This file is indexed.

/usr/share/doc/pythia8-doc/html/CouplingsAndScales.html is in pythia8-doc-html 8.1.80-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
<html>
<head>
<title>Couplings and Scales</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>

<h2>Couplings and Scales</h2>

Here is collected some possibilities to modify the scale choices
of couplings and parton densities for all internally implemented 
hard processes. This is based on them all being derived from the
<code>SigmaProcess</code> base class. The matrix-element coding is 
also used by the multiparton-interactions machinery, but there with a 
separate choice of <i>alpha_strong(M_Z^2)</i> value and running, 
and separate PDF scale choices. Also, in <i>2 -> 2</i> and 
<i>2 -> 3</i> processes where resonances are produced, their 
couplings and thereby their Breit-Wigner shapes are always evaluated 
with the resonance mass as scale, irrespective of the choices below.

<h3>Couplings and K factor</h3>

The size of QCD cross sections is mainly determined by 
<p/><code>parm&nbsp; </code><strong> SigmaProcess:alphaSvalue &nbsp;</strong> 
 (<code>default = <strong>0.1265</strong></code>; <code>minimum = 0.06</code>; <code>maximum = 0.25</code>)<br/>
The <i>alpha_strong</i> value at scale <i>M_Z^2</i>. 
  

<p/>
The actual value is then regulated by the running to the <i>Q^2</i> 
renormalization scale, at which <i>alpha_strong</i> is evaluated
<p/><code>mode&nbsp; </code><strong> SigmaProcess:alphaSorder &nbsp;</strong> 
 (<code>default = <strong>1</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
Order at which <i>alpha_strong</i> runs,
<br/><code>option </code><strong> 0</strong> : zeroth order, i.e. <i>alpha_strong</i> is kept 
fixed.  
<br/><code>option </code><strong> 1</strong> : first order, which is the normal value.  
<br/><code>option </code><strong> 2</strong> : second order. Since other parts of the code do 
not go to second order there is no strong reason to use this option, 
but there is also nothing wrong with it.  
  

<p/>
QED interactions are regulated by the <i>alpha_electromagnetic</i>
value at the <i>Q^2</i> renormalization scale of an interaction. 
<p/><code>mode&nbsp; </code><strong> SigmaProcess:alphaEMorder &nbsp;</strong> 
 (<code>default = <strong>1</strong></code>; <code>minimum = -1</code>; <code>maximum = 1</code>)<br/>
The running of <i>alpha_em</i> used in hard processes.
<br/><code>option </code><strong> 1</strong> : first-order running, constrained to agree with
<code>StandardModel:alphaEMmZ</code> at the <i>Z^0</i> mass.
  
<br/><code>option </code><strong> 0</strong> : zeroth order, i.e. <i>alpha_em</i> is kept 
fixed at its value at vanishing momentum transfer.  
<br/><code>option </code><strong> -1</strong> : zeroth order, i.e. <i>alpha_em</i> is kept 
fixed, but at <code>StandardModel:alphaEMmZ</code>, i.e. its value
at the <i>Z^0</i> mass.
   
  

<p/>
In addition there is the possibility of a global rescaling of 
cross sections (which could not easily be accommodated by a 
changed <i>alpha_strong</i>, since <i>alpha_strong</i> runs)
<p/><code>parm&nbsp; </code><strong> SigmaProcess:Kfactor &nbsp;</strong> 
 (<code>default = <strong>1.0</strong></code>; <code>minimum = 0.5</code>; <code>maximum = 4.0</code>)<br/>
Multiply almost all cross sections by this common fix factor. Excluded 
are only unresolved processes, where cross sections are better 
<a href="TotalCrossSections.html" target="page">set directly</a>, and 
multiparton interactions, which have a separate <i>K</i> factor 
<a href="MultipartonInteractions.html" target="page">of their own</a>.  
This degree of freedom is primarily intended for hadron colliders, and
should not normally be used for <i>e^+e^-</i> annihilation processes.
  

<h3>Renormalization scales</h3>

The <i>Q^2</i> renormalization scale can be chosen among a few different
alternatives, separately for <i>2 -> 1</i>, <i>2 -> 2</i> and two 
different kinds of <i>2 -> 3</i> processes. In addition a common
multiplicative factor may be imposed.
 
<p/><code>mode&nbsp; </code><strong> SigmaProcess:renormScale1 &nbsp;</strong> 
 (<code>default = <strong>1</strong></code>; <code>minimum = 1</code>; <code>maximum = 2</code>)<br/>
The <i>Q^2</i> renormalization scale for <i>2 -> 1</i> processes.
The same options also apply for those <i>2 -> 2</i> and <i>2 -> 3</i>
processes that have been specially marked as proceeding only through 
an <i>s</i>-channel resonance, by the <code>isSChannel()</code> virtual 
method of <code>SigmaProcess</code>.
<br/><code>option </code><strong> 1</strong> : the squared invariant mass, i.e. <i>sHat</i>.
  
<br/><code>option </code><strong> 2</strong> : fix scale set in <code>SigmaProcess:renormFixScale</code> 
below.
  
  
  
<p/><code>mode&nbsp; </code><strong> SigmaProcess:renormScale2 &nbsp;</strong> 
 (<code>default = <strong>2</strong></code>; <code>minimum = 1</code>; <code>maximum = 5</code>)<br/>
The <i>Q^2</i> renormalization scale for <i>2 -> 2</i> processes.
<br/><code>option </code><strong> 1</strong> : the smaller of the squared transverse masses of the two
outgoing particles, i.e. <i>min(mT_3^2, mT_4^2) = 
pT^2 + min(m_3^2, m_4^2)</i>.
  
<br/><code>option </code><strong> 2</strong> : the geometric mean of the squared transverse masses of 
the two outgoing particles, i.e. <i>mT_3 * mT_4 = 
sqrt((pT^2 + m_3^2) * (pT^2 + m_4^2))</i>.
  
<br/><code>option </code><strong> 3</strong> : the arithmetic mean of the squared transverse masses of 
the two outgoing particles, i.e. <i>(mT_3^2 + mT_4^2) / 2 = 
pT^2 + 0.5 * (m_3^2 + m_4^2)</i>. Useful for comparisons 
with PYTHIA 6, where this is the default.
  
<br/><code>option </code><strong> 4</strong> : squared invariant mass of the system, 
i.e. <i>sHat</i>. Useful for processes dominated by 
<i>s</i>-channel exchange. 
  
<br/><code>option </code><strong> 5</strong> : fix scale set in <code>SigmaProcess:renormFixScale</code> 
below.
  
  
  
<p/><code>mode&nbsp; </code><strong> SigmaProcess:renormScale3 &nbsp;</strong> 
 (<code>default = <strong>3</strong></code>; <code>minimum = 1</code>; <code>maximum = 6</code>)<br/>
The <i>Q^2</i> renormalization scale for "normal" <i>2 -> 3</i> 
processes, i.e excepting the vector-boson-fusion processes below.
Here it is assumed that particle masses in the final state either match
or are heavier than that of any <i>t</i>-channel propagator particle.
(Currently only <i>g g / q qbar -> H^0 Q Qbar</i> processes are 
implemented, where the "match" criterion holds.) 
<br/><code>option </code><strong> 1</strong> : the smaller of the squared transverse masses of the three
outgoing particles, i.e. min(mT_3^2, mT_4^2, mT_5^2).
  
<br/><code>option </code><strong> 2</strong> : the geometric mean of the two smallest squared transverse 
masses of the three outgoing particles, i.e. 
<i>sqrt( mT_3^2 * mT_4^2 * mT_5^2 / max(mT_3^2, mT_4^2, mT_5^2) )</i>.
  
<br/><code>option </code><strong> 3</strong> : the geometric mean of the squared transverse masses of the 
three outgoing particles, i.e. <i>(mT_3^2 * mT_4^2 * mT_5^2)^(1/3)</i>.
  
<br/><code>option </code><strong> 4</strong> : the arithmetic mean of the squared transverse masses of 
the three outgoing particles, i.e. <i>(mT_3^2 + mT_4^2 + mT_5^2)/3</i>.
  
<br/><code>option </code><strong> 5</strong> : squared invariant mass of the system, 
i.e. <i>sHat</i>.
  
<br/><code>option </code><strong> 6</strong> : fix scale set in <code>SigmaProcess:renormFixScale</code> 
below.
  
   
 
<p/><code>mode&nbsp; </code><strong> SigmaProcess:renormScale3VV &nbsp;</strong> 
 (<code>default = <strong>3</strong></code>; <code>minimum = 1</code>; <code>maximum = 6</code>)<br/>
The <i>Q^2</i> renormalization scale for <i>2 -> 3</i> 
vector-boson-fusion processes, i.e. <i>f_1 f_2 -> H^0 f_3 f_4</i>
with <i>Z^0</i> or <i>W^+-</i>  <i>t</i>-channel propagators. 
Here the transverse masses of the outgoing fermions do not reflect the 
virtualities of the exchanged bosons. A better estimate is obtained 
by replacing the final-state fermion masses by the vector-boson ones
in the definition of transverse masses. We denote these combinations 
<i>mT_Vi^2 = m_V^2 + pT_i^2</i>. 
<br/><code>option </code><strong> 1</strong> : the squared mass <i>m_V^2</i> of the exchanged
vector boson.
  
<br/><code>option </code><strong> 2</strong> : the geometric mean of the two propagator virtuality
estimates, i.e. <i>sqrt(mT_V3^2 * mT_V4^2)</i>.
  
<br/><code>option </code><strong> 3</strong> : the geometric mean of the three relevant squared 
transverse masses, i.e. <i>(mT_V3^2 * mT_V4^2 * mT_H^2)^(1/3)</i>.
  
<br/><code>option </code><strong> 4</strong> : the arithmetic mean of the three relevant squared 
transverse masses, i.e. <i>(mT_V3^2 + mT_V4^2 + mT_H^2)/3</i>.
  
<br/><code>option </code><strong> 5</strong> : squared invariant mass of the system, 
i.e. <i>sHat</i>.
  
<br/><code>option </code><strong> 6</strong> : fix scale set in <code>SigmaProcess:renormFixScale</code> 
below.
  
  

<p/><code>parm&nbsp; </code><strong> SigmaProcess:renormMultFac &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>; <code>minimum = 0.1</code>; <code>maximum = 10.</code>)<br/>
The <i>Q^2</i> renormalization scale for <i>2 -> 1</i>,
<i>2 -> 2</i> and <i>2 -> 3</i> processes is multiplied by 
this factor relative to the scale described above (except for the options 
with a fix scale). Should be use sparingly for <i>2 -> 1</i> processes. 
  

<p/><code>parm&nbsp; </code><strong> SigmaProcess:renormFixScale &nbsp;</strong> 
 (<code>default = <strong>10000.</strong></code>; <code>minimum = 1.</code>)<br/>
A fix <i>Q^2</i> value used as renormalization scale for <i>2 -> 1</i>,
<i>2 -> 2</i> and <i>2 -> 3</i> processes in some of the options above.
  

<h3>Factorization scales</h3>

Corresponding options exist for the <i>Q^2</i> factorization scale
used as argument in PDF's. Again there is a choice of form for  
<i>2 -> 1</i>, <i>2 -> 2</i> and <i>2 -> 3</i> processes separately. 
For simplicity we have let the numbering of options agree, for each event 
class separately, between normalization and factorization scales, and the 
description has therefore been slightly shortened. The default values are 
<b>not</b> necessarily the same, however.
 
<p/><code>mode&nbsp; </code><strong> SigmaProcess:factorScale1 &nbsp;</strong> 
 (<code>default = <strong>1</strong></code>; <code>minimum = 1</code>; <code>maximum = 2</code>)<br/>
The <i>Q^2</i> factorization scale for <i>2 -> 1</i> processes.
The same options also apply for those <i>2 -> 2</i> and <i>2 -> 3</i>
processes that have been specially marked as proceeding only through 
an <i>s</i>-channel resonance.
<br/><code>option </code><strong> 1</strong> : the squared invariant mass, i.e. <i>sHat</i>.
  
<br/><code>option </code><strong> 2</strong> : fix scale set in <code>SigmaProcess:factorFixScale</code> 
below.
  
  

<p/><code>mode&nbsp; </code><strong> SigmaProcess:factorScale2 &nbsp;</strong> 
 (<code>default = <strong>1</strong></code>; <code>minimum = 1</code>; <code>maximum = 5</code>)<br/>
The <i>Q^2</i> factorization scale for <i>2 -> 2</i> processes.
<br/><code>option </code><strong> 1</strong> : the smaller of the squared transverse masses of the two
outgoing particles.
  
<br/><code>option </code><strong> 2</strong> : the geometric mean of the squared transverse masses of 
the two outgoing particles.
  
<br/><code>option </code><strong> 3</strong> : the arithmetic mean of the squared transverse masses of 
the two outgoing particles. Useful for comparisons with PYTHIA 6, where 
this is the default.
  
<br/><code>option </code><strong> 4</strong> : squared invariant mass of the system, 
i.e. <i>sHat</i>. Useful for processes dominated by 
<i>s</i>-channel exchange. 
  
<br/><code>option </code><strong> 5</strong> : fix scale set in <code>SigmaProcess:factorFixScale</code> 
below.
  
  
  
<p/><code>mode&nbsp; </code><strong> SigmaProcess:factorScale3 &nbsp;</strong> 
 (<code>default = <strong>2</strong></code>; <code>minimum = 1</code>; <code>maximum = 6</code>)<br/>
The <i>Q^2</i> factorization scale for "normal" <i>2 -> 3</i> 
processes, i.e excepting the vector-boson-fusion processes below.
<br/><code>option </code><strong> 1</strong> : the smaller of the squared transverse masses of the three
outgoing particles.
  
<br/><code>option </code><strong> 2</strong> : the geometric mean of the two smallest squared transverse 
masses of the three outgoing particles.
  
<br/><code>option </code><strong> 3</strong> : the geometric mean of the squared transverse masses of the 
three outgoing particles.
  
<br/><code>option </code><strong> 4</strong> : the arithmetic mean of the squared transverse masses of 
the three outgoing particles.
  
<br/><code>option </code><strong> 5</strong> : squared invariant mass of the system, 
i.e. <i>sHat</i>.
  
<br/><code>option </code><strong> 6</strong> : fix scale set in <code>SigmaProcess:factorFixScale</code> 
below.
  
   
 
<p/><code>mode&nbsp; </code><strong> SigmaProcess:factorScale3VV &nbsp;</strong> 
 (<code>default = <strong>2</strong></code>; <code>minimum = 1</code>; <code>maximum = 6</code>)<br/>
The <i>Q^2</i> factorization scale for <i>2 -> 3</i> 
vector-boson-fusion processes, i.e. <i>f_1 f_2 -> H^0 f_3 f_4</i>
with <i>Z^0</i> or <i>W^+-</i>  <i>t</i>-channel propagators. 
Here we again introduce the combinations <i>mT_Vi^2 = m_V^2 + pT_i^2</i>
as replacements for the normal squared transverse masses of the two 
outgoing quarks.
<br/><code>option </code><strong> 1</strong> : the squared mass <i>m_V^2</i> of the exchanged
vector boson.
  
<br/><code>option </code><strong> 2</strong> : the geometric mean of the two propagator virtuality
estimates.
  
<br/><code>option </code><strong> 3</strong> : the geometric mean of the three relevant squared 
transverse masses.
  
<br/><code>option </code><strong> 4</strong> : the arithmetic mean of the three relevant squared 
transverse masses.
  
<br/><code>option </code><strong> 5</strong> : squared invariant mass of the system, 
i.e. <i>sHat</i>.
  
<br/><code>option </code><strong> 6</strong> : fix scale set in <code>SigmaProcess:factorFixScale</code> 
below.
  
  

<p/><code>parm&nbsp; </code><strong> SigmaProcess:factorMultFac &nbsp;</strong> 
 (<code>default = <strong>1.</strong></code>; <code>minimum = 0.1</code>; <code>maximum = 10.</code>)<br/>
The <i>Q^2</i> factorization scale for <i>2 -> 1</i>,
<i>2 -> 2</i> and <i>2 -> 3</i> processes is multiplied by 
this factor relative to the scale described above (except for the options 
with a fix scale). Should be use sparingly for <i>2 -> 1</i> processes. 
  

<p/><code>parm&nbsp; </code><strong> SigmaProcess:factorFixScale &nbsp;</strong> 
 (<code>default = <strong>10000.</strong></code>; <code>minimum = 1.</code>)<br/>
A fix <i>Q^2</i> value used as factorization scale for <i>2 -> 1</i>,
<i>2 -> 2</i> and <i>2 -> 3</i> processes in some of the options above.
  

</body>
</html>

<!-- Copyright (C) 2013 Torbjorn Sjostrand -->