctx.createBGDotsShader);
% Blit to background dots buffer:
Screen('DrawTexture', ctx.BGDotsBuffer, BGsampleTex, [], [], [], 0);
% Release texture:
Screen('Close', BGsampleTex);
% --- FOREGROUND DOTS COMPUTATION ---
% Perform update of current batch of sampleBuffer:
% Compute random sample locations in image via Matlabs/Octaves uniform
% random number generator:
if instantOn
randomSamples = rand(ctx.sampleLinesPerBatch * ctx.dotLifetime, ctx.samplesPerLine, 2);
else
randomSamples = rand(ctx.sampleLinesPerBatch, ctx.samplesPerLine, 2);
end
randomSamples(:,:,1) = randomSamples(:,:,1) * ctx.silhouetteWidth;
randomSamples(:,:,2) = randomSamples(:,:,2) * ctx.silhouetteHeight;
% Create 32bpc float texture (setting '2') with the random sample
% locations. If we'd use the texture inside Screen('TransformTexture')
% we could use textureOrientation setting '3' for isotropic random noise.
% This settings would save some texture conversion time then. However,
% as we're only 'DrawTexture'ing and the used blit shaders are position
% invariant (isotropic), a setting of 0 or 1 also works with no speed
% loss, as 'DrawTexture' does implicit optimization:
sampleTex = Screen('MakeTexture', ctx.parentWin, randomSamples, [], [], 2, 0, ctx.samplingShader);
if debug == 3
Screen('DrawTexture', ctx.parentWin, sampleTex, [], [], [], [], [], debugGain);
end
% Blit sampleTex into the target batch rectangle of our sampleBuffer,
% with the sampling shader bound.
if instantOn
% Blit texture into sampleBuffer. The secondary texture unit provides
% access to the silhouette image, the shader does bilinear filtering
% and conversion:
Screen('DrawTexture', ctx.sampleBuffer, sampleTex, [], [], 0, 0);
else
% Blit texture at target location into sampleBuffer, offset vertically
% so the proper batch gets updated. The secondary texture unit provides
% access to the silhouette image, the shader does bilinear filtering
% and conversion:
Screen('DrawTexture', ctx.sampleBuffer, sampleTex, [], OffsetRect(Screen('Rect', sampleTex), 0, double(ctx.currentBatch * ctx.sampleLinesPerBatch)), 0, 0);
end
% Release sampleTex for next cycle:
Screen('Close', sampleTex);
if debug == 4
Screen('DrawTexture', ctx.parentWin, ctx.sampleBuffer, [], [], [], [], [], debugGain);
end
% Our total distribution of foreground samples in sampleBuffer is now
% up to date. Use stored surface (texcoords) sample locations to read
% out corresponding locations in trackingBuffer, convert them into
% vertex location definitions and blit them to the final buffer of
% foreground dot specs. Screen('TransformTexture') will do the blit and
% bind sampleBuffer and trackingBuffer as input textures:
ctx.FGDotsBuffer = Screen('TransformTexture', ctx.sampleBuffer, ctx.createFGDotsoperator, ctx.trackingBuffer, ctx.FGDotsBuffer);
% Ok, the ctx.FGDotsBuffer should contain the encoded set of all
% foreground dot positions. One can either read this buffer back into a
% Matlab/Octave matrix for usercode processing, or convert it into a
% VBO via PBO mechanism, then render it.
% Clear out all intermediate result buffers in preparation of next update cycle:
Screen('FillRect', ctx.trackingBuffer, [0 0 0 0])
Screen('FillRect', ctx.silhouetteBuffer, [0 0 0 0])
if debug == 5
Screen('DrawTexture', ctx.parentWin, ctx.FGDotsBuffer, [], [], [], [], [], debugGain);
end
% Clear vbosready state to trigger a refill on next 'Render':
ctx.vbosready = 0;
RestoreGL;
if instantOn
% Reset batch counter to zero after this initial "instant on" update cycle:
ctx.currentBatch = 0;
else
% Increment batch counter for next update cycle:
ctx.currentBatch = mod(ctx.currentBatch+1, ctx.dotLifetime);
end
% Ready for render: Return updated context:
varargout{1} = ctx;
return;
end
% Render current result in ctx.FGDotsBuffer into parent window:
if strcmpi(cmd, 'Render')
if nargin < 2
error(sprintf('In "%s": You must provide the "context"!', cmd)); %#ok<SPERR>
end
% Get context object:
ctx = varargin{1};
if nargin < 3 || isempty(varargin{2})
targetWin = ctx.parentWin;
else
targetWin = varargin{2};
if ~ismember(Screen('WindowKind', targetWin), [-1, 1])
error('In "Render": Invalid "targetWindow" handle provided. Not an offscreen or onscreen window!');
end
end
if nargin < 4
drawspec = [1,1];
else
drawspec = varargin{3};
end
drawFG = drawspec(1);
drawBG = drawspec(2);
BackupGL;
% Can do this in PTB's Screen 2D context, which is more convenient for
% our 2D drawing operations, as long as we are careful to restore any
% changed context state:
SwitchToPTB;
% Update of VBO's needed?
if ~ctx.vbosready
% Yes: Copy content of FGDotsBuffer into VBO, using PBO extension.
% The 'GetWindowInfo' binds our ctx.FGDotsBuffer FBO so we can
% glReadPixels() from it:
Screen('GetWindowInfo', ctx.FGDotsBuffer);
% There is a bug in the X1000 gfx-card driver on OS/X 10.4.11 which
% causes glReadPixels() readback values to get clamped to 0-1 range
% if alpha-blending is enabled. Therefore we need to disable alpha
% blending during glReadPixels() readback and reenable later if
% needed:
alphaenabled = glIsEnabled(GL.BLEND);
glDisable(GL.BLEND);
glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, ctx.FGvbo);
glReadPixels(0, 0, ctx.samplesPerLine, ctx.sampleLinesTotal, GL.RGBA, GL.FLOAT, 0);
glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, 0);
Screen('GetWindowInfo', ctx.BGDotsBuffer);
glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, ctx.BGvbo);
glReadPixels(0, 0, ctx.BGsamplesPerLine, ctx.BGsampleLinesTotal, GL.RGBA, GL.FLOAT, 0);
glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, 0);
% Reenable alpha blending if it was enabled:
if alphaenabled
glEnable(GL.BLEND);
end
% VBO's ready:
ctx.vbosready = 1;
end
% Setup render:
% The 'GetWindowInfo' binds our ctx.parentWin so we can render to it:
Screen('GetWindowInfo', targetWin);
% Backup old 2D context state bits:
glPushAttrib(GL.ALL_ATTRIB_BITS);
% Bind and enable vertex position VBO:
glEnableClientState(GL.VERTEX_ARRAY);
% Is point anti-aliasing enabled?
pSmooth = glIsEnabled(GL.POINT_SMOOTH);
if drawFG
% Foreground render:
glBindBuffer(GL.ARRAY_BUFFER, ctx.FGvbo);
% Assign vertex pointer, setup proper stride for interleave with
% texture coordinates from same VBO:
glVertexPointer(2, GL.FLOAT, 4 * 4, 0);
if ctx.colorTexId >= 0
% Texture mapping for colored dot drawing:
% Assign texture coord array, which is interleaved with vertex
% coord array within FGvbo VBO: (x,y,tx,ty)....
glEnableClientState(GL.TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL.FLOAT, 4 * 4, 2 * 4);
% Enable texture mapping for proper target, and assign texture:
glEnable(ctx.colorTexTarget);
glBindTexture(ctx.colorTexTarget, ctx.colorTexId);
end
% Bind vertex index VBO:
glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.FGibo);
% Enable draw GLSL shader, if any:
if ctx.draw2DShaderFG > -1
glUseProgram(ctx.draw2DShaderFG);
if pSmooth && ctx.needSprites
glEnable(GL.POINT_SPRITE_ARB);
end
end
% Perform draw operation: All vertices, each triggering render for a
% single GL.POINT primitive. Colors, sizes, anti-aliasing flags etc.
% can be set from external code as appropriate. Application of textures
% or shaders is also possible:
glDrawRangeElements(GL.POINTS, 0, ctx.maxFGDots-1, ctx.maxFGDots, GL.UNSIGNED_INT, 0);
% Disable draw GLSL shader, if any:
if ctx.draw2DShaderFG > -1
glUseProgram(0);
if pSmooth && ctx.needSprites
glDisable(GL.POINT_SPRITE_ARB);
end
end
if ctx.colorTexId >= 0
% Disable interleaved texturecoord array:
glDisableClientState(GL.TEXTURE_COORD_ARRAY);
% Disable texture mapping for proper target, and assign texture:
glDisable(ctx.colorTexTarget);
glBindTexture(ctx.colorTexTarget, 0);
end
end
if drawBG
% Background render:
glBindBuffer(GL.ARRAY_BUFFER, ctx.BGvbo);
glVertexPointer(4, GL.FLOAT, 0, 0);
% Bind vertex index VBO:
glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.BGibo);
% Enable draw GLSL shader, if any:
if ctx.draw2DShaderBG > -1
glUseProgram(ctx.draw2DShaderBG);
if pSmooth && ctx.needSprites
glEnable(GL.POINT_SPRITE_ARB);
end
end
% Perform draw operation: All vertices, each triggering render for a
% single GL.POINT primitive. Colors, sizes, anti-aliasing flags etc.
% can be set from external code as appropriate. Application of textures
% or shaders is also possible:
glDrawRangeElements(GL.POINTS, 0, ctx.maxBGDots-1, ctx.maxBGDots, GL.UNSIGNED_INT, 0);
% Disable draw GLSL shader, if any:
if ctx.draw2DShaderBG > -1
glUseProgram(0);
if pSmooth && ctx.needSprites
glDisable(GL.POINT_SPRITE_ARB);
end
end
end
% Unbind our VBOs:
glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, 0);
glBindBuffer(GL.ARRAY_BUFFER, 0);
% Disable vertex array:
glDisableClientState(GL.VERTEX_ARRAY);
% Restore old 2D context state bits:
glPopAttrib;
% Render completed. Restore pre-render state:
RestoreGL;
% Rendering done: Return updated context:
varargout{1} = ctx;
return;
end
if strcmpi(cmd, 'GetResults')
if nargin < 2
error(sprintf('In "%s": You must provide the "context"!', cmd)); %#ok<SPERR>
end
% Get context object:
ctx = varargin{1};
BackupGL;
% Readback as "image matrix":
% Can do this in Screen-Mode:
SwitchToPTB;
% 'GetWindowInfo' selects ctx.FGDotsBuffer as active FBO, so we can
% readback from it:
Screen('GetWindowInfo', ctx.FGDotsBuffer);
% There is a bug in the X1000 gfx-card driver on OS/X 10.4.11 which
% causes glReadPixels() readback values to get clamped to 0-1 range
% if alpha-blending is enabled. Therefore we need to disable alpha
% blending during glReadPixels() readback and reenable later if
% needed:
alphaenabled = glIsEnabled(GL.BLEND);
glDisable(GL.BLEND);
% Readback to matrix: Cast from float aka single() type to double() type:
readbackdata = double(glReadPixels(0, 0, ctx.samplesPerLine, ctx.sampleLinesTotal, GL.RGBA, GL.FLOAT));
% Return readback (x,y) FG dot locations, reshaped into a 2 rows array
% with one column per (x,y) dot:
varargout{1} = [ reshape(readbackdata(:,:,1), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ; reshape(readbackdata(:,:,2), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ];
% Optionally also return texture coordinates (u,v) of FG dots as 3rd output arg:
if nargout > 2
varargout{3} = [ reshape(readbackdata(:,:,3), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ; reshape(readbackdata(:,:,4), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ];
end
% Return optional readback (x,y) BG dot locations, reshaped into a 2 rows array
% with one column per (x,y) dot as 2nd output arg:
if nargout > 1
Screen('GetWindowInfo', ctx.BGDotsBuffer);
% Readback to matrix: Cast from float aka single() type to double() type:
readbackdata = double(glReadPixels(0, 0, ctx.BGsamplesPerLine, ctx.BGsampleLinesTotal, GL.RGBA, GL.FLOAT));
% Return readback (x,y) dot locations, reshaped into a 2 rows array
% with one column per (x,y) dot:
varargout{2} = [ reshape(readbackdata(:,:,1), 1, ctx.BGsamplesPerLine * ctx.BGsampleLinesTotal) ; reshape(readbackdata(:,:,2), 1, ctx.BGsamplesPerLine * ctx.BGsampleLinesTotal) ];
end
% Reenable alpha blending if it was enabled:
if alphaenabled
glEnable(GL.BLEND);
end
% Readback completed. Restore pre-readback state:
RestoreGL;
return;
end
if strcmpi(cmd, 'DebugFlag')
if nargin < 2
error('Must provide new setting for debug flag!');
end
varargout{1} = debug;
varargout{2} = debugGain;
debug = varargin{1};
if nargin < 3
debugGain = [];
else
if length(varargin{2})~=4
error('In "DebugFlag": "debugGain" color modulation gain must be a 4 element [R,G,B,A] modulation color vector!');
end
debugGain = varargin{2};
end
return;
end
error(sprintf('Invalid subcommand ''%s'' specified!', cmd)); %#ok<SPERR>
return;
% Internal helper functions:
function SwitchToGL(win)
% Switch to our OpenGL context, but keep a backup of original
% drawstate. We do lazy switching if possible:
[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');
if ~IsOpenGLRendering
% PTB's context active: Switch to OpenGL rendering for our parent window:
Screen('BeginOpenGL', win);
else
% In rendering context. Is it ours? If yes, then there isn't anything
% to do...
if currentwin ~= win
% No, a different windows context is active: First switch to PTB
% mode, then switch to ours:
% Switch to our parentWin's PTB context:
Screen('EndOpenGL', currentwin);
% Switch to our parentWin's GL context:
Screen('BeginOpenGL', win);
end
end
return;
function SwitchToPTB
% Switch from our OpenGL context, but keep a backup of original
% drawstate. We do lazy switching if possible:
[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');
if ~IsOpenGLRendering
% PTB's context is already active: Nothing to do.
else
% In rendering context. Switch back to PTB - and to our parentWin:
Screen('EndOpenGL', currentwin);
end
return;
function BackupGL
global moglFDF_OriginalContext;
if ~isempty(moglFDF_OriginalContext)
error('BackupGL called twice in succession without intermediate RestoreGL! Ordering inconsistency!');
end
[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');
if IsOpenGLRendering
moglFDF_OriginalContext = currentwin;
end
return;
function RestoreGL
global moglFDF_OriginalContext;
[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');
if isempty(moglFDF_OriginalContext)
% PTB was in Screen drawing mode: Switch to that mode, if not active:
if IsOpenGLRendering
Screen('EndOpenGL', currentwin);
end
return;
end
% Need to restore to GL context if not already active:
if ~IsOpenGLRendering
Screen('BeginOpenGL', moglFDF_OriginalContext);
else
% OpenGL context active. Ours? If so -> Nothing to do.
if currentwin ~= moglFDF_OriginalContext
% Nope. Need to switch:
Screen('EndOpenGL', currentwin);
Screen('BeginOpenGL', moglFDF_OriginalContext);
end
end
% Restore to default:
moglFDF_OriginalContext = [];
return;
function deleteContextBuffers(ctx)
BackupGL;
SwitchToGL(ctx.parentWin);
% Delete VBO's:
glDeleteBuffers(1, ctx.FGibo);
glDeleteBuffers(1, ctx.FGvbo);
glDeleteBuffers(1, ctx.BGibo);
glDeleteBuffers(1, ctx.BGvbo);
SwitchToPTB;
% Close all offscreen windows and their associated textures:
Screen('Close', [ctx.BGDotsBuffer, ctx.FGDotsBuffer, ctx.trackingBuffer, ctx.silhouetteBuffer, ctx.sampleBuffer]);
% Close our operators:
Screen('Close', ctx.createFGDotsoperator);
return;
|