This file is indexed.

/usr/lib/pwrkap/pwrkap_data.py is in pwrkap 7.30-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
#!/usr/bin/python

"""Common data types for pwrkap drivers."""
# (C) Copyright IBM Corp. 2008-2009
# Licensed under the GPLv2.
import math
import transitions
import datetime
import threading
import traceback
import lazy_log

ONE_SECOND = datetime.timedelta(0, 0, 1)

def average_utilization(util_map):
	"""Calculate the average utilization from a map of device -> utilization."""
	assert len(util_map) > 0

	sum = 0.0
	for key in util_map.keys():
		sum = sum + util_map[key]
	return float(sum) / len(util_map)

class meter:
	"""Abstract base class for meter implementations."""

	def read(self):
		"""Read the meter."""
		pass

	def inventory(self):
		"""Return an inventory of the meter capabilities."""
		pass

	def get_latency(self):
		"""Return the average latency of the meter in seconds."""
		pass

class power_meter(meter):
	"""Abstract base class for power meters.  read() returns Watts."""
	pass

class energy_meter(meter):
	"""Abstract base class for energy meters.  read() returns Joules."""
	pass

import power_energy_meter

class device:
	"""Abstract base class for power-managed devices."""

	def get_prefix(self):
		"""Return the type of this device."""
		pass

	def get_power_states(self):
		"""Return a mapping of all possible power states to the device's ability to perform while in that state (in percent)."""
		pass

	def get_max_power_state(self):
		"""Return the maximum power state."""
		pass

	def set_max_power_state(self, max_pstate):
		"""Set the maximum power state."""
		pass

	def get_current_power_state(self):
		"""Return the current power state."""
		pass

	def snapshot(self):
		"""Return a snapshot of the current state of the device."""
		pass

	def inventory(self):
		"""Return an inventory of the device capabilities."""
		pass

	def get_utilization_details(self):
		"""Return a dictionary containing {subdevice: utilization} pairs.  If there are no subdevices, return a single {device: utilization} pair."""
		pass

	def get_name(self):
		"""Return the name of this device."""
		pass

	def snapshot(self):
		"""Take a snapshot of this device."""
		key = self.get_name()
		obj = {	"state": self.get_current_power_state(), \
			"max_state": self.get_max_power_state(), \
			"util_details": self.get_utilization_details()}

		return (key, obj)

	def start_load(self):
		"""Start a load for training purposes."""
		pass

	def stop_load(self):
		"""Stop the training load."""
		pass

class device_domain(device):
	"""A collection of devices that must be power-managed together."""

	def __init__(self, devices):
		"""Create a domain of power-managed devices."""
		assert len(devices) > 0
		self.devices = devices
		self.must_set_all = False

	def get_prefix(self):
		"""Return the prefix of the domain."""
		return "domain"

	def get_current_power_state(self):
		"""Return the current power state."""
		highest_seen = None
		for dev in self.devices:
			cps = dev.get_current_power_state()
			if highest_seen == None or highest_seen < cps:
				highest_seen = cps
		return highest_seen

	def get_power_states(self):
		"""Return a list of all possible power states."""
		return self.devices[0].get_power_states()

	def get_max_power_state(self):
		"""Return the maximum power state."""
		return self.devices[0].get_max_power_state()

	def set_max_power_state(self, max_pstate):
		"""Set the maximum power state."""
		if not self.must_set_all:
			return self.devices[0].set_max_power_state(max_pstate)
		res = True
		for dev in self.devices:
			res = res and dev.set_max_power_state(max_pstate)
		return res

	def get_utilization_details(self):
		"""Merge and return maps of device utilization."""
		dom_util_map = {}

		for dev in self.devices:
			dev_util_map = dev.get_utilization_details()
			assert dev_util_map != None
			dom_util_map.update(dev_util_map)

		return dom_util_map

	def snapshot(self):
		"""Take a snapshot of this device domain."""
		snap_list = {}
		for dev in self.devices:
			(k, v) = dev.snapshot()
			snap_list[k] = v
		return snap_list

	def inventory(self):
		"""Take an inventory of this device domain."""
		inv_list = {}
		for dev in self.devices:
			(k, v) = dev.inventory()
			inv_list[k] = v
		return inv_list

	def get_device(self):
		"""Return a device that represents this domain."""
		return self.devices[0]

	def start_load(self):
		loaded = []

		for dev in self.devices:
			if dev.start_load():
				loaded.append(dev)
			else:
				self.stop_load_for(loaded)	
				return False
		return True

	def stop_load_for(self, devices):
		for dev in devices:
			dev.stop_load()

	def stop_load(self):
		self.stop_load_for(self.devices)

class IllegalDomain(Exception): pass

class power_domain_volatile_data:
	"""Dummy class to isolate power domain data that can't be preserved."""
	def __init__(self):
		self.signal = threading.Condition()

	def __getstate__(self):
		pass

	def __setstate__(self, state):
		self.signal = threading.Condition()

NUM_UTIL_BUCKETS = 4
ENFORCEMENT_INTERVAL = 30
MEASUREMENT_PERIOD = 15
ENFORCEMENT_SNAPSHOTS = 2
DEFAULT_SNAPSHOTS_TO_KEEP = 1000
class power_domain:
	"""A collection of power-managed device domains, a power
	meter, and various routines to manage them."""

	def __init__(self, domains, idomains, power_meter, energy_meter, cap):
		"""Create a power domain."""
		global NUM_UTIL_BUCKETS, DEFAULT_SNAPSHOTS_TO_KEEP

		assert len(domains) > 0
		self.power_meter = power_meter
		self.energy_meter = energy_meter
		if self.energy_meter == None:
			self.energy_meter = power_energy_meter.power_energy_meter(self.power_meter)
		self.domains = domains
		self.id = next_power_domain_id()
		self.cap = cap
		self.inter_domains = idomains
		self.snap_store = transitions.snapshot_store(DEFAULT_SNAPSHOTS_TO_KEEP)
		self.trans_store = transitions.transition_store(self.snap_store, self.inter_domains, NUM_UTIL_BUCKETS)
		self.check_idomain()
		self.control_loop_active = False
		self.need_enforcement = False
		self.volatile = power_domain_volatile_data()
		self.control_loop_should_exit = False
		self.last_enforcement = datetime.datetime.utcnow()

	def choose_domains_for_training(self):
		"""Return the smallest set of domains that are needed to
collect training data."""
		training = []

		for dom in self.domains:
			dev = dom.get_device()
			already_covered = False
			for idom in self.inter_domains:
				if idom[0] == dev:
					training.append(dom)
					already_covered = True
					break
				elif dev in idom:
					already_covered = True
			if not already_covered:
				training.append(dom)

		return training

	def check_idomain(self):
		"""Check interchangeable domains for problems."""
		# No empty idoms
		for idom in self.inter_domains:
			assert len(idom) > 0
		
		# All devices must be part of an idom.
		devs = set()
		for dom in self.domains:
			for dev in dom.devices:
				devs.add(dev)
		for idom in self.inter_domains:
			for dev in idom:
				assert dev in devs
				devs.remove(dev)
		assert len(devs) == 0

	def get_utilization_details(self):
		"""Merge and return maps of domain utilization."""
		pdom_util_map = {}

		for dom in self.domains:
			dom_util_map = dom.get_utilization_details()
			assert dom_util_map != None
			pdom_util_map.update(dom_util_map)

		return pdom_util_map

	def get_energy_use(self):
		"""Return the power domain's energy use, in Joules."""
		return self.energy_meter.read()

	def get_power_use(self):
		"""Return the power domain's power use, in Watts."""
		return self.power_meter.read()

	def get_cap(self):
		"""Return the power domain's maximum usage."""
		return self.cap

	def set_cap(self, cap):
		"""Set a new cap for this domain."""
		self.cap = cap
		if self.control_loop_active:
			self.need_enforcement = True

			# Signal the control loop
			self.volatile.signal.acquire()
			self.volatile.signal.notify()
			self.volatile.signal.release()
		else:
			self.enforce_cap()
		return True

	def exit_control_loop(self):
		"""Terminate the control loop."""
		if not self.control_loop_active:
			return
		self.control_loop_should_exit = True
		self.volatile.signal.acquire()
		self.volatile.signal.notify()
		self.volatile.signal.release()

	def control_loop(self):
		try:
			self.do_control_loop()
		except Exception, ex:
			traceback.print_exc()

	def do_control_loop(self):
		"""Control loop for power use regulation."""
		global ENFORCEMENT_INTERVAL, MEASUREMENT_PERIOD, ENFORCEMENT_SNAPSHOTS
		snapshots_since_enforcement = 0

		self.control_loop_should_exit = False
		self.control_loop_active = True
		while True:
			# Are we being told to exit?
			if self.control_loop_should_exit:
				self.control_loop_active = False
				return

			before = datetime.datetime.utcnow()

			# Take snapshot
			(name, props) = self.process_snapshot()
			usage = props["power"]
			lazy_log.logger.log((name, props))
			snapshots_since_enforcement = snapshots_since_enforcement + 1

			# Figure out if we need to run the enforcement loop
			nowtime = datetime.datetime.utcnow()
			if self.need_enforcement or \
			   (nowtime - self.last_enforcement).seconds > ENFORCEMENT_INTERVAL or \
			   snapshots_since_enforcement >= ENFORCEMENT_SNAPSHOTS:
				snapshots_since_enforcement = 0
				self.need_enforcement = False
				self.do_enforce_cap(usage)
				self.last_enforcement = datetime.datetime.utcnow()

			# Now sleep for a bit?
			after = datetime.datetime.utcnow()

			if (after - before).seconds < MEASUREMENT_PERIOD:
				self.volatile.signal.acquire()
				self.volatile.signal.wait(MEASUREMENT_PERIOD - (after - before).seconds)
				self.volatile.signal.release()

	def snapshot(self):
		"""Return a (key, obj) representation of the power domain."""
		def snapshot_domains(list):
			"""Snapshot a list of domains."""
			snap_list = []
			for domain in list:
				snap_list.append(domain.snapshot())
			return snap_list

		ud = self.get_utilization_details()
		aud = average_utilization(ud)

		key = self.name()
		obj = { "utilization":	aud, \
			"power":	self.get_power_use(), \
			"energy":	self.get_energy_use(), \
			"domains":	snapshot_domains(self.domains), \
			"cap":		self.get_cap(), \
			"util_details": ud}

		return (key, obj)

	def process_snapshot(self):
		"""Capture and record a snapshot."""
		snap = self.snapshot()
		self.trans_store.consider_snapshot(snap[1])
		return snap

	def inventory(self):
		"""Return a (key, obj) representation of the power domain's \
capabilities."""
		def inventory_domains(list):
			"""Inventory a list of domains."""
			inv_list = []
			for domain in list:
				inv_list.append(domain.inventory())
			return inv_list

		(pmeter_name, pmeter_data) = self.power_meter.inventory()
		(emeter_name, emeter_data) = self.energy_meter.inventory()
		key = self.name()
		obj = { "domains":	inventory_domains(self.domains), \
			"pmeter":	{pmeter_name: pmeter_data},
			"emeter":	{emeter_name: emeter_data}}

		return (key, obj)

	def name(self):
		"""Return the domain's name."""
		return "pwrdom" + str(self.id)

	def enforce_cap(self):
		"""Try to enforce the power cap on a one-off basis."""
		return self.do_enforce_cap(self.get_power_use())

	def do_enforce_cap(self, power_use):
		"""Try to enforce the power cap given a power usage reading."""
		recent_transitions = set()
		recent_devs = set()

		# Make it so that we don't go back to where we started from
		for domain in self.domains:
			state = domain.get_current_power_state()
			recent_transitions.add((domain, state))

		# XXX: Fudge things a bit here--give ourselves 10W of headroom
		remaining_delta = self.get_cap() - power_use - 10
		original_delta = remaining_delta

		print "***********"
		print "delta=%(delta)d cap=%(cap)d usage=%(use)d" % {"delta": remaining_delta, "cap": self.get_cap(), "use": power_use}
		delta = self.change_power_target(remaining_delta, recent_transitions, recent_devs)
		while delta != None:
			remaining_delta = remaining_delta - delta
			if remaining_delta * original_delta < 0:
				break
			delta = self.change_power_target(remaining_delta, recent_transitions, recent_devs)

		print "Remaining delta=%(rem)dW" % {"rem": remaining_delta}
		if remaining_delta < 0:
			return remaining_delta

		return 0

	def change_power_target(self, delta, recent, recent_devs):
		"""Take one step towards changing the power use target."""
		proposals = []

		if delta == 0:
			return None

		# For each device domain, construct a set of transitions
		# from the (current state, utilization) to another state
		# for which we know the power cost.  XXX: If there is no
		# data for (c0, u) -> (c1), can we use (c0, u') -> (c1)
		# instead?
		for domain in self.domains:
			dev_proposals = self.trans_store.propose_transitions(domain)
			for prop in dev_proposals:
				# Don't monkey around with CPUs we've already modified
				if prop.device in recent_devs:
					continue

				# Ignore proposals that don't change power use.
				if prop.power_impact == 0:
					continue

				# If we have to decrease power use, eliminate
				# options that consume more energy.
				if delta < 0 and prop.power_impact > 0:
					continue

				# If delta positive, do not pick any option that results
				# in a performance decrease.  This greedy algorithm only
				# cares about now; it does not look ahead.
				if delta > 0 and prop.performance_impact < 0:
					continue

				# Eliminate transitions that exceed the desired delta
				# if the delta is positive.
				if delta > 0 and prop.power_impact > delta:
					continue

				# Else, add to proposal list.  Note that it is
				# quite valid to have options that increase
				# peformance and decrease energy use!
				proposals.append(prop)

		# If there are no transitions left, we're stuck; exit
		if len(proposals) == 0:
			return None

		# Sort transitions in order of goodness.
		proposals.sort(cmp = transitions.compare_proposals)

		if True:
			print "------------------"
			for x in proposals:
				print (x.device.get_device().inventory()[0], x.new_state, 100*x.performance_impact, \
					x.power_impact, x.performance_impact / x.power_impact)

		# Pick the best one
		proposal = None
		for prop in proposals:
			if (prop.device, prop.new_state) in recent:
				continue
			proposal = prop
			break
		if proposal == None:
			return None
		print ("I CHOOSE", proposal)

		# Implement it.
		proposal.device.set_max_power_state(proposal.new_state)

		# Remember that fact.
		recent.add((proposal.device, proposal.new_state))
		recent_devs.add(proposal.device)

		return proposal.power_impact

	def start_load(self):
		loaded = []

		for dom in self.domains:
			if dom.start_load():
				loaded.append(dom)
			else:
				self.stop_load_for(loaded)	
				return False
		return True

	def stop_load_for(self, domains):
		for dom in domains:
			dom.stop_load()

	def stop_load(self):
		self.stop_load_for(self.domains)

def detect_idomains_for_devices(devices):
	"""Compute identical-domains for a list of devices."""
	idomains = []

	for device in devices:
		(name, data) = device.inventory()
		prefix = device.get_prefix()

		dev_idomain = []
		for idomain in idomains:
			(idom_name, idom_data) = idomain[0].inventory()
			idom_prefix = idomain[0].get_prefix()
			if idom_prefix == prefix and idom_data == data:
				dev_idomain = idomain
				break
		if len(dev_idomain) == 0:
			idomains.append(dev_idomain)
		dev_idomain.append(device)

	return idomains

next_dom_id = 0
def next_power_domain_id():
	"""Return a unique power domain identifier."""
	global next_dom_id

	next_dom_id = next_dom_id + 1
	return next_dom_id - 1