/usr/share/doc/pythia8-doc/html/NewGaugeBosonProcesses.html is in pythia8-doc-html 8.1.80-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 | <html>
<head>
<title>New-Gauge-Boson Processes</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
<h2>New-Gauge-Boson Processes</h2>
This page contains the production of new <i>Z'^0</i> and
<i>W'^+-</i> gauge bosons, e.g. within the context of a new
<i>U(1)</i> or <i>SU(2)</i> gauge group, and also a
(rather speculative) horizontal gauge boson <i>R^0</i>.
Left-right-symmetry scenarios also contain new gauge bosons,
but are described
<a href="LeftRightSymmetryProcesses.html" target="page">separately</a>.
<h3><i>Z'^0</i></h3>
This group only contains one subprocess, with the full
<i>gamma^*/Z^0/Z'^0</i> interference structure for couplings
to fermion pairs. It is possible to pick only a subset, e.g, only
the pure <i>Z'^0</i> piece. No higher-order processes are
available explicitly, but the ISR showers contain automatic
matching to the <i>Z'^0</i> + 1 jet matrix elements, as for
the corresponding <i>gamma^*/Z^0</i> process.
<p/><code>flag </code><strong> NewGaugeBoson:ffbar2gmZZprime </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar ->Z'^0</i>.
Code 3001.
<p/><code>mode </code><strong> Zprime:gmZmode </strong>
(<code>default = <strong>0</strong></code>; <code>minimum = 0</code>; <code>maximum = 6</code>)<br/>
Choice of full <i>gamma^*/Z^0/Z'^0</i> structure or not in
the above process. Note that, with the <i>Z'^0</i> part switched
off, this process is reduced to what already exists among
<a href="ElectroweakProcesses.html" target="page">electroweak processes</a>,
so those options are here only for crosschecks.
<br/><code>option </code><strong> 0</strong> : full <i>gamma^*/Z^0/Z'^0</i> structure,
with interference included.
<br/><code>option </code><strong> 1</strong> : only pure <i>gamma^*</i> contribution.
<br/><code>option </code><strong> 2</strong> : only pure <i>Z^0</i> contribution.
<br/><code>option </code><strong> 3</strong> : only pure <i>Z'^0</i> contribution.
<br/><code>option </code><strong> 4</strong> : only the <i>gamma^*/Z^0</i> contribution,
including interference.
<br/><code>option </code><strong> 5</strong> : only the <i>gamma^*/Z'^0</i> contribution,
including interference.
<br/><code>option </code><strong> 6</strong> : only the <i>Z^0/Z'^0</i> contribution,
including interference.
<br/><b>Note</b>: irrespective of the option used, the particle produced
will always be assigned code 32 for <i>Z'^0</i>, and open decay channels
is purely dictated by what is set for the <i>Z'^0</i>.
<p/>
The couplings of the <i>Z'^0</i> to quarks and leptons can
either be assumed universal, i.e. generation-independent, or not.
In the former case eight numbers parametrize the vector and axial
couplings of down-type quarks, up-type quarks, leptons and neutrinos,
respectively. Depending on your assumed neutrino nature you may
want to restrict your freedom in that sector, but no limitations
are enforced by the program. The default corresponds to the same
couplings as that of the Standard Model <i>Z^0</i>, with axial
couplings <i>a_f = +-1</i> and vector couplings
<i>v_f = a_f - 4 e_f sin^2(theta_W)</i>, with
<i>sin^2(theta_W) = 0.23</i>. Without universality
the same eight numbers have to be set separately also for the
second and the third generation. The choice of fixed axial and
vector couplings implies a resonance width that increases linearly
with the <i>Z'^0</i> mass.
<p/>
By a suitable choice of the parameters, it is possible to simulate
just about any imaginable <i>Z'^0</i> scenario, with full
interference effects in cross sections and decay angular
distributions and generation-dependent couplings; the default values
should mainly be viewed as placeholders. The conversion
from the coupling conventions in a set of different <i>Z'^0</i>
models in the literature to those used in PYTHIA is described by
<a href="http://www.hep.uiuc.edu/home/catutza/nota12.ps">C.
Ciobanu et al.</a>
<p/><code>flag </code><strong> Zprime:universality </strong>
(<code>default = <strong>on</strong></code>)<br/>
If on then you need only set the first-generation couplings
below, and these are automatically also used for the second and
third generation. If off, then couplings can be chosen separately
for each generation.
<p/>
Here are the couplings always valid for the first generation,
and normally also for the second and third by trivial analogy:
<p/><code>parm </code><strong> Zprime:vd </strong>
(<code>default = <strong>-0.693</strong></code>)<br/>
vector coupling of <i>d</i> quarks.
<p/><code>parm </code><strong> Zprime:ad </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of <i>d</i> quarks.
<p/><code>parm </code><strong> Zprime:vu </strong>
(<code>default = <strong>0.387</strong></code>)<br/>
vector coupling of <i>u</i> quarks.
<p/><code>parm </code><strong> Zprime:au </strong>
(<code>default = <strong>1.</strong></code>)<br/>
axial coupling of <i>u</i> quarks.
<p/><code>parm </code><strong> Zprime:ve </strong>
(<code>default = <strong>-0.08</strong></code>)<br/>
vector coupling of <i>e</i> leptons.
<p/><code>parm </code><strong> Zprime:ae </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of <i>e</i> leptons.
<p/><code>parm </code><strong> Zprime:vnue </strong>
(<code>default = <strong>1.</strong></code>)<br/>
vector coupling of <i>nu_e</i> neutrinos.
<p/><code>parm </code><strong> Zprime:anue </strong>
(<code>default = <strong>1.</strong></code>)<br/>
axial coupling of <i>nu_e</i> neutrinos.
<p/>
Here are the further couplings that are specific for
a scenario with <code>Zprime:universality</code> switched off:
<p/><code>parm </code><strong> Zprime:vs </strong>
(<code>default = <strong>-0.693</strong></code>)<br/>
vector coupling of <i>s</i> quarks.
<p/><code>parm </code><strong> Zprime:as </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of <i>s</i> quarks.
<p/><code>parm </code><strong> Zprime:vc </strong>
(<code>default = <strong>0.387</strong></code>)<br/>
vector coupling of <i>c</i> quarks.
<p/><code>parm </code><strong> Zprime:ac </strong>
(<code>default = <strong>1.</strong></code>)<br/>
axial coupling of <i>c</i> quarks.
<p/><code>parm </code><strong> Zprime:vmu </strong>
(<code>default = <strong>-0.08</strong></code>)<br/>
vector coupling of <i>mu</i> leptons.
<p/><code>parm </code><strong> Zprime:amu </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of <i>mu</i> leptons.
<p/><code>parm </code><strong> Zprime:vnumu </strong>
(<code>default = <strong>1.</strong></code>)<br/>
vector coupling of <i>nu_mu</i> neutrinos.
<p/><code>parm </code><strong> Zprime:anumu </strong>
(<code>default = <strong>1.</strong></code>)<br/>
axial coupling of <i>nu_mu</i> neutrinos.
<p/><code>parm </code><strong> Zprime:vb </strong>
(<code>default = <strong>-0.693</strong></code>)<br/>
vector coupling of <i>b</i> quarks.
<p/><code>parm </code><strong> Zprime:ab </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of <i>b</i> quarks.
<p/><code>parm </code><strong> Zprime:vt </strong>
(<code>default = <strong>0.387</strong></code>)<br/>
vector coupling of <i>t</i> quarks.
<p/><code>parm </code><strong> Zprime:at </strong>
(<code>default = <strong>1.</strong></code>)<br/>
axial coupling of <i>t</i> quarks.
<p/><code>parm </code><strong> Zprime:vtau </strong>
(<code>default = <strong>-0.08</strong></code>)<br/>
vector coupling of <i>tau</i> leptons.
<p/><code>parm </code><strong> Zprime:atau </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of <i>tau</i> leptons.
<p/><code>parm </code><strong> Zprime:vnutau </strong>
(<code>default = <strong>1.</strong></code>)<br/>
vector coupling of <i>nu_tau</i> neutrinos.
<p/><code>parm </code><strong> Zprime:anutau </strong>
(<code>default = <strong>1.</strong></code>)<br/>
axial coupling of <i>nu_tau</i> neutrinos.
<p/>
The coupling to the decay channel <i>Z'^0 -> W^+ W^-</i> is
more model-dependent. By default it is therefore off, but can be
switched on as follows. Furthermore, we have left some amount of
freedom in the choice of decay angular correlations in this
channel, but obviously alternative shapes could be imagined.
<p/><code>parm </code><strong> Zprime:coup2WW </strong>
(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>)<br/>
the coupling <i>Z'^0 -> W^+ W^-</i> is taken to be this number
times <i>m_W^2 / m_Z'^2</i> times the <i>Z^0 -> W^+ W^-</i>
coupling. Thus a unit value corresponds to the
<i>Z^0 -> W^+ W^-</i> coupling, scaled down by a factor
<i>m_W^2 / m_Z'^2</i>, and gives a <i>Z'^0</i> partial
width into this channel that again increases linearly. If you
cancel this behaviour, by letting <code>Zprime:coup2WW</code> be
proportional to <i>m_Z'^2 / m_W^2</i>, you instead obtain a
partial width that goes like the fifth power of the <i>Z'^0</i>
mass. These two extremes correspond to the "extended gauge model"
and the "reference model", respectively, of [<a href="Bibliography.html" target="page">Alt89</a>].
Note that this channel only includes the pure <i>Z'</i> part,
while <i>f fbar -> gamma^*/Z^*0 -> W^+ W^-</i> is available
as a separate electroweak process.
<p/><code>parm </code><strong> Zprime:anglesWW </strong>
(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
in the decay chain <i>Z'^0 -> W^+ W^- ->f_1 fbar_2 f_3 fbar_4</i>
the decay angular distributions is taken to be a mixture of two
possible shapes. This parameter gives the fraction that is distributed
as in Higgs <i>h^0 -> W^+ W^-</i> (longitudinal bosons),
with the remainder (by default all) is taken to be the same as for
<i>Z^0 -> W^+ W^-</i> (a mixture of transverse and longitudinal
bosons).
<p/>
A massive <i>Z'^0</i> is also likely to decay into Higgs bosons
and potentially into other now unknown particles. Such possibilities
clearly are quite model-dependent, and have not been included
for now.
<h3><i>W'^+-</i></h3>
The <i>W'^+-</i> implementation is less ambitious than the
<i>Z'^0</i>. Specifically, while indirect detection of a
<i>Z'^0</i> through its interference contribution is
a possible discovery channel in lepton colliders, there is no
equally compelling case for <i>W^+-/W'^+-</i> interference
effects being of importance for discovery, and such interference
has therefore not been implemented for now. Related to this, a
<i>Z'^0</i> could appear on its own in a new <i>U(1)</i> group,
while <i>W'^+-</i> would have to sit in a <i>SU(2)</i> group
and thus have a <i>Z'^0</i> partner that is likely to be found
first. Only one process is implemented but, like for the
<i>W^+-</i>, the ISR showers contain automatic matching to the
<i>W'^+-</i> + 1 jet matrix elements.
<p/><code>flag </code><strong> NewGaugeBoson:ffbar2Wprime </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f fbar' -> W'^+-</i>.
Code 3021.
<p/>
The couplings of the <i>W'^+-</i> are here assumed universal,
i.e. the same for all generations. One may set vector and axial
couplings freely, separately for the <i>q qbar'</i> and the
<i>l nu_l</i> decay channels. The defaults correspond to the
<i>V - A</i> structure and normalization of the Standard Model
<i>W^+-</i>, but can be changed to simulate a wide selection
of models. One limitation is that, for simplicity, the same
Cabibbo--Kobayashi--Maskawa quark mixing matrix is assumed as for
the standard <i>W^+-</i>. Depending on your assumed neutrino
nature you may want to restrict your freedom in the lepton sector,
but no limitations are enforced by the program.
<p/><code>parm </code><strong> Wprime:vq </strong>
(<code>default = <strong>1.</strong></code>)<br/>
vector coupling of quarks.
<p/><code>parm </code><strong> Wprime:aq </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of quarks.
<p/><code>parm </code><strong> Wprime:vl </strong>
(<code>default = <strong>1.</strong></code>)<br/>
vector coupling of leptons.
<p/><code>parm </code><strong> Wprime:al </strong>
(<code>default = <strong>-1.</strong></code>)<br/>
axial coupling of leptons.
<p/>
The coupling to the decay channel <i>W'^+- -> W^+- Z^0</i> is
more model-dependent, like for <i>Z'^0 -> W^+ W^-</i> described
above. By default it is therefore off, but can be
switched on as follows. Furthermore, we have left some amount of
freedom in the choice of decay angular correlations in this
channel, but obviously alternative shapes could be imagined.
<p/><code>parm </code><strong> Wprime:coup2WZ </strong>
(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>)<br/>
the coupling <i>W'^0 -> W^+- Z^0</i> is taken to be this number
times <i>m_W^2 / m_W'^2</i> times the <i>W^+- -> W^+- Z^0</i>
coupling. Thus a unit value corresponds to the
<i>W^+- -> W^+- Z^0</i> coupling, scaled down by a factor
<i>m_W^2 / m_W'^2</i>, and gives a <i>W'^+-</i> partial
width into this channel that increases linearly with the
<i>W'^+-</i> mass. If you cancel this behaviour, by letting
<code>Wprime:coup2WZ</code> be proportional to <i>m_W'^2 / m_W^2</i>,
you instead obtain a partial width that goes like the fifth power
of the <i>W'^+-</i> mass. These two extremes correspond to the
"extended gauge model" and the "reference model", respectively,
of [<a href="Bibliography.html" target="page">Alt89</a>].
<p/><code>parm </code><strong> Wprime:anglesWZ </strong>
(<code>default = <strong>0.</strong></code>; <code>minimum = 0.</code>; <code>maximum = 1.</code>)<br/>
in the decay chain <i>W'^+- -> W^+- Z^0 ->f_1 fbar_2 f_3 fbar_4</i>
the decay angular distributions is taken to be a mixture of two
possible shapes. This parameter gives the fraction that is distributed
as in Higgs <i>H^+- -> W^+- Z^0</i> (longitudinal bosons),
with the remainder (by default all) is taken to be the same as for
<i>W^+- -> W^+- Z^0</i> (a mixture of transverse and longitudinal
bosons).
<p/>
A massive <i>W'^+-</i> is also likely to decay into Higgs bosons
and potentially into other now unknown particles. Such possibilities
clearly are quite model-dependent, and have not been included
for now.
<h3><i>R^0</i></h3>
The <i>R^0</i> boson (particle code 41) represents one possible
scenario for a horizontal gauge boson, i.e. a gauge boson
that couples between the generations, inducing processes like
<i>s dbar -> R^0 -> mu^- e^+</i>. Experimental limits on
flavour-changing neutral currents forces such a boson to be fairly
heavy. In spite of being neutral the antiparticle is distinct from
the particle: one carries a net positive generation number and
the other a negative one. This particular model has no new
parameters beyond the <i>R^0</i> mass. Decays are assumed isotropic.
For further details see [<a href="Bibliography.html" target="page">Ben85</a>].
<p/><code>flag </code><strong> NewGaugeBoson:ffbar2R0 </strong>
(<code>default = <strong>off</strong></code>)<br/>
Scattering <i>f_1 fbar_2 -> R^0 -> f_3 fbar_4</i>, where
<i>f_1</i> and <i>fbar_2</i> are separated by <i>+-</i> one
generation and similarly for <i>f_3</i> and <i>fbar_4</i>.
Thus possible final states are e.g. <i>d sbar</i>, <i>u cbar</i>
<i>s bbar</i>, <i>c tbar</i>, <i>e- mu+</i> and
<i>mu- tau+</i>.
Code 3041.
</body>
</html>
<!-- Copyright (C) 2013 Torbjorn Sjostrand -->
|