/usr/share/psychtoolbox-3/PsychRadiometric/PsychAnsiZ136MPE/AnsiZ136MPEBasicTest.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 | % AnsiZ136MPEBasicTest
%
% ****************************************************************************
% IMPORTANT: Before using the AnsiZ136 routines, please see the notes on usage
% and responsibility in PsychAnsiZ136MPE/Contents.m (type "help PsychAnsiZ136MPE"
% at the Matlab prompt.
% ****************************************************************************
%
% Test code for our implementation of ANSI Z136.1-2007. Reproduces many figures from the
% standard.
%
% 2/22/13 dhb Wrote it.
%% Clear and close
clear; close all;
%% Figure 9b: Test T2 computation
%
% Answer should range between 10 and 100
% as size increases over the specified range.
% See Figure 9b, p. 102.
fprintf('Reproducing Figure 9b, p. 102\n');
theStimulusSizesDeg = linspace(MradToDeg(0),MradToDeg(100+10),100);
theStimulusSizesMrad = DegToMrad(theStimulusSizesDeg);
for i = 1:length(theStimulusSizesDeg)
T2Sec(i) = AnsiZ136MPEComputeT2(theStimulusSizesDeg(i));
end
figure; clf; hold on
plot(theStimulusSizesMrad,T2Sec,'ro','MarkerSize',8,'MarkerFaceColor','r');
xlabel('Stimulus Size (mrad)');
ylabel('T2 (sec)');
xlim([0 max(theStimulusSizesMrad)]);
ylim([0 100]);
title('Figure 9b: Test of AnsiZ136MPEComputeT2');
grid on
%% Figure 8a: Test Ca computation
%
% Answer should increase between 1 and 5
% with wavelength between 700 and 1050,
% and flatten out on the two sides.
%
% See Figure 8a, p. 98.
fprintf('Reproducing Figure 8a, p. 98\n');
wavelengthsNm = 400:1399;
for i = 1:length(wavelengthsNm)
Ca(i) = AnsiZ136MPEComputeCa(wavelengthsNm(i));
end
figure; clf; hold on
semilogy(wavelengthsNm,log10(Ca),'ro','MarkerSize',8,'MarkerFaceColor','r');
xlabel('Wavelength (nm)');
ylabel('Log10 Ca');
xlim([min(wavelengthsNm) max(wavelengthsNm)]);
ylim([0 1]);
title('Figure 8a: Test of AnsiZ136MPEComputeCa');
grid on
%% Figure 8c: Test Cb computation
%
% Answer should range between 10 and 100
% as size increases over the specified range. This
% should look like Figure 8c, p. 100.
fprintf('Reproducing Figure 8c, p. 100\n');
wavelengthsNm = 380:780;
for i = 1:length(wavelengthsNm)
Cb(i) = AnsiZ136MPEComputeCb(wavelengthsNm(i));
end
figure; clf; hold on
semilogy(wavelengthsNm,log10(Cb),'ro','MarkerSize',8,'MarkerFaceColor','r');
xlabel('Wavelength (nm)');
ylabel('Log 10 Cb');
xlim([min(wavelengthsNm) max(wavelengthsNm)]);
ylim([0 3]);
title('Figure 8c: Test of AnsiZ136MPEComputeCb');
grid on
%% Figure 8b: Test Cc computation
%
% Answer should range between 1 and 8
% with wavelength between 1150 and 1200 nm.
% should look like Figure 8b, p. 99.
fprintf('Reproducing Figure 8b, p. 99\n');
wavelengthsNm = 1050:1399;
for i = 1:length(wavelengthsNm)
Cc(i) = AnsiZ136MPEComputeCc(wavelengthsNm(i));
end
figure; clf; hold on
semilogy(wavelengthsNm,log10(Cc),'ro','MarkerSize',8,'MarkerFaceColor','r');
xlabel('Wavelength (nm)');
ylabel('Log10 Cc');
xlim([min(wavelengthsNm) max(wavelengthsNm)]);
ylim([0 1]);
title('Figure 8b: Test of AnsiZ136MPEComputeCc');
grid on
%% Figure 3: Test limiting cone angle computation
%
% Answer should range between 11 and 110
% with duration between 100 and 1e4 seconds.
% This should look like Figure 3, p. 93.
fprintf('Reproducing Figure 3, p. 93\n');
durations = logspace(1,4.2);
for i = 1:length(durations)
limitingConeAngles(i) = AnsiZ136MPEComputeLimitingConeAngle(durations(i));
end
figure; clf; hold on
loglog(log10(durations),log10(limitingConeAngles),'ro','MarkerSize',8,'MarkerFaceColor','r');
xlabel('Log10 Stimulus Duration (sec)');
ylabel('Log10 Limiting Cone Angle (mrad)');
xlim([1 5]);
ylim([0 3]);
title('Figure 3: Test of AnsiZ136MPEComputeLimitingConeAngle');
grid on
%% Figure 7: Test photochemical and thermal limits for extended sources.
%
% This code reproduces Figure 7, p. 97. Figure 7 is for wavelengths between
% 400 and 700. The overall limit (but not the photochemical limit) is
% independent of wavelength over this time interval.
%
% We only compute/plot down to 10-8 seconds, because our code doesn't
% implement the limts for extremely short times.
%
% Our plot also shows the photochemical limit (in red) down to the time
% where that is relevant. Since it is above the overall limit, it
% would not affect that limit in the regime plotted in this figure.
fprintf('Reproducing Figure 7, p. 97\n');
% Specify what parameters to test
theStimulusWavelengthsNm = 400:20:700;
theStimulusSizesMrad = [1 7.5 25 100];
minLogDuration = -13;
maxLogDuration = 0;
stimulusDurationsSec = logspace(minLogDuration,maxLogDuration,1000);
radiantExposureFig7 = figure; clf; set(gcf,'Position',[770 670 1000 600]);
for s = 1:length(theStimulusSizesMrad)
fprintf('\tSize %0.1f mRad\n',theStimulusSizesMrad(s));
stimulusSizeMrad = theStimulusSizesMrad(s);
stimulusSizeDeg = MradToDeg(stimulusSizeMrad);
for w = 1:length(theStimulusWavelengthsNm)
stimulusWavelengthNm = theStimulusWavelengthsNm(w);
for t = 1:length(stimulusDurationsSec)
stimulusDurationSec = stimulusDurationsSec(t);
[~, ~, ~, MPEPhotochemicalCornealRadiantExposure_JoulesPerCm2(w,t)] = ...
AnsiZ136MPEComputeExtendedSourcePhotochemicalLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
[~, ~, ~, MPELimitCornealRadiantExposure_JoulesPerCm2(w,t)] = ...
AnsiZ136MPEComputeExtendedSourceLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
end
end
% Does the answer depend on wavelength? Yes for photochemical limit
% but no for overall limit. You can explore if you want by enabling this section of code.
if (0)
minMPELimitCornealRadiantExposure_JoulesPerCm2 = min(MPELimitCornealRadiantExposure_JoulesPerCm2,[],1);
minMPEPhotochemicalCornealRadiantExposure_JoulesPerCm2 = min(MPEPhotochemicalCornealRadiantExposure_JoulesPerCm2,[],1);
for w = 1:length(theStimulusWavelengthsNm)
if (any(MPEPhotochemicalCornealRadiantExposure_JoulesPerCm2(w,:) ~= minMPEPhotochemicalCornealRadiantExposure_JoulesPerCm2))
fprintf('\t\tWavelength dependence for photochemical limit, wavelength %d\n',theStimulusWavelengthsNm(w));
end
if (any(MPELimitCornealRadiantExposure_JoulesPerCm2(w,:) ~= minMPELimitCornealRadiantExposure_JoulesPerCm2))
fprintf('\t\tWavelength dependence for overall limit, wavelength %d\n',theStimulusWavelengthsNm(w));
end
end
end
figure(radiantExposureFig7); % subplot(1,length(theStimulusSizesMrad),s);
hold on
loglog(log10(stimulusDurationsSec),log10(min(MPELimitCornealRadiantExposure_JoulesPerCm2,[],1)),'bo','MarkerSize',8,'MarkerFaceColor','b');
loglog(log10(stimulusDurationsSec),log10(min(MPEPhotochemicalCornealRadiantExposure_JoulesPerCm2,[],1)),'ro','MarkerSize',5,'MarkerFaceColor','r');
drawnow;
end
xlabel('Log10 Stimulus Duration (sec)');
ylabel('Log10 Corneal Radiant Exposure (J/cm2)');
xlim([minLogDuration maxLogDuration]);
ylim([-8 0]);
title({'Figure 7: Test of AnsiZ136MPE Exposure Limits' ; 'Blue: Limit, Red: Photochemical Limit' ; sprintf('Size %0.1f mrad',stimulusSizeMrad) ; 'Wavelengths 400-700 nm'});
grid on
%% Figure 10: Test photochemical and thermal limits for extended sources.
%
% This code reproduces Figure 10, pp. 103-107. Each version is for a
% different stimulus size, and shows the dependence of the limit on
% duration for different wavelengths.
%
% The agreement between what's produced here and the graphs in the
% standard is good for sizes <= 11 mrad, but diverges for larger
% sizes in terms of the photochemical limit. The figures in the
% standard have a temporal break that depends on stimulus size
% for the photochemical limit, and there is no such dependence
% in the main formula in the table.
% Specify what parameters to test
theStimulusSizesMrad = [1 3 11 25 50];
theFigureNames = {'Figure 10a' 'Figure 10b' 'Figure 10c' 'Figure 10d' 'Figure 10e'};
for s = 1:length(theStimulusSizesMrad)
fprintf('Reproducing %s\n',theFigureNames{s});
stimulusSizeMrad = theStimulusSizesMrad(s);
stimulusSizeDeg = MradToDeg(stimulusSizeMrad);
switch (stimulusSizeMrad)
case 1
minLogDuration = -1; maxLogDuration = 4.2;
minLogY = -4.1; maxLogY = -1;
theStimulusWavelengthsNm = [400 450 475 490 700 1050 1200];
case 3
minLogDuration = -1; maxLogDuration = 4.2;
minLogY = -4.1; maxLogY = 0;
theStimulusWavelengthsNm = [400 450 475 500 700 1050 1200];
case 11
minLogDuration = -1; maxLogDuration = 4.2;
minLogY = -4.1; maxLogY = 0;
theStimulusWavelengthsNm = [400 450 475 500 514.5 700 1050 1200];
case 25
minLogDuration = -1; maxLogDuration = 4.2;
minLogY = -4.1; maxLogY = 1;
theStimulusWavelengthsNm = [400 450 475 500 532 700 1050 1200];
case 50
minLogDuration = -1; maxLogDuration = 4.2;
minLogY = -4.1; maxLogY = 1;
theStimulusWavelengthsNm = [400 450 475 500 532 550 700 1050 1200];
otherwise
error('Unexpected stimulus size specified');
end
stimulusDurationsSec = logspace(minLogDuration,maxLogDuration,1000);
radiantExposureFig10 = figure; clf; set(gcf,'Position',[770 670 1000 600]);
for w = 1:length(theStimulusWavelengthsNm)
stimulusWavelengthNm = theStimulusWavelengthsNm(w);
for t = 1:length(stimulusDurationsSec)
stimulusDurationSec = stimulusDurationsSec(t);
[~, ~, MPEPhotochemicalCornealIrradiance_WattsPerCm2(w,t), ~] = ...
AnsiZ136MPEComputeExtendedSourcePhotochemicalLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
[~, ~, MPELimitCornealIrradiance_WattsPerCm2(w,t), ~] = ...
AnsiZ136MPEComputeExtendedSourceLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
end
figure(radiantExposureFig10);
hold on
loglog(log10(stimulusDurationsSec),log10(MPELimitCornealIrradiance_WattsPerCm2(w,:)),'bo','MarkerSize',8,'MarkerFaceColor','b');
index = find(MPEPhotochemicalCornealIrradiance_WattsPerCm2(w,:) == MPELimitCornealIrradiance_WattsPerCm2(w,:));
loglog(log10(stimulusDurationsSec(index)),log10(MPEPhotochemicalCornealIrradiance_WattsPerCm2(w,(index))),'ro','MarkerSize',5,'MarkerFaceColor','r');
drawnow;
end
xlabel('Log10 Stimulus Duration (sec)');
ylabel('Log10 Corneal Irradiance (W/cm2)');
xlim([minLogDuration maxLogDuration]);
ylim([minLogY maxLogY]);
title({'Test of AnsiZ136MPE Exposure Limits' ; 'Blue: Limit, Red Dashed: Photochemical Limit' ; sprintf('Size %0.1f mrad. %0.1f deg',theStimulusSizesMrad(s),stimulusSizeDeg) ; sprintf('Ansi Z136%s',theFigureNames{s})});
grid on
end
%% Figure 11: Test photochemical and thermal limits for extended sources.
%
% This code reproduces Figure 11, pp. 108. Each is for a a
% different stimulus size, and shows the dependence of the limit on
% duration for different wavelengths.
%
% This is close to the Figure 12 in the standard, although there
% are slight differences visible by eye, where the limits produced
% here are a bit lower than drawn in the document.
%
% The Mod1 version of the figure is for a smaller size, and is
% for comparison to Figure 10e.
% Specify what parameters to test
theStimulusSizesMrad = [110 50];
theFigureNames = {'Figure 11' 'Figure11Mod1'};
for s = 1:length(theStimulusSizesMrad)
fprintf('Reproducing %s\n',theFigureNames{s});
stimulusSizeMrad = theStimulusSizesMrad(s);
stimulusSizeDeg = MradToDeg(stimulusSizeMrad);
switch (stimulusSizeMrad)
case 50
minLogDuration = -1; maxLogDuration = 4.2;
minLogY = -2; maxLogY = 3;
theStimulusWavelengthsNm = [400 450 475 500 532 550 700 1050 1200];
case 110
minLogDuration = -1; maxLogDuration = 4.2;
minLogY = -2; maxLogY = 3;
theStimulusWavelengthsNm = [400 450 475 500 532 550 700 1050 1200];
otherwise
error('Unexpected stimulus size specified');
end
stimulusDurationsSec = logspace(minLogDuration,maxLogDuration,1000);
radiantExposureFig11 = figure; clf; set(gcf,'Position',[770 670 1000 600]);
for w = 1:length(theStimulusWavelengthsNm)
stimulusWavelengthNm = theStimulusWavelengthsNm(w);
for t = 1:length(stimulusDurationsSec)
stimulusDurationSec = stimulusDurationsSec(t);
[~, MPEPhotochemicalRadiance_WattsPerCm2Sr(w,t), ~, ~] = ...
AnsiZ136MPEComputeExtendedSourcePhotochemicalLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
[~, MPELimitRadiance_WattsPerCm2Sr(w,t), ~, ~] = ...
AnsiZ136MPEComputeExtendedSourceLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
end
figure(radiantExposureFig11);
hold on
loglog(log10(stimulusDurationsSec),log10(MPELimitRadiance_WattsPerCm2Sr(w,:)),'bo','MarkerSize',8,'MarkerFaceColor','b');
index = find(abs(MPEPhotochemicalRadiance_WattsPerCm2Sr(w,:) - MPELimitRadiance_WattsPerCm2Sr(w,:)) < 1e-6);
loglog(log10(stimulusDurationsSec(index)),log10(MPEPhotochemicalRadiance_WattsPerCm2Sr(w,(index))),'ro','MarkerSize',5,'MarkerFaceColor','r');
drawnow;
end
xlabel('Log10 Stimulus Duration (sec)');
ylabel('Log10 Radiance (W/[cm2-sr])');
xlim([minLogDuration maxLogDuration]);
ylim([minLogY maxLogY]);
title({'Test of AnsiZ136MPE Exposure Limits' ; 'Blue: Limit, Red Dashed: Photochemical Limit' ; sprintf('Size %0.1f mrad. %0.1f deg',theStimulusSizesMrad(s),stimulusSizeDeg) ; sprintf('Ansi Z136%s',theFigureNames{s})});
grid on
end
%% Figure 12: Test photochemical and thermal limits for extended sources.
%
% This code reproduces Figure 12, pp. 109. Each is for a a
% different stimulus size, and shows the dependence of the limit on
% duration for different wavelengths.
%
% This is close to the Figure 12 in the standard, although there
% are slight differences visible by eye, where the limits produced
% here are a bit lower than drawn in the document.
% Specify what parameters to test
theStimulusSizesMrad = [110];
theFigureNames = {'Figure 12'};
for s = 1:length(theStimulusSizesMrad)
fprintf('Reproducing %s\n',theFigureNames{s});
stimulusSizeMrad = theStimulusSizesMrad(s);
stimulusSizeDeg = MradToDeg(stimulusSizeMrad);
switch (stimulusSizeMrad)
case 110
minLogDuration = -13; maxLogDuration = 0;
minLogY = -4.1; maxLogY = 3;
theStimulusWavelengthsNm = [400 700 1050 1200];
otherwise
error('Unexpected stimulus size specified');
end
stimulusDurationsSec = logspace(minLogDuration,maxLogDuration,1000);
radiantExposureFig12 = figure; clf; set(gcf,'Position',[770 670 1000 600]);
for w = 1:length(theStimulusWavelengthsNm)
stimulusWavelengthNm = theStimulusWavelengthsNm(w);
for t = 1:length(stimulusDurationsSec)
stimulusDurationSec = stimulusDurationsSec(t);
[MPEPhotochemicalIntegratedRadiance_JoulesPerCm2Sr(w,t), ~, ~, ~] = ...
AnsiZ136MPEComputeExtendedSourcePhotochemicalLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
[MPELimitIntegratedRadiance_JoulesPerCm2Sr(w,t), ~, ~, ~] = ...
AnsiZ136MPEComputeExtendedSourceLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
end
figure(radiantExposureFig12);
hold on
loglog(log10(stimulusDurationsSec),log10(MPELimitIntegratedRadiance_JoulesPerCm2Sr(w,:)),'bo','MarkerSize',8,'MarkerFaceColor','b');
index = find(abs(MPEPhotochemicalIntegratedRadiance_JoulesPerCm2Sr(w,:) - MPELimitIntegratedRadiance_JoulesPerCm2Sr(w,:)) < 1e-8);
loglog(log10(stimulusDurationsSec(index)),log10(MPEPhotochemicalIntegratedRadiance_JoulesPerCm2Sr(w,(index))),'ro','MarkerSize',5,'MarkerFaceColor','r');
drawnow;
end
xlabel('Log10 Stimulus Duration (sec)');
ylabel('Log10 Integrated Radiance (J/[cm2-sr])');
xlim([minLogDuration maxLogDuration]);
ylim([minLogY maxLogY]);
title({'Test of AnsiZ136MPE Exposure Limits' ; 'Blue: Limit, Red Dashed: Photochemical Limit' ; sprintf('Size %0.1f mrad. %0.1f deg',theStimulusSizesMrad(s),stimulusSizeDeg) ; sprintf('Ansi Z136%s',theFigureNames{s})});
grid on
end
%% Make a plot of how limit varies with stimulus size, for specified
% duration and wavelength. Take minimum over vectors specified for
% each.
% Specify what parameters to test
minLogSize = -1; maxLogSize = 2;
minLogYRad = -3; maxLogYRad = 2;
minLogYIrrad = -5; maxLogYIrrad = 0;
minLogYIntRad = 0; maxLogYIntRad = 3;
minLogYRadExp = -4; maxLogYRadExp = -1;
stimulusSizesDeg = logspace(minLogSize,maxLogSize,100);
stimulusWavelengthsNm = 400:20:1390;
stimulusDurationsSec = logspace(-1,4,100);
fprintf('Computing over stimulus sizes from %0.1f to %0.1f deg\n',min(stimulusSizesDeg),max(stimulusSizesDeg));
clear MPELimitIntegratedRadiance_JoulesPerCm2Sr MPELimitRadiance_WattsPerCm2Sr MPELimitCornealIrradiance_WattsPerCm2 MPELimitCornealRadiantExposure_JoulesPerCm2
for s = 1:length(stimulusSizesDeg)
stimulusSizeDeg = theStimulusSizesDeg(s);
stimulusSizeMrad = DegToMrad(stimulusSizeDeg);
MPELimitIntegratedRadiance_JoulesPerCm2Sr(s) = Inf;
MPELimitRadiance_WattsPerCm2Sr(s) = Inf;
MPELimitCornealIrradiance_WattsPerCm2(s) = Inf;
MPELimitCornealRadiantExposure_JoulesPerCm2(s) = Inf;
for w = 1:length(stimulusWavelengthsNm)
stimulusWavelengthNm = stimulusWavelengthsNm(w);
for t = 1:length(stimulusDurationsSec)
stimulusDurationSec = stimulusDurationsSec(t);
[temp1, temp2, temp3, temp4] = ...
AnsiZ136MPEComputeExtendedSourceLimit(stimulusDurationSec,stimulusSizeDeg,stimulusWavelengthNm);
if (temp1 < MPELimitIntegratedRadiance_JoulesPerCm2Sr(s))
MPELimitIntegratedRadiance_JoulesPerCm2Sr(s) = temp1;
end
if (temp2 < MPELimitRadiance_WattsPerCm2Sr(s))
MPELimitRadiance_WattsPerCm2Sr(s) = temp2;
end
if (temp3 < MPELimitCornealIrradiance_WattsPerCm2(s))
MPELimitCornealIrradiance_WattsPerCm2(s) = temp3;
end
if (temp4 < MPELimitCornealRadiantExposure_JoulesPerCm2(s))
MPELimitCornealRadiantExposure_JoulesPerCm2(s) = temp4;
end
end
end
end
stimulusSizeFig = figure; clf; set(gcf,'Position',[770 670 1000 1000]);
figure(stimulusSizeFig);
subplot(2,2,1); hold on
loglog(log10(stimulusSizesDeg),log10(MPELimitRadiance_WattsPerCm2Sr),'bo','MarkerSize',8,'MarkerFaceColor','b');
xlabel('Log10 Stimulus Size (deg)');
ylabel('Log10 Radiance (W/[cm2-sr])');
xlim([minLogSize maxLogSize]);
ylim([minLogYRad maxLogYRad]);
title({'Test of AnsiZ136MPE Exposure Limits' ; sprintf('Durations %g to %g sec',min(stimulusDurationsSec),max(stimulusDurationsSec)) ; ...
sprintf('Wavelengths %d to %d nm',min(stimulusWavelengthsNm),max(stimulusWavelengthsNm))});
grid on
subplot(2,2,2); hold on
loglog(log10(stimulusSizesDeg),log10(MPELimitCornealIrradiance_WattsPerCm2),'bo','MarkerSize',8,'MarkerFaceColor','b');
xlabel('Log10 Stimulus Size (deg)');
ylabel('Log10 Corneal Irradiance (W/cm2)');
xlim([minLogSize maxLogSize]);
ylim([minLogYIrrad maxLogYIrrad]);
title({'Test of AnsiZ136MPE Exposure Limits' ; sprintf('Durations %g to %g sec',min(stimulusDurationsSec),max(stimulusDurationsSec)) ; ...
sprintf('Wavelengths %d to %d nm',min(stimulusWavelengthsNm),max(stimulusWavelengthsNm))});
grid on
subplot(2,2,3); hold on
loglog(log10(stimulusSizesDeg),log10(MPELimitIntegratedRadiance_JoulesPerCm2Sr),'bo','MarkerSize',8,'MarkerFaceColor','b');
xlabel('Log10 Stimulus Size (deg)');
ylabel('Log10 Integrated Radiance (J/[cm2-sr])');
xlim([minLogSize maxLogSize]);
ylim([minLogYIntRad maxLogYIntRad]);
title({'Test of AnsiZ136MPE Exposure Limits' ; sprintf('Durations %g to %g sec',min(stimulusDurationsSec),max(stimulusDurationsSec)) ; ...
sprintf('Wavelengths %d to %d nm',min(stimulusWavelengthsNm),max(stimulusWavelengthsNm))});
grid on
subplot(2,2,4); hold on
loglog(log10(stimulusSizesDeg),log10(MPELimitCornealRadiantExposure_JoulesPerCm2),'bo','MarkerSize',8,'MarkerFaceColor','b');
xlabel('Log10 Stimulus Size (deg)');
ylabel('Log10 Corneal Radiant Exposure (J/cm2)');
xlim([minLogSize maxLogSize]);
ylim([minLogYRadExp maxLogYRadExp]);
title({'Test of AnsiZ136MPE Exposure Limits' ; sprintf('Durations %g to %g sec',min(stimulusDurationsSec),max(stimulusDurationsSec)) ; ...
sprintf('Wavelengths %d to %d nm',min(stimulusWavelengthsNm),max(stimulusWavelengthsNm))});
grid on
|