This file is indexed.

/usr/share/psychtoolbox-3/PsychTests/FitConeFundamentalsTest.m is in psychtoolbox-3-common 3.0.11.20131230.dfsg1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
% FitConeFundamentalsTest
%
% This program allows exploration of how well we can fit
% CIE cone fundamentals with various photopigment nomograms,
% by allowing the lambdaMax to vary.
%
% Note from DHB.  My conclusion after spending some time with
% this is that the best current approach, in the context of the
% CIE fundamentals, is to use the StockmanSharpe nomogram and
% its nominal lambdaMax values.  The fit to the 2-degree CIE
% fundamentals is not perfect, but it is pretty good. I think 
% the deviations between what is produced by the nominal
% nomogram fit are probaby small compared with our certainty
% about the fundamentals (this is just intuition, but for example
% the deviations are small compared to those between the Stockman-Sharpe
% and Smith-Pokorny fundamentals).  One could try to develope a better
% nomogram, for example by taking the ser/ala polymorphism explicitly
% into account when fitting it, but I'm not sure that would win if one
% wants to keep the convenient assumption of constant photopigment 
% absorbance shape along a log wavelength axis.
%
% If one really wanted to go after fitting the fundamentals from parts,
% searching on various densities as well as the lambda max values
% would probably be the way to go.
%
% 8/11/11  dhb  Wrote it.
% 8/14/11  dhb  Clean up and add comments.
% 8/10/13  dhb  A few more notes.

% Doesn't work on octave due to lack of function 'fmincon' from the
% Matlab Optimization toolbox (see https://savannah.gnu.org/bugs/?35333)
% and due to use of nested function FitConesFun():
if IsOctave
    fprintf('Sorry, this test does not yet work on GNU/Octave.\n');
    return;
end

%% Clear
clear; close all;

%% Low end of log plot scale
lowEndLogPlot = -4;

%% Basic parameters.  For CIE functions, specify field size and age
staticParams.S = WlsToS((390:5:780)');
staticParams.fieldSizeDegrees = 2;
staticParams.ageInYears = 32;
staticParams.pupilDiameterMM = 3;

%% Get what we're trying to fit.
%
% The call to QuantaToEnergy to accomplish an energy to quanta transform is not an error.
% Rather, that routine converts spectra, but here we are converting sensitivities, so its
% the inverse we want.
targetRaw = load('T_cones_ss2');
T_targetEnergy = SplineCmf(targetRaw.S_cones_ss2,targetRaw.T_cones_ss2,staticParams.S,2);
T_targetQuantal2 = QuantaToEnergy(staticParams.S,T_targetEnergy')';
for i = 1:size(T_targetQuantal2,1)
    T_targetQuantal2(i,:) = T_targetQuantal2(i,:)/max(T_targetQuantal2(i,:));
end

%% Set nomogram type and initial lambdaMax values
% Nomogram choices are currenty:
%   'Baylor', 'Dawis', 'Govardovskii', 'Lamb', 'StockmanSharpe'
%
% You can use either three or four initial lambdaMax values.  In the
% case of four, the first two are treated as the ser/ala polymorphic
% variations, and weighted in the value hard coded in ComputeCIEConeFundamentals.
%
% Note from DHB.  For some nomograms the search will fail because they return
% values of zero inside the default range, and this screws up
% the error evaluation in the log domain.  I'm sure this could
% fixed with some fussing, but I don't want to head down that
% road right now.
%
% The StockmanSharpe nomogram seems to produce the best fits, which
% is not surprising given that it was tailored for this purpose.
%
% You can get a slightly better fit by using a ser/ala split and
% fitting four nomograms (two to the L cone) rather than 3, but the resultant
% lambdaMax values are further apart than makes sense.
staticParams.whichNomogram = 'StockmanSharpe';
params0.lambdaMax = [558.9 530.3 420.7]';

%% Get Stockman-Sharpe tabulated absorbance
load T_log10coneabsorbance_ss
T_StockmanSharpeAbsorbance = 10.^SplineCmf(S_log10coneabsorbance_ss,T_log10coneabsorbance_ss,staticParams.S,2);
lambdaMaxNominalStockmanSharpeNomogram = [558.9 530.3 420.7]';

%% Look at directly tabulated absorbance versus Stockman-Sharpe nomogram
figure; clf;
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on
plot(SToWls(staticParams.S),T_StockmanSharpeAbsorbance','k','LineWidth',3);
T_nomogramAbsorbance = StockmanSharpeNomogram(staticParams.S,lambdaMaxNominalStockmanSharpeNomogram);
plot(SToWls(staticParams.S),T_nomogramAbsorbance','r','LineWidth',1);
title('S-S absorbance (blk) vs. nomogram (red)');
ylabel('Normalized absorbance');
xlabel('Wavelength');
subplot(1,2,2); hold on
plot(SToWls(staticParams.S),log10(T_StockmanSharpeAbsorbance''),'k','LineWidth',3);
T_nomogramAbsorbance = StockmanSharpeNomogram(staticParams.S,[558.9 530.3 420.7]');
plot(SToWls(staticParams.S),log10(T_nomogramAbsorbance'),'r','LineWidth',1);
ylim([lowEndLogPlot 0.5]);
title('S-S absorbance (blk) vs. nomogram (red)');
ylabel('Log10 normalized absorbance');
xlabel('Wavelength');

%% Do the fit
[params,null,fitError] = FitConeFundamentalsWithNomogram(T_targetQuantal2,staticParams,params0);
T_predictQuantal0 = ComputeCIEConeFundamentals(staticParams.S,staticParams.fieldSizeDegrees,staticParams.ageInYears, ...
    staticParams.pupilDiameterMM,params0.lambdaMax,staticParams.whichNomogram ...
    );
T_predictQuantal = ComputeCIEConeFundamentals(staticParams.S,staticParams.fieldSizeDegrees,staticParams.ageInYears, ...
    staticParams.pupilDiameterMM,params.lambdaMax,staticParams.whichNomogram ...
    );

%% Report on fit
fprintf('\nLambda max, %s nomogram\n',staticParams.whichNomogram);
if (length(params.lambdaMax) == 4)
    fprintf('\tInitial:\t%0.1f (Lser)\t%0.1f (Lala)\t%0.1f (M)\t%0.1f (S)\n', ...
        params0.lambdaMax(1),params0.lambdaMax(2),params0.lambdaMax(3),params0.lambdaMax(4));
    fprintf('\tFinal:\t\t%0.1f (Lser)\t%0.1f (Lala)\t%0.1f (M)\t%0.1f (S)\n', ...
        params.lambdaMax(1),params.lambdaMax(2),params.lambdaMax(3),params.lambdaMax(4));
else
    fprintf('\tInitial:\t%0.1f (L)\t%0.1f (M)\t%0.1f (S)\n', ...
        params0.lambdaMax(1),params0.lambdaMax(2),params0.lambdaMax(3));
    fprintf('\tFinal:\t\t%0.1f (L)\t%0.1f (M)\t%0.1f (S)\n', ...
        params.lambdaMax(1),params.lambdaMax(2),params.lambdaMax(3));
end
fprintf('Fit error = %0.3g\n',fitError);

%% Make a plot of what we got.  To try to evaluate how
% much we care about the error, the Smith-Pokorny estimates
% are in blue.  I figure that the difference between those,
% which we used happily for years, and the Stockman-Sharpe
% provides some visual sense of what a big difference is.

% Load S & P fundamentals
load T_cones_sp
T_compareSP = QuantaToEnergy(S_cones_sp,T_cones_sp')';
for i = 1:size(T_compareSP,1)
    T_compareSP(i,:) = T_compareSP(i,:)/max(T_compareSP(i,:));
end

% Plot
figure; clf; hold on
position = get(gcf,'Position');
position(3) = 1200; position(4) = 700;
set(gcf,'Position',position);
subplot(1,2,1); hold on;
plot(SToWls(staticParams.S),T_targetQuantal2','k','LineWidth',2);
plot(SToWls(staticParams.S),T_predictQuantal0','g','LineWidth',1);
plot(SToWls(staticParams.S),T_predictQuantal','r','LineWidth',1);
plot(SToWls(S_cones_sp),T_compareSP','b','LineWidth',1);

xlabel('Wavelength'); ylabel('Quantal Sensitivity');
title('S-S 2-deg fundamental (blk) vs. nomogram pred (red)');
subplot(1,2,2); hold on;
plot(SToWls(staticParams.S),log10(T_targetQuantal2'),'k','LineWidth',2);
plot(SToWls(staticParams.S),log10(T_predictQuantal0'),'g','LineWidth',1);
plot(SToWls(staticParams.S),log10(T_predictQuantal'),'r','LineWidth',1);
plot(SToWls(S_cones_sp),log10(T_compareSP'),'b','LineWidth',1);
ylim([lowEndLogPlot 0.5]);
xlabel('Wavelength'); ylabel('Log10 quantal Sensitivity');
title('S-S 2-deg fundamental (blk) vs. nomogram pred (red)');