/usr/share/doc/pythia8-doc/html/ExtraDimensionalProcesses.html is in pythia8-doc-html 8.1.80-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | <html>
<head>
<title>Extra-Dimensional Processes</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
<h2>Extra-Dimensional Processes</h2>
Scenarios with extra dimensions (ED) allow a multitude of processes.
Currently three different categories of processes are implemented.
The first involves the production of excited Kaluza Klein states
within so-called Randall-Sundrum (RS) scenarios, the second is
related to resonance production in TeV-1 sized extra dimensions
and the third relates to phenomena from large extra dimensions (LED).
Due to the close relation between the LED model and a so-called
unparticle model, similar unparticle processes are also kept in this
section.
<h3>Randall-Sundrum Resonances, production processes</h3>
The graviton (G*) and gluon (KKgluon*) resonance states are assigned
PDG code 5100039 and 5100021 respectively. The G* processes are
described in [<a href="Bibliography.html" target="page">Bij01</a>] and the KKgluon* process in [<a href="Bibliography.html" target="page">Ask11</a>].
Decays into fermion and boson pairs are handled with the correct
angular distributions, while subsequent decays are handled
isotropically.
<p/>
There are two lowest-order processes that together normally
should be sufficient for a simulation of <i>G^*</i> production.
<p/><code>flag </code><strong> ExtraDimensionsG*:all </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of lowest-order <i>G^*</i> production
processes, i.e. the two ones below.
<p/><code>flag </code><strong> ExtraDimensionsG*:gg2G* </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> G^*</i>.
Code 5001.
<p/><code>flag </code><strong> ExtraDimensionsG*:ffbar2G* </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> G^*</i>.
Code 5002.
<p/>
In addition there are three first-order processes included. These
are of less interest, but can be used for dedicated studies of the
high-<i>pT</i> tail of <i>G^*</i> production. As usual, it would
be double counting to include the lowest-order and first-order
processes simultaneously. Therefore the latter ones are not included
with the <code>ExtraDimensionsG*:all = on</code> option. In this set
of processes all decay angles are assumed isotropic.
<p/><code>flag </code><strong> ExtraDimensionsG*:gg2G*g </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> G^* g</i>.
Code 5003.
<p/><code>flag </code><strong> ExtraDimensionsG*:qg2G*q </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q g -> G^* q</i>.
Code 5004.
<p/><code>flag </code><strong> ExtraDimensionsG*:qqbar2G*g </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q qbar -> G^* g</i>.
Code 5005.
<p/>
There is also one process for the production of a gluon resonance.
<p/><code>flag </code><strong> ExtraDimensionsG*:qqbar2KKgluon* </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q qbar -> g^*/KKgluon^*</i>.
Code 5006.
<h3>Randall-Sundrum Resonances, parameters</h3>
In the above scenario the main free parameters are the masses, which
are set as usual. In addition there are the following coupling parameters.
The coupling <i>kappaMG</i> follows the conventions in [<a href="Bibliography.html" target="page">Bij01</a>],
where as the flavour dependent couplings follow the conventions used in
[<a href="Bibliography.html" target="page">Dav01</a>].
<p/><code>flag </code><strong> ExtraDimensionsG*:SMinBulk </strong>
(<code>default = <strong>off</strong></code>)<br/>
Parameter to choose between the two scenarios:
<i>off</i>, SM on the TeV brane (common <i>kappaMG</i> coupling);
<i>on</i>, SM in the ED bulk (flavour dependent couplings).
This parameter is only relevant for the lowest-order graviton
(<i>G*</i>) processes, where as the first-order processes
corresponds to the <i>off</i> scenario.
<p/><code>flag </code><strong> ExtraDimensionsG*:VLVL </strong>
(<code>default = <strong>on</strong></code>)<br/>
Parameter to specify Z/W coupling scenario:
<i>off</i>, usual Z/W boson couplings;
<i>on</i>, coupling only to longitudinal Z/W bosons.
In both cases the <i>GZZ</i> and <i>GWW</i> values are used
and this parameter is only relevant when <i>SMinBulk = on</i>.
The formulas for longitudinal bosons should be appropriate up to
<i>O(m_V/E_V)</i> corrections.
<p/><code>parm </code><strong> ExtraDimensionsG*:kappaMG </strong>
(<code>default = <strong>0.054</strong></code>; <code>minimum = 0.0</code>)<br/>
dimensionless coupling, which enters quadratically in all partial
widths of the <i>G^*</i>. Is
<i>kappa m_G* = sqrt(2) x_1 k / Mbar_Pl</i>,
where <i>x_1 = 3.83</i> is the first zero of the <i>J_1</i> Bessel
function and <i>Mbar_Pl</i> is the modified Planck mass.
<p/><code>parm </code><strong> ExtraDimensionsG*:Gll </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and leptons.
<p/><code>parm </code><strong> ExtraDimensionsG*:Gqq </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and light quarks.
<p/><code>parm </code><strong> ExtraDimensionsG*:Gbb </strong>
(<code>default = <strong>0.0</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and bottom quark.
<p/><code>parm </code><strong> ExtraDimensionsG*:Gtt </strong>
(<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and top quark.
<p/><code>parm </code><strong> ExtraDimensionsG*:Ggg </strong>
(<code>default = <strong>0.000013</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and gluon.
<p/><code>parm </code><strong> ExtraDimensionsG*:Ggmgm </strong>
(<code>default = <strong>0.000013</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and gamma.
<p/><code>parm </code><strong> ExtraDimensionsG*:GZZ </strong>
(<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and Z boson.
<p/><code>parm </code><strong> ExtraDimensionsG*:GWW </strong>
(<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and W boson.
<p/><code>parm </code><strong> ExtraDimensionsG*:Ghh </strong>
(<code>default = <strong>0.001</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling between graviton and Higgs bosons.
<p/><code>parm </code><strong> ExtraDimensionsG*:KKgqR </strong>
(<code>default = <strong>-0.2</strong></code>)<br/>
Coupling between KK-gluon and a right-handed light quark.
<p/><code>parm </code><strong> ExtraDimensionsG*:KKgqL </strong>
(<code>default = <strong>-0.2</strong></code>)<br/>
Coupling between KK-gluon and a left-handed light quark.
<p/><code>parm </code><strong> ExtraDimensionsG*:KKgbR </strong>
(<code>default = <strong>-0.2</strong></code>)<br/>
Coupling between KK-gluon and a right-handed bottom quark.
<p/><code>parm </code><strong> ExtraDimensionsG*:KKgbL </strong>
(<code>default = <strong>1.0</strong></code>)<br/>
Coupling between KK-gluon and a left-handed bottom quark.
<p/><code>parm </code><strong> ExtraDimensionsG*:KKgtR </strong>
(<code>default = <strong>4.0</strong></code>)<br/>
Coupling between KK-gluon and a right-handed top quark.
<p/><code>parm </code><strong> ExtraDimensionsG*:KKgtL </strong>
(<code>default = <strong>1.0</strong></code>)<br/>
Coupling between KK-gluon and a left-handed top quark.
<p/><code>mode </code><strong> ExtraDimensionsG*:KKintMode </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
Choice of full <i>g^*/KK-gluon^*</i> structure or not in relevant
processes.
<br/><code>option </code><strong> 0</strong> : full <i>g^*/KK-gluon^*</i> structure, with
interference included.
<br/><code>option </code><strong> 1</strong> : only pure <i>gluon_{SM}</i> contribution.
<br/><code>option </code><strong> 2</strong> : only pure <i>gluon_{KK}</i> contribution.
<h3>TeV^-1 Sized Extra Dimension, production processes</h3>
This section contains a processes involving the production
of electroweak KK gauge bosons, i.e. <i>gamma_{KK}/Z_{KK}</i>,
in one TeV^-1 sized extra dimension. The process is described
in [<a href="Bibliography.html" target="page">Bel10</a>] and allows for individual final states to be
specified.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2ddbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> d dbar </i>,
Code 5061.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2uubar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> u ubar </i>,
Code 5062.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2ssbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> s sbar </i>,
Code 5063.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2ccbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> c cbar </i>,
Code 5064.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2bbbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> b bbar </i>,
Code 5065.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2ttbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> t tbar </i>,
Code 5066.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2e+e- </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> e+ e- </i>,
Code 5071.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2nuenuebar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> nue nuebar </i>,
Code 5072.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2mu+mu- </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> mu+ mu- </i>,
Code 5073.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2numunumubar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> numu numubar </i>,
Code 5074.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2tau+tau- </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> tau+ tau- </i>,
Code 5075.
<p/><code>flag </code><strong> ExtraDimensionsTEV:ffbar2nutaunutaubar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (gamma_{KK}/Z_{KK}) -> nutau nutaubar </i>,
Code 5076.
<h3>TeV^-1 Sized Extra Dimension, parameters</h3>
Irrespective of the parameter options used, the particle produced,
<i>gamma_{KK}/Z_{KK}</i>, will always be assigned code 5000023.
<p/><code>mode </code><strong> ExtraDimensionsTEV:gmZmode </strong>
(<code>default = <strong>3</strong></code>; <code>minimum = 0</code>; <code>maximum = 5</code>)<br/>
Choice of full <i>gamma_{KK}/Z_{KK}</i> structure or not in relevant
processes.
<br/><code>option </code><strong> 0</strong> : full <i>gamma_{SM}/Z_{SM}</i> structure, with
interference included.
<br/><code>option </code><strong> 1</strong> : only pure <i>gamma_{SM}</i> contribution.
<br/><code>option </code><strong> 2</strong> : only pure <i>Z_{SM}</i> contribution.
<br/><code>option </code><strong> 3</strong> : full <i>gamma_{KK}/Z_{KK}</i> structure, with
interference included.
<br/><code>option </code><strong> 4</strong> : only pure <i>gamma_{KK}</i> contribution, with
SM interference included.
<br/><code>option </code><strong> 5</strong> : only pure <i>Z_{KK}</i> contribution, with SM
interference included.
<p/><code>parm </code><strong> ExtraDimensionsTEV:nMax </strong>
(<code>default = <strong>10</strong></code>; <code>minimum = 1</code>; <code>maximum = 100</code>)<br/>
The number of included KK excitations.
<p/><code>parm </code><strong> ExtraDimensionsTEV:mStar </strong>
(<code>default = <strong>4000.0</strong></code>; <code>minimum = 1000.0</code>)<br/>
The KK mass <i>m^*</i>, given by the inverse of the single extra
dimension radius.
<h3>Large Extra Dimensions, production processes</h3>
The LED graviton, where the KK-modes normally are summed and do not
give rise to phenomena individually, is assigned PDG code 5000039.
The graviton emission and virtual graviton exchange processes use
the same implementation as the corresponding unparticle processes,
which are all described in [<a href="Bibliography.html" target="page">Ask10</a>]. It is also possible to
generate monojet events from scalar graviton emission as described
in [<a href="Bibliography.html" target="page">Azu05</a>], by turning on the option <i>GravScalar</i>.
<p/>
<i>Note:</i> As discussed in [<a href="Bibliography.html" target="page">Ask09</a>], for the graviton or
unparticle emission processes the underlying Breit-Wigner mass
distribution should be matched to the graviton mass spectrum in order
to achieve an optimal MC efficiency.
<p/>
The following lowest order graviton emission processes are available.
<p/><code>flag </code><strong> ExtraDimensionsLED:monojet </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of lowest-order <i>G jet</i> emission
processes, i.e. the three ones below.
<p/><code>flag </code><strong> ExtraDimensionsLED:gg2Gg </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> G g</i>.
Code 5021.
<p/><code>flag </code><strong> ExtraDimensionsLED:qg2Gq </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q g -> G q</i>.
Code 5022.
<p/><code>flag </code><strong> ExtraDimensionsLED:qqbar2Gg </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q qbar -> G g</i>.
Code 5023.
<p/><code>flag </code><strong> ExtraDimensionsLED:ffbar2GZ </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> G Z</i>.
Code 5024.
<p/><code>flag </code><strong> ExtraDimensionsLED:ffbar2Ggamma </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> G gamma</i>. This process corresponds
to the photon limit of the <i>G Z</i> process, as described in
[<a href="Bibliography.html" target="page">Ask09</a>].
Code 5025.
<p/>
The following LED processes with virtual graviton exchange are
available.
<p/><code>flag </code><strong> ExtraDimensionsLED:ffbar2gammagamma </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (LED G*) -> gamma gamma</i>. If the
graviton contribution is zero, the results corresponds to the
SM contribution, i.e. equivalent to
<code>PromptPhoton:ffbar2gammagamma</code>.
Code 5026.
<p/><code>flag </code><strong> ExtraDimensionsLED:gg2gammagamma </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> (LED G*) -> gamma gamma</i>.
Code 5027.
<p/><code>flag </code><strong> ExtraDimensionsLED:ffbar2llbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (LED G*) -> l l </i>, where
<i>l</i> is a charged lepton. If the graviton contribution
is zero, the results corresponds to the SM contribution, i.e.
similar to <code>WeakSingleBoson:ffbar2gmZ</code>. Does not
include t-channel amplitude relevant for e^+e^- to e^+e^-
and no K-factor is used.
Code 5028.
<p/><code>flag </code><strong> ExtraDimensionsLED:gg2llbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> (LED G*) -> l l</i>.
Code 5029.
<p/>
Dijet production including graviton exchange is also available, using
the same effective theory approach as the LED G exchange processes
above or including more detailed amplitudes in accordance with
[<a href="Bibliography.html" target="page">Fra11</a>]. In case of the latter, the value of <i>LambdaT</i>
is used as the value of the cut-off scale <i>Lambda</i>. For this
reason the dijet processes only relates to the LED model and no
unparticle versions are available. The processes are grouped together
like their <i>HardQCD</i> equivalents and should therefore converge
to the same results in the limit of an insignificant graviton
contribution.
<p/>
<i>Warning:</i> These LED dijets processes are still being validated.
<p/><code>flag </code><strong> ExtraDimensionsLED:dijets </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of lowest-order <i>jet jet</i>
production processes with graviton exchange, i.e. the six ones
below.
<p/><code>flag </code><strong> ExtraDimensionsLED:gg2DJgg </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> (LED G*) -> g g</i>.
Code 5030.
<p/><code>flag </code><strong> ExtraDimensionsLED:gg2DJqqbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> (LED G*) -> q qbar</i>. Number of
outgoing flavours specified by <i>nQuarkNew</i> parameter
below.
Code 5031.
<p/><code>flag </code><strong> ExtraDimensionsLED:qg2DJqg </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q g -> (LED G*) -> q g</i> and
<i>qbar g -> (LED G*) -> qbar g</i>.
Code 5032.
<p/><code>flag </code><strong> ExtraDimensionsLED:qq2DJqq </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q q(bar)' -> (LED G*) -> q q(bar)'</i>.
Including <i>q</i> and <i>qbar</i> of same or different
flavours, but the outgoing flavours equals the incoming ones.
Code 5033.
<p/><code>flag </code><strong> ExtraDimensionsLED:qqbar2DJgg </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q qbar -> (LED G*) -> g g</i>.
Code 5034.
<p/><code>flag </code><strong> ExtraDimensionsLED:qqbar2DJqqbarNew </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q qbar -> (LED G*) -> q' qbar'</i>. Number of
outgoing flavours specified by <i>nQuarkNew</i> parameter below.
Code 5035.
<h3>Large Extra Dimensions, parameters</h3>
<p/><code>flag </code><strong> ExtraDimensionsLED:GravScalar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Allow the monojet processes to produce scalar graviton emission
instead of the default tensor one. The scalar option is according
to the processes described in [<a href="Bibliography.html" target="page">Azu05</a>] and includes two
coupling constants below.
<p/><code>mode </code><strong> ExtraDimensionsLED:n </strong>
(<code>default = <strong>2</strong></code>; <code>minimum = 1</code>)<br/>
Number of extra dimensions.
<p/><code>parm </code><strong> ExtraDimensionsLED:MD </strong>
(<code>default = <strong>2000.</strong></code>; <code>minimum = 100.0</code>)<br/>
Fundamental scale of gravity in <i>D = 4 + n</i> dimensions.
<p/><code>parm </code><strong> ExtraDimensionsLED:LambdaT </strong>
(<code>default = <strong>2000.</strong></code>; <code>minimum = 100.0</code>)<br/>
Ultraviolet cutoff parameter for the virtual graviton exchange processes.
<p/><code>mode </code><strong> ExtraDimensionsLED:NegInt </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 1</code>)<br/>
Allows to change sign of the interference terms in the graviton exchange
processes, common in connection to using the <i>Hewett</i> convention
[<a href="Bibliography.html" target="page">Hew99</a>].
<br/><code>option </code><strong> 0</strong> : 1
<br/><code>option </code><strong> 1</strong> : -1
<p/><code>mode </code><strong> ExtraDimensionsLED:CutOffMode </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 3</code>)<br/>
Options for when the hard scale of the process (e.g. <i>sHat</i>)
approaches or exceed the scale of validity of the low energy effective
theory (e.g. <i>M_D</i>). <i>Note:</i> Option 1 only concerns the
graviton emission processes and the form factor is currently not available
for the scalar graviton processes.
<br/><code>option </code><strong> 0</strong> : Do nothing, i.e. all values of <i>sHat</i> contribute.
<br/><code>option </code><strong> 1</strong> : Truncate contributing <i>sHat</i> region
([<a href="Bibliography.html" target="page">Ask09</a>]).
<br/><code>option </code><strong> 2</strong> : Form factor, using <i>mu = renormScale2</i> .
<br/><code>option </code><strong> 3</strong> : Form factor, using <i>mu = E_jet</i>.
<p/><code>parm </code><strong> ExtraDimensionsLED:t </strong>
(<code>default = <strong>1.</strong></code>; <code>minimum = 0.001</code>)<br/>
Form factor parameter.
<p/><code>parm </code><strong> ExtraDimensionsLED:g </strong>
(<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling related to scalar graviton emission.
<p/><code>parm </code><strong> ExtraDimensionsLED:c </strong>
(<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>)<br/>
Coupling related to scalar graviton emission.
<p/><code>mode </code><strong> ExtraDimensionsLED:nQuarkNew </strong>
(<code>default = <strong>3</strong></code>; <code>minimum = 0</code>; <code>maximum = 5</code>)<br/>
Number of allowed outgoing new quark flavours in the above
<i>q qbar -> (LED G*) -> q' qbar'</i> and <i>g g -> (LED G*) -> q' qbar'</i>
processes. Similar to <i>HardQCD:nQuarkNew</i> for the QCD processes.
<p/><code>mode </code><strong> ExtraDimensionsLED:opMode </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 1</code>)<br/>
Options to specify <i>S</i> function for LED dijet amplitudes.
<br/><code>option </code><strong> 0</strong> : Use detailed amplitude, as described in [<a href="Bibliography.html" target="page">Fra11</a>].
<br/><code>option </code><strong> 1</strong> : Use conventional <i>LambdaT</i> parametrization, like the other LED processes.
<h3>Unparticles, production processes</h3>
As mentioned above, the similar unparticle and graviton processes
share the same implementations. The unparticle processes, however,
only use the dedicated unparticle parameters below. The unparticle
is also assigned the PDG code 5000039 and is therefore called
<i>Graviton</i> in the event record. The graviton and unparticle
emission as well as virtual graviton and unparticle exchange processes
are described in [<a href="Bibliography.html" target="page">Ask10</a>].
<p/>
<i>Note:</i> As discussed in [<a href="Bibliography.html" target="page">Ask09</a>], for the graviton or
unparticle emission processes the underlying Breit-Wigner mass
distribution should be matched to the graviton mass spectrum in order
to achieve an optimal MC efficiency.
<p/>
The following unparticle emission processes are available.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:monojet </strong>
(<code>default = <strong>off</strong></code>)<br/>
Common switch for the group of lowest-order <i>U jet</i> emission
processes, i.e. the three ones below.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:gg2Ug </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> U g</i>.
Code 5045.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:qg2Uq </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q g -> U q</i>.
Code 5046.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:qqbar2Ug </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>q qbar -> U g</i>.
Code 5047.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:ffbar2UZ </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> U Z</i>.
Code 5041.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:ffbar2Ugamma </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> U gamma</i>. This process corresponds
to the photon limit of the <i>U Z</i> process, as described in
[<a href="Bibliography.html" target="page">Ask09</a>].
Code 5042.
<p/>
The following processes with virtual unparticle exchange are available.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:ffbar2gammagamma </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (U*) -> gamma gamma</i>. If the unparticle
contribution is zero in the spin-2 case, the results corresponds to
the SM contribution, i.e. equivalent to
<code>PromptPhoton:ffbar2gammagamma</code>.
Code 5043.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:gg2gammagamma </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> (U*) -> gamma gamma</i>.
Code 5044.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:ffbar2llbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>f fbar -> (U*) -> l lbar </i>, where
<i>l</i> is a charged lepton. If the unparticle contribution
is zero, the results corresponds to the SM contribution, i.e.
similar to <code>WeakSingleBoson:ffbar2gmZ</code>. Does not
include t-channel amplitude relevant for e^+e^- to e^+e^-
and no K-factor is used.
Code 5048.
<p/><code>flag </code><strong> ExtraDimensionsUnpart:gg2llbar </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scatterings <i>g g -> (U*) -> l lbar</i>.
Code 5049.
<h3>Unparticles, parameters</h3>
<p/><code>mode </code><strong> ExtraDimensionsUnpart:spinU </strong>
(<code>default = <strong>2</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
Unparticle spin.
<p/><code>parm </code><strong> ExtraDimensionsUnpart:dU </strong>
(<code>default = <strong>1.4</strong></code>; <code>minimum = 1.0</code>)<br/>
Scale dimension parameter.
<p/><code>parm </code><strong> ExtraDimensionsUnpart:LambdaU </strong>
(<code>default = <strong>2000.</strong></code>; <code>minimum = 100.0</code>)<br/>
Unparticle renormalization scale.
<p/><code>parm </code><strong> ExtraDimensionsUnpart:lambda </strong>
(<code>default = <strong>1.0</strong></code>; <code>minimum = 0.0</code>)<br/>
Unparticle coupling to the SM fields.
<p/><code>parm </code><strong> ExtraDimensionsUnpart:ratio </strong>
(<code>default = <strong>1.0</strong></code>; <code>minimum = 1.0</code>; <code>maximum = 1.0</code>)<br/>
Ratio, <i>lambda'/lambda</i>, between the two possible coupling constants
of the spin-2 ME. <b>Warning:</b> A <i>ratio</i> value different from one
give rise to an IR divergence which makes the event generation very slow, so
this values is fixed to <i>ratio = 1</i> for the moment.
<p/><code>mode </code><strong> ExtraDimensionsUnpart:CutOffMode </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 1</code>)<br/>
Options for when the hard scale of the process (e.g. <i>sHat</i>)
approaches or exceed the scale of validity of the low energy effective
theory (<i>Lambda_U</i>). This mode only concerns the unparticle
emission processes.
<br/><code>option </code><strong> 0</strong> : Do nothing, i.e. all values of <i>sHat</i>
contribute.
<br/><code>option </code><strong> 1</strong> : Truncate contributing <i>sHat</i> region
([<a href="Bibliography.html" target="page">Ask09</a>]).
<p/><code>mode </code><strong> ExtraDimensionsUnpart:gXX </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
Chiral unparticle couplings, <i>gXX = gLL = gRR</i>. Only relevant
for lepton production from spin-1 unparticle exchange.
<br/><code>option </code><strong> 0</strong> : 1
<br/><code>option </code><strong> 1</strong> : -1
<br/><code>option </code><strong> 2</strong> : 0
<p/><code>mode </code><strong> ExtraDimensionsUnpart:gXY </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 2</code>)<br/>
Chiral unparticle couplings, <i>gXY = gLR = gRL</i>. Only relevant
for lepton production from spin-1 unparticle exchange.
<br/><code>option </code><strong> 0</strong> : 1
<br/><code>option </code><strong> 1</strong> : -1
<br/><code>option </code><strong> 2</strong> : 0
</body>
</html>
<!-- Copyright (C) 2013 Torbjorn Sjostrand -->
|