/usr/share/doc/pythia8-doc/html/ParticleDataScheme.html is in pythia8-doc-html 8.1.80-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 | <html>
<head>
<title>The Particle Data Scheme</title>
<link rel="stylesheet" type="text/css" href="pythia.css"/>
<link rel="shortcut icon" href="pythia32.gif"/>
</head>
<body>
<h2>The Particle Data Scheme</h2>
The particle data scheme may take somewhat longer to understand than
the settings one. In particular the set of methods to access information
is rather more varied, to allow better functionality for advanced usage.
However, PYTHIA does come with a sensible default set of particle
properties and decay tables. Thus there is no need to learn any of the
methods on this page to get going. Only when you perceive a specific need
does it make sense to learn the basics.
<p/>
The central section on this page is the Operation one. The preceding
sections are there mainly to introduce the basic structure and the set
of properties that can be accessed. The subsequent sections provide a
complete listing of the existing public methods, which most users
probably will have little interaction with.
<h3>Databases</h3>
The management of particle data is based on three classes:
<ul>
<li><code>ParticleData</code>, which is the top-level class, with
methods that can be used to interrogate all particle data. It contains
a map of PDG particle identity numbers [<a href="Bibliography.html" target="page">Yao06</a>] onto the relevant
<code>ParticleDataEntry</code> objects,</li>
<li><code>ParticleDataEntry</code>, which stores the relevant information
on an individual particle species, and</li>
<li><code>DecayChannel</code>, which stores info on one particular decay
mode of a particle.</li>
</ul>
The objects of these classes together form a database that is
continuously being used as the program has to assign particle masses,
select decay modes, etc.
<p/>
Each <code>Pythia</code> object has a public member
<code>particleData</code> of the <code>ParticleData</code> class.
Therefore you access the particle data methods as
<code>pythia.particleData.command(argument)</code>,
assuming that <code>pythia</code> is an instance of the
<code>Pythia</code> class. Further, for some of the most frequent user
tasks, <code>Pythia</code> methods have been defined, so that
<code>pythia.command(argument)</code>
would work, see further below.
<p/>
A fundamental difference between the particle data classes and the
settings ones is that the former are accessed regularly during the
event generation process, as a new particle is produced and its mass
need to be set, e.g., while the latter are mainly/only used
at the initialization stage. Nevertheless, it is not a good idea to
change data in either of them in mid-run, since this may lead to
inconsistencies.
<h3>Stored properties for particles</h3>
The main properties stored for each particle are as follows.
Different ways to set and get these properties will be described
further down.
<ul>
<li><code>name</code>: a character string with the name of the
particle. Particle and antiparticle names are stored separately,
with <code>void</code> returned when no antiparticle exists.</li>
<li><code>spinType</code>: the spin type, of the form <i>2 s + 1</i>,
with special code 0 for entries of unknown or indeterminate spin.</li>
<li><code>chargeType</code>: three times the charge (to make it an
integer).</li>
<li><code>colType</code>: the colour type, with 0 uncoloured, 1 triplet,
-1 antitriplet and 2 octet. (A preliminary implementation of colour
sextets, available since version 8.150, further uses 3 for a sextet
and -3 for an antisextet.) </li>
<li><code>m0</code>: the nominal mass <i>m_0</i> (in GeV).</li>
<li><code>mWidth</code>: the width <i>Gamma</i> of the Breit-Wigner
distribution (in GeV).</li>
<li><code>mMin</code>: the lower limit of the allowed mass range
generated by the Breit-Wigner (in GeV). Has no meaning for particles
without width, and would typically be 0 there.</li>
<li><code>mMax</code>: the upper limit of the allowed mass range
generated by the Breit-Wigner (in GeV). If <i>mMax < mMin</i> then
no upper limit is imposed. Has no meaning for particles without width,
and would typically be 0 there.</li>
<li><code>tau0</code>: the nominal proper lifetime <i>tau_0</i>
(in mm/c).</li>
<li><code>isResonance</code>: a flag telling whether a particle species
is considered as a resonance or not. Here
<a href="ResonanceDecays.html" target="page">"resonance"</a> is used as shorthand
for any massive particle where the decay process should be counted as part
of the hard process itself, and thus be performed before showers and other
event aspects are added. Restrictions on allowed decay channels is also
directly reflected in the cross section of simulated processes, while
those of normal hadrons and other light particles are not.
In practice, it is reserved for states above the <i>b bbar</i>
bound systems in mass, i.e. for <i>W, Z, t</i>, Higgs states,
supersymmetric states and (most?) other states in any new theory.
All particles with <code>m0</code> above 20 GeV are by default
initialized to be considered as resonances.</li>
<li><code>mayDecay</code>: a flag telling whether a particle species
may decay or not, offering the main user switch. Whether a given particle
of this kind then actually will decay also depends on it having allowed
decay channels, and on other flags for
<a href="ParticleDecays.html" target="page">particle decays</a>
(or <a href="ResonanceDecays.html" target="page">resonance decays</a>).
All particles with <code>tau0</code> below 1000 mm are
by default initialized to allow decays.</li>
<li><code>doExternalDecays</code>: a flag telling whether a particle
should be handled by an external decay package or not, with the latter
default. Can be manipulated as described on this page, but should
normally not be. Instead the
<code><a href="ExternalDecays.html" target="page">Pythia::decayPtr(...)</a></code>
method should be provided with the list of relevant particles.</li>
<li><code>isVisible</code>: a flag telling whether a particle species
is to be considered as visible in a detector or not, as used e.g. in
analysis routines. By default this includes neutrinos and a few BSM
particles (gravitino, sneutrinos, neutralinos) that have neither strong
nor electromagnetic charge, and are not made up of constituents that
have it. The value of this flag is only relevant if a particle is
long-lived enough actually to make it to a detector.</li>
<li><code>doForceWidth</code>: a flag valid only for resonances where
PYTHIA contains code to calculate the width of the resonance from
encoded matrix-element expressions, i.e. the <i>Z^0</i>, <i>W^+-</i>,
<i>t</i>, <i>h^0</i>, and a few more. The normal behaviour
(<code>false</code>) is then that the width is calculated from the mass,
but it is possible to <a href="ResonanceDecays.html" target="page">force</a> the
resonance to retain the nominal width. Branching ratios and the running
of the total width are unaffected.</li>
</ul>
<h3>Stored properties for decays</h3>
An unstable particle has a decay table consisting of one or more
decay channel. The following properties are stored for each such channel.
Again different ways to set and get these properties will be described
further down.
<ul>
<li><code>onMode</code>: integer code for use or not of channel,<br/>
0 if a channel is off,<br/>
1 if on,<br/>
2 if on for a particle but off for an antiparticle,<br/>
3 if on for an antiparticle but off for a particle.<br/>
If a particle is its own antiparticle then 2 is on and 3 off
but, of course, for such particles it is much simpler and safer
to use only 1 and 0.<br/>
The 2 and 3 options can be used e.g. to encode CP violation in
B decays, or to let the <i>W</i>'s in a <i>q qbar -> W^+ W^-</i>
process decay in different channels. </li>
<li><code>bRatio</code>: the branching ratio of the channel
(with some reservations for resonances, see <code>meMode</code>
below).</li>
<li><code>meMode</code>: the mode of processing this channel, possibly
with matrix elements; see the
<a href="ParticleDecays.html" target="page">particle decays</a> and
<a href="ResonanceDecays.html" target="page">resonance decays</a>
descriptions for the list of possibilities.
Notably the default code 0 for a particle means pure phase space
decays according to the given branching ratios, while for a resonance
it means that code exists for the dynamic calculations of partial
widths and thereby branching ratios as a function of the resonance mass
(which is done e.g. at initialization based on the mass set by the user).
Then codes 1 - 99 are reserved for various matrix-element-improved
ordinary particle decays, and 100 - 103 for resonances where the
partial width of a given channel is calculated from the total width
and the stored branching ratio. Thus, to enforce a new branching ratio
for a resonance channel (with its own partial-width calculation code)
it is not sufficient only to change the <code>bRatio</code> but also
to set e.g. <code>meMode = 100</code>. </li>
<li><code>multiplicity</code>: the number of decay products of the
channel. Can be at most 8.</li>
<li><code>product(i)</code>: the identity code of the decay products,
where <code>i</code> runs between <code>0</code> and
<code>multiplicity - 1</code>. Trailing positions are filled with 0.
</li>
</ul>
<h3>Operation</h3>
The normal flow of the particle data operations is:
<ol>
<li>
When a <code>Pythia</code> object <code>pythia</code> is created, the
<code>pythia.particleData</code> member is asked to scan the
<code>ParticleData.xml</code> file.
<p/>
All lines beginning with <code><particle</code> are scanned for
information on a particle species, and all lines beginning with
<code><channel</code> are assumed to contain a decay channel of the
enclosing particle. In both cases XML syntax is used, with attributes
used to identify the stored properties, and with omitted properties
defaulting back to 0 where meaningful. The particle and channel
information may be split over several lines, up to the > endtoken.
The format of a <code><particle</code> tag is:
<pre>
<particle id="..." name="..." antiName="..." spinType="..." chargeType="..." colType="..."
m0="..." mWidth="..." mMin="..." mMax="..." tau0="...">
</particle>
</pre>
where the fields are the properties already introduced above.
Note that <code>isResonance</code>, <code>mayDecay</code>,
<code>doExternalDecay</code>, <code>isVisible</code> and
<code>doForceWidth</code> are not set here, but are provided with
default values by the rules described above. Once initialized, also
these latter properties can be changed, see below.<br/>
The format of a <code><channel></code> tag is:
<pre>
<channel onMode="..." bRatio="..." meMode="..." products="..." />
</pre>
again see properties above. The products are given as a blank-separated
list of <code>id</code> codes.
<br/><b>Important</b>: the values in the <code>.xml</code> file should not
be changed, except by the PYTHIA authors. Any changes should be done
with the help of the methods described below.
</li>
<li> <p/>
Between the creation of the <code>Pythia</code> object and the
<code>init</code> call for it, you may use the methods of the
<code>ParticleData</code> class to modify some of the default values.
Several different approaches can be chosen for this.
<p/>
a) Inside your main program you can directly set values with
<pre>
pythia.readString(string);
</pre>
where both the variable name and the value are contained inside
the character string, separated by blanks and/or a =, e.g.
<pre>
pythia.readString("111:mayDecay = off");
</pre>
switches off the decays of the <i>pi^0</i>.<br/>
The particle id (> 0) and the property to be changed must be given,
separated by a colon.<br/>
The allowed properties are: <code>name</code>, <code>antiName</code>,
<code>spinType</code>, <code>chargeType</code>, <code>colType</code>,
<code>m0</code>, <code>mWidth</code>, <code>mMin</code>,
<code>mMax</code>, <code>tau0</code>, <code>isResonance</code>,
<code>mayDecay</code>, <code>doExternalDecay</code>,
<code>isVisible</code> and <code>doForceWidth</code>. All of these
names are case-insensitive. Names that do not match an existing
variable are ignored.<br/>
Strings beginning with a non-alphanumeric character, like # or !,
are assumed to be comments and are not processed at all. For
<code>bool</code> values, the following notation may be used
interchangeably: <code>true = on = yes = ok = 1</code>, while everything
else gives <code>false</code> (including but not limited to
<code>false</code>, <code>off</code>, <code>no</code> and
<code>0</code>).
<p/>
Particle data often comes in sets of closely related information.
Therefore some properties expect the value to consist of several
numbers. These can then be separated by blanks (or by commas).
A simple example is <code>names</code>, which expects both the
name and antiname to be given. A more interesting one is the
<code>all</code> property,
<pre>
id:all = name antiName spinType chargeType colType m0 mWidth mMin mMax tau0
</pre>
where all the current information on the particle itself is replaced,
but any decay channels are kept unchanged. Using <code>new</code> instead
of <code>all</code> also removes any previous decay channels.
If the string contains fewer fields than expected the trailing
properties are set to vanish ("void", 0 or 0.). Note that such a
truncated string should not be followed by a comment, since this
comment would then be read in as if it contained the missing properties.
The truncation can be done anywhere, specifically a string with only
<code>id:new</code> defines a new "empty" particle.
As before, <code>isResonance</code>, <code>mayDecay</code>,
<code>doExternalDecay</code>, <code>isVisible</code> and
<code>doForceWidth</code> are (re)set to their default values, and
would have to be changed separately if required.
<p/>
A further command is <code>rescaleBR</code>, which rescales each of the
existing branching ratios with a common factor, such that their new
sum is the provided value. This may be a first step towards adding
new decay channels, see further below.
<p/>
Alternatively the <code>id</code> code may be followed by another integer,
which then gives the decay channel number. This then has to be
followed by the property specific to this channel, either
<code>onMode</code>, <code>bRatio</code>, <code>meMode</code> or
<code>products</code>. In the latter case all the products of
the channel should be given:
<pre>
id:channel:products = product1 product2 ....
</pre>
The line will be scanned until the end of the line, or until a
non-number word is encountered, or until the maximum allowed number
of eight products is encountered, whichever happens first. (Thus the
multiplicity of a decay channel need not be input; it is automatically
calculated from the products list.) It is also possible to replace all
the properties of a channel in a similar way:
<pre>
id:channel:all = onMode bRatio meMode product1 product2 ....
</pre>
To add a new channel at the end, use
<pre>
id:addChannel = onMode bRatio meMode product1 product2 ....
</pre>
<p/>
It is currently not possible to remove a channel selectively, but
setting its branching ratio vanishing is as effective. If you want to
remove all existing channels and force decays into one new channel
you can use
<pre>
id:oneChannel = onMode bRatio meMode product1 product2 ....
</pre>
A first <code>oneChannel</code> command could be followed by
several subsequent <code>addChannel</code> ones, to build
up a completely new decay table for an existing particle.
<p/>
When adding new channels or changing branching ratios in general,
note that, once a particle is to be decayed, the sum of branching
ratios is always rescaled to unity. Beforehand, <code>rescaleBR</code>
may be used to rescale an existing branching ratio by the given factor.
<p/>
There are a few commands that will study all the decay channels of the
given particle, to switch them on or off as desired. The
<pre>
id:onMode = onMode
</pre>
will set the <code>onMode</code> property of all channels to the
desired value. The
<pre>
id:offIfAny = product1 product2 ....
id:onIfAny = product1 product2 ....
id:onPosIfAny = product1 product2 ....
id:onNegIfAny = product1 product2 ....
</pre>
will set the <code>onMode</code> 0, 1, 2 or 3, respectively, for all
channels which contain any of the enumerated products, where the matching
to these products is done without distinction of particles and
antiparticles. Note that "<code>Pos</code>" and "<code>Neg</code>"
are slightly misleading since it refers to the particle and antiparticle
of the <code>id</code> species rather than charge, but should still be
simpler to remember and understand than alternative notations.
Correspondingly
<pre>
id:offIfAll = product1 product2 ....
id:onIfAll = product1 product2 ....
id:onPosIfAll = product1 product2 ....
id:onNegIfAll = product1 product2 ....
</pre>
will set the <code>onMode</code> 0, 1, 2 or 3, respectively, for all
channels which contain all of the enumerated products, again without
distinction of particles and antiparticles. If the same product appears
twice in the list it must also appear twice in the decay channel, and
so on. The decay channel is allowed to contain further particles,
beyond the product list. By contrast,
<pre>
id:offIfMatch = product1 product2 ....
id:onIfMatch = product1 product2 ....
id:onPosIfMatch = product1 product2 ....
id:onPosIfMatch = product1 product2 ....
</pre>
requires the decay-channel multiplicity to agree with that of the product
list, but otherwise works as the <code>onIfAll/offIfAll</code> methods.
<p/>
Note that the action of several of the commands depends on the order
in which they are executed, as one would logically expect. For instance,
<code>id:oneChannel</code> removes all decay channels of <code>id</code>
and thus all previous changes in this decay table, while subsequent
additions or changes would still take effect. Another example would be that
<code>23:onMode = off</code> followed by <code>23:onIfAny = 1 2 3 4 5</code>
would let the <i>Z^0</i> decay to quarks, while no decays would be
allowed if the order were to be reversed.
<p/>
b) The <code>Pythia</code> <code>readString(string)</code> method actually
does not do changes itself, but sends on the string either to the
<code>ParticleData</code> class or to the <code>Settings</code> one,
depending on whether the string begins with a digit or a letter.
If desired, it is possible to communicate directly with the corresponding
<code>ParticleData</code> method:
<pre>
pythia.particleData.readString("111:mayDecay = off");
pythia.particleData.readString("15:2:products = 16 -211");
</pre>
In this case, changes intended for <code>Settings</code> would not be
understood.
<p/>
c) Underlying this are commands for all the individual properties in
the <code>ParticleData</code> class, one for each. These are
further described below. Thus, an example now reads
<pre>
pythia.particleData.mayDecay(111, false);
</pre>
Boolean values should here be given as <code>true</code> or
<code>false</code>.
<p/>
d) A simpler and more useful way is to collect all your changes
in a separate file, with one line per change, e.g.
<pre>
111:mayDecay = off
</pre>
The file can be read by the
<pre>
pythia.readFile(fileName);
</pre>
method, where <code>fileName</code> is a string, e.g.
<code>pythia.readFile("main.cmnd")</code> (or an <code>istream</code>
instead of a <code>fileName</code>). Each line is processed as
described for the string in 2a). This file can freely mix commands to
the <code>Settings</code> and <code>ParticleData</code> classes.
</li>
<li> <p/>
A routine <code>reInit(fileName)</code> is provided, and can be used to
zero the particle data table and reinitialize it from scratch.
Such a call might be useful if several subruns are to be made with
widely different particle data - normally the maps are only built
from scratch once, namely when the <code>Pythia()</code> object is
created. Also, there is no other possibility to restore the default
values, unlike for the settings.
</li>
<li> <p/>
You may at any time obtain a listing of all the particle data by calling
<pre>
pythia.particleData.listAll();
</pre>
The listing is by increasing <code>id</code> number. It shows the basic
quantities introduced above. Some are abbreviated in the header to fit on
the lines: <code>spn = spinType</code>, <code>chg = chargeType</code>,
<code>col = colType</code>, <code>res = isResonance</code>,
<code>dec = mayDecay && canDecay</code> (the latter checks that decay
channels have been defined), <code>ext = doExternalDecay</code>,
<code>vis = isVisible</code> and <code>wid = doForceWidth</code>.<br/>
To list only those particles that were changed (one way or another, the
listing will not tell what property or decay channel was changed), instead use
<pre>
pythia.particleData.listChanged();
</pre>
(This info is based on a further <code>hasChanged</code> flag of a particle
or a channel, set <code>true</code> whenever any of the changing methods are
used. It is possible to manipulate this value, but this is not recommended.)
By default the internal initialization of the widths of resonances such as
<i>gamma^*/Z^0, W^+-, t/tbar, H^0</i> do not count as changes; if you want
to list also those changes instead call <code>listChanged(true)</code>.
<br/>
To list only one particle, give its <code>id</code> code as argument to
the <code>list(...)</code> function.. To list a restricted set of particles,
give in their <code>id</code> codes to <code>list(...)</code> as a
<code>vector<int></code>.
</li>
<li> <p/>
For wholesale changes of particle properties all available data can be
written out, edited, and then read back in again. These methods are
mainly intended for expert users. You can choose between two alternative
syntaxes.
<p/>
a) XML syntax, using the <code><particle</code> and
<code><channel</code> lines already described. You use the method
<code>particleData.listXML(fileName)</code> to produce such an XML
file and <code>particleData.readXML(fileName)</code> to read it back
in after editing.
<p/>
b) Fixed/free format, using exactly the same information as illustrated
for the <code><particle</code> and <code><channel</code> lines
above, but now without any tags. This means that all information fields
must be provided (if there is no antiparticle then write
<code>void</code>), in the correct order (while the order is irrelevant
with XML syntax), and all on one line. Information is written out in
properly lined-up columns, but the reading is done using free format,
so fields need only be separated by at least one blank. Each new particle
is supposed to be separated by (at least) one blank line, whereas no
blank lines are allowed between the particle line and the subsequent
decay channel lines, if any. You use the method
<code>particleData.listFF(fileName)</code> to produce such a fixed/free
file and <code>particleData.readFF(fileName)</code> to read it back
in after editing.
<p/>
As an alternative to the <code>readXML</code> and <code>readFF</code>
methods you can also use the
<code>particleData.reInit(fileName, xmlFormat)</code> method, where
<code>xmlFormat = true</code> (default) corresponds to reading an XML
file and <code>xmlFormat = false</code> to a fixed/free format one.
<p/>
To check that the new particle and decay tables makes sense, you can use
the <code>particleData.checkTable()</code> method, either directly or by
switching it on among the standard
<a href="ErrorChecks.html" target="page">error checks</a>.
</li>
</ol>
<h2>The public methods</h2>
In the following we present briefly the public methods in the three
classes used to build up the particle database. The order
is top-down, i.e from the full table of all particles to a single
particle to a single channel.
Note that these methods usually are less elegant and safe than the
input methods outlined above. If you use any of these methods, it is
likely to be the ones in the full database, i.e. the first ones to be
covered in the following.
<p/>
For convenience, we have grouped related input and output methods
together. It should be obvious from the context which is which:
the input is of type <code>void</code> and has an extra last argument,
namely is the input value, while the output method returns a
quantity of the expected type.
<h3>The ParticleData methods</h3>
<a name="method1"></a>
<p/><strong>ParticleData::ParticleData() </strong> <br/>
the constructor has no arguments and does not do anything. Internal.
<a name="method2"></a>
<p/><strong>void ParticleData::initPtr(Info* infoPtr,Settings* settingsPtrIn, Rndm* rndmPtrIn, CoupSM* coupSMPtrIn) </strong> <br/>
initialize pointers to a few other classes. Internal.
<a name="method3"></a>
<p/><strong>bool ParticleData::init(string startFile = "../xmldoc/ParticleData.xml") </strong> <br/>
read in an XML-style file with particle data and initialize the
particle data tables accordingly. This command is executed
in the <code>Pythia</code> constructor, i.e. is mainly for
internal use.
<br/><code>argument</code><strong> startFile </strong> (<code>default = <strong>../xmldoc/ParticleData.xml</strong></code>) :
the name of the data file to be read. When called from the
<code>Pythia</code> constructor the directory is provided by the
<code><a href="ProgramFlow.html" target="page">PYTHIA8DATA</a></code>
environment variable, if set, else by the argument of this constructor,
which has the default value "../xmldoc".
<a name="method4"></a>
<p/><strong>bool ParticleData::reInit(string startFile,bool xmlFormat = true) </strong> <br/>
overwrite the existing database by reading from the specified file.
Unlike <code>init</code> above this method is not called by the
<code>Pythia</code> constructor, but is entirely intended for users
who want to replace the existing particle data with their own.
<br/><code>argument</code><strong> startFile </strong> : the path and name of file to be read.
<br/><code>argument</code><strong> xmlFormat </strong> : if true read the same kind of XML-style file
as used by <code>init</code>, if not use an alternative "free format"
file (i.e. without any XML tags, but with well-defined rules
specifying in which order properties are stored).
<a name="method5"></a>
<p/><strong>void ParticleData::initWidths(vector<ResonanceWidths*> resonancePtrs) </strong> <br/>
initialize Breit-Wigner shape parameters for all particles,
and the detailed handling of resonances, i.e. particles with
perturbatively calculable partial widths, which can be used to
obtain a mass-dependent Breit-Wigner and a dynamic choice of
decay channels. Called from <code>Pythia::init()</code>.
<a name="method6"></a>
<p/><strong>bool ParticleData::readXML(string inFile, bool reset = true) </strong> <br/>
<strong>void ParticleData::listXML(string outFile) </strong> <br/>
read in XML-style data from a file or write it out to a file. For the
former one can also decide whether to reset all particles to scratch,
or only overwrite those particles in the file. The former method is
used by <code>init</code> and <code>reInit</code> above.
<a name="method7"></a>
<p/><strong>bool ParticleData::readFF(string inFile, bool reset = true) </strong> <br/>
<strong>void ParticleData::listFF(string outFile) </strong> <br/>
read in free-format-style data from a file or write it out to a file.
For the former one can also decide whether to reset all particles to
scratch, or only overwrite those particles in the file. The former
method is used by <code>reInit</code> above.
<a name="method8"></a>
<p/><strong>bool ParticleData::readString(string line, bool warn = true, ostream& os = cout) </strong> <br/>
read in a string and interpret is as a new or changed particle data.
The possibilities are extensively described above. It is normally
used indirectly, via <code>Pythia::readString(...)</code> and
<code>Pythia::readFile(...)</code>.
<br/><code>argument</code><strong> line </strong> :
the string to be interpreted as an instruction.
<br/><code>argument</code><strong> warn </strong> (<code>default = <strong>true</strong></code>) :
write a warning message or not whenever the instruction does not make
sense, e.g. if the particle does not exist in the database.
<br/><code>argument</code><strong> os </strong> (<code>default = <strong>cout</strong></code>) :
stream for error printout.
<br/><b>Note:</b> the method returns false if it fails to
make sense out of the input string.
<a name="method9"></a>
<p/><strong>void ParticleData::listAll(ostream& os = cout) </strong> <br/>
<strong>void ParticleData::listChanged(ostream& os = cout) </strong> <br/>
<strong>void ParticleData::listChangedAndRes(ostream& os = cout) </strong> <br/>
<strong>void ParticleData::list(bool changedOnly = false, bool changedRes = true, ostream& os = cout) </strong> <br/>
methods intended to present a listing of particle data in a readable
format. The first three are special cases of the fourth. The first
lists all particle data, the second only data for those particles that
were changed after the original creation of the particle data table.
Resonances are a special case since they can get their data changed
by being linked to an object that does the calculation of branching
ratios. The second method does not count such resonances as changed,
whereas the third does and thus lists all resonances.
<a name="method10"></a>
<p/><strong>void ParticleData::list(int idList, ostream& os = cout) </strong> <br/>
<strong>void ParticleData::list(vector<int> idList, ostream& os = cout) </strong> <br/>
list particle data for one single particle, with the identity code as
input, or for a set of particles, with an input vector of identity codes.
<a name="method11"></a>
<p/><strong>void ParticleData::checkTable(ostream& os = cout) </strong> <br/>
<strong>void ParticleData::checkTable(int verbosity,ostream& os = cout) </strong> <br/>
check that the particle decay table makes sense, especially for decays.
<br/><code>argument</code><strong> verbosity </strong> : level of checks. 0 is only minimal,
e.g. if a particle has no open decay channels. 1, which is the level
of the first method, provides warning if any individual channel is
closed, except for resonances. 2 also prints the
branching-ratio-averaged threshold mass. 11 and 12 are like 1 and 2,
but also include resonances in the detailed checks.
<a name="method12"></a>
<p/><strong>void ParticleData::addParticle(int id, string name = " ", int spinType = 0, int chargeType = 0, int colType = 0, double m0 = 0., double mWidth = 0., double mMin = 0., double mMax = 0., double tau0 = 0.) </strong> <br/>
<strong>void ParticleData::addParticle(int id, string name, string antiName, int spinType = 0, int chargeType = 0, int colType = 0, double m0 = 0., double mWidth = 0., double mMin = 0., double mMax = 0., double tau0 = 0.) </strong> <br/>
add a particle to the decay table; in the first form a particle which is
its own antiparticle, in the second where a separate antiparticle exists.
<a name="method13"></a>
<p/><strong>void ParticleData::setAll(int id, string name, string antiName, int spinType = 0, int chargeType = 0, int colType = 0, double m0 = 0., double mWidth = 0., double mMin = 0., double mMax = 0.,double tau0 = 0.) </strong> <br/>
change all the properties of the particle associated with a given
identity code.
<a name="method14"></a>
<p/><strong>bool ParticleData::isParticle(int id) </strong> <br/>
query whether the particle data table contains the particle of the
identity code.
<a name="method15"></a>
<p/><strong>int ParticleData::nextId(int id) </strong> <br/>
return the identity code of the sequentially next particle stored in table.
<a name="method16"></a>
<p/><strong>bool ParticleData::hasAnti(int id) </strong> <br/>
bool whether a distinct antiparticle exists or not. Is true if an
antiparticle name has been set (and is different from
<code>void</code>).
<a name="method17"></a>
<p/><strong>void ParticleData::name(int id, string name) </strong> <br/>
<strong>void ParticleData::antiName(int id, string antiName) </strong> <br/>
<strong>void ParticleData::names(int id, string name, string antiName) </strong> <br/>
<strong>string ParticleData::name(int id) </strong> <br/>
particle and antiparticle names are stored separately, the sign of
<code>id</code> determines which of the two is returned, with
<code>void</code> used to indicate the absence of an antiparticle.
<a name="method18"></a>
<p/><strong>void ParticleData::spinType(int id, int spinType) </strong> <br/>
<strong>int ParticleData::spinType(int id) </strong> <br/>
the spin type, of the form <i>2 s + 1</i>, with special code 0
for entries of unknown or indeterminate spin.
<a name="method19"></a>
<p/><strong>void ParticleData::chargeType(int id, int chargeType) </strong> <br/>
<strong>int ParticleData::chargeType(int id) </strong> <br/>
three times the charge (to make it an integer), taking into account
the sign of <code>id</code>.
<a name="method20"></a>
<p/><strong>double ParticleData::charge(int id) </strong> <br/>
the electrical charge of a particle, equal to
<code>chargeType(id)/3</code>.
<a name="method21"></a>
<p/><strong>void ParticleData::colType(int id, int colType) </strong> <br/>
<strong>int ParticleData::colType(int id) </strong> <br/>
the colour type, with 0 uncoloured, 1 triplet, -1 antitriplet and 2
octet, taking into account the sign of <code>id</code>.
<a name="method22"></a>
<p/><strong>void ParticleData::m0(int id, double m0) </strong> <br/>
<strong>double ParticleData::m0(int id) </strong> <br/>
the nominal mass <i>m_0</i> (in GeV).
<a name="method23"></a>
<p/><strong>void ParticleData::mWidth(int id, double mWidth) </strong> <br/>
<strong>double ParticleData::mWidth(int id) </strong> <br/>
the width <i>Gamma</i> of the Breit-Wigner distribution (in GeV).
<a name="method24"></a>
<p/><strong>void ParticleData::mMin(int id, double mMin) </strong> <br/>
<strong>double ParticleData::mMin(int id) </strong> <br/>
the lower limit of the allowed mass range generated by the Breit-Wigner
(in GeV). Has no meaning for particles without width, and would
typically be 0 there.
<a name="method25"></a>
<p/><strong>void ParticleData::mMax(int id, double mMax) </strong> <br/>
<strong>double ParticleData::mMax(int id) </strong> <br/>
the upper limit of the allowed mass range generated by the Breit-Wigner
(in GeV). If <i>mMax < mMin</i> then no upper limit is imposed.
Has no meaning for particles without width, and would typically
be 0 there.
<a name="method26"></a>
<p/><strong>double ParticleData::m0Min(int id) </strong> <br/>
similar to <code>mMin()</code> above, except that for particles with
no width the <code>m0(id)</code> value is returned.
<a name="method27"></a>
<p/><strong>double ParticleData::m0Max(int id) </strong> <br/>
similar to <code>mMax()</code> above, except that for particles with
no width the <code>m0(id)</code> value is returned.
<a name="method28"></a>
<p/><strong>void ParticleData::tau0(int id, double tau0) </strong> <br/>
<strong>double ParticleData::tau0(int id) </strong> <br/>
the nominal proper lifetime <i>tau_0</i> (in mm/c).
<a name="method29"></a>
<p/><strong>void ParticleData::isResonance(int id, bool isResonance) </strong> <br/>
<strong>bool ParticleData::isResonance(int id) </strong> <br/>
a flag telling whether a particle species are considered as a resonance
or not. Here <a href="ResonanceDecays.html" target="page">"resonance"</a>
is used as shorthand for any massive particle
where the decay process should be counted as part of the hard process
itself, and thus be performed before showers and other event aspects
are added. Restrictions on allowed decay channels is also directly
reflected in the cross section of simulated processes, while those of
normal hadrons and other light particles are not.
In practice, it is reserved for states above the <i>b bbar</i>
bound systems in mass, i.e. for <i>W, Z, t</i>, Higgs states,
supersymmetric states and (most?) other states in any new theory.
All particles with <code>m0</code> above 20 GeV are by default
initialized to be considered as resonances.
<a name="method30"></a>
<p/><strong>void ParticleData::mayDecay(int id, bool mayDecay) </strong> <br/>
<strong>bool ParticleData::mayDecay(int id) </strong> <br/>
a flag telling whether a particle species may decay or not, offering
the main user switch. Whether a given particle of this kind then actually
will decay also depends on it having allowed decay channels, and on
other flags for <a href="ParticleDecays.html" target="page">particle decays</a>
(or <a href="ResonanceDecays.html" target="page">resonance decays</a>).
All particles with <code>tau0</code> below 1000 mm are
by default initialized to allow decays.
<a name="method31"></a>
<p/><strong>void ParticleData::doExternalDecays(int id, bool doExternalDecays) </strong> <br/>
<strong>bool ParticleData::doExternalDecay(int id) </strong> <br/>
a flag telling whether a particle should be handled by an external
decay package or not, with the latter default. Can be manipulated as
described on this page, but should normally not be. Instead the
<code><a href="ExternalDecays.html" target="page">pythia.decayPtr</a></code>
method should be provided with the list of relevant particles.
<a name="method32"></a>
<p/><strong>void ParticleData::isVisible(int id, bool isVisible) </strong> <br/>
<strong>bool ParticleData::isVisible(int id) </strong> <br/>
a flag telling whether a particle species is to be considered as
visible in a detector or not, as used e.g. in analysis routines.
By default this includes neutrinos and a few BSM particles
(gravitino, sneutrinos, neutralinos) that have neither strong nor
electromagnetic charge, and are not made up of constituents that
have it. The value of this flag is only relevant if a particle is
long-lived enough actually to make it to a detector.
<a name="method33"></a>
<p/><strong>void ParticleData::doForceWidth(int id, bool doForceWidth) </strong> <br/>
<strong>bool ParticleData::doForceWidth(int id) </strong> <br/>
a flag valid only for resonances where PYTHIA contains code to
calculate the width of the resonance from encoded matrix-element
expressions, i.e. the <i>Z^0</i>, <i>W^+-</i>, <i>t</i>,
<i>h^0</i>, and a few more. The normal behaviour (<code>false</code>)
is then that the width is calculated from the mass, but it is
possible to <a href="ResonanceDecays.html" target="page">force</a> the resonance
to retain the nominal width. Branching ratios and the running of the
total width are unaffected.
<a name="method34"></a>
<p/><strong>void ParticleData::hasChanged(int id, bool hasChanged) </strong> <br/>
<strong>bool ParticleData::hasChanged(int id) </strong> <br/>
keep track of whether the data for a particle has been changed
in any respect between initialization and the current status.
Is used e.g. by the <code>listChanged</code> method to determine
which particles to list.
<a name="method35"></a>
<p/><strong>bool ParticleData::useBreitWigner(int id) </strong> <br/>
tells whether a particle will have a Breit-Wigner mass distribution or
not. Is determined by an internal logic based on the particle width and
on the value of the
<code><a href="ParticleData.html" target="page">ParticleData:modeBreitWigner</a></code>
switch.
<a name="method36"></a>
<p/><strong>double ParticleData::constituentMass(int id) </strong> <br/>
is the constituent mass for a quark, hardcoded as
<i>m_u = m_d = 0.325</i>, <i>m_s = 0.50</i>, <i>m_c = 1.60</i>
and <i>m_b = 5.0</i> GeV, for a diquark the sum of quark constituent
masses, and for everything else the same as the ordinary mass.
<a name="method37"></a>
<p/><strong>double ParticleData::mSel(int id) </strong> <br/>
returns a mass distributed according to a truncated Breit-Wigner,
with parameters as described here. Is equal to <code>m0(id)</code> for
particles without width.
<a name="method38"></a>
<p/><strong>double ParticleData::mRun(int id, double mH) </strong> <br/>
calculate the running mass of species <code>id</code> when probed at a
hard mass scale of <code>mH</code>. Only applied to obtain the
running quark masses; for all other particle the normal fixed mass
is used.
<a name="method39"></a>
<p/><strong>bool ParticleData::canDecay(int id) </strong> <br/>
true for a particle with at least one decay channel defined.
<a name="method40"></a>
<p/><strong>bool ParticleData::isLepton(int id) </strong> <br/>
true for a lepton or an antilepton (including neutrinos).
<a name="method41"></a>
<p/><strong>bool ParticleData::isQuark(int id) </strong> <br/>
true for a quark or an antiquark.
<a name="method42"></a>
<p/><strong>bool ParticleData::isGluon(int id) </strong> <br/>
true for a gluon.
<a name="method43"></a>
<p/><strong>bool ParticleData::isDiquark(int id) </strong> <br/>
true for a diquark or antidiquark.
<a name="method44"></a>
<p/><strong>bool ParticleData::isParton() </strong> <br/>
true for a gluon, a quark or antiquark up to the b (but excluding top),
and a diquark or antidiquark consisting of quarks up to the b.
<a name="method45"></a>
<p/><strong>bool ParticleData::isHadron(int id) </strong> <br/>
true for a hadron (made up out of normal quarks and gluons,
i.e. not for R-hadrons and other exotic states).
<a name="method46"></a>
<p/><strong>bool ParticleData::isMeson(int id) </strong> <br/>
true for a meson.
<a name="method47"></a>
<p/><strong>bool ParticleData::isBaryon(int id) </strong> <br/>
true for a baryon or antibaryon.
<a name="method48"></a>
<p/><strong>bool ParticleData::isOctetHadron(int id) </strong> <br/>
true for an intermediate hadron-like state with a colour octet charge
as used in the colour octet model for
<a href="OniaProcesses.html" target="page">onia</a> production.
<a name="method49"></a>
<p/><strong>int ParticleData::heaviestQuark(int id) </strong> <br/>
extracts the heaviest quark or antiquark, i.e. one with largest
<code>id</code> number, for a hadron.
<a name="method50"></a>
<p/><strong>int ParticleData::baryonNumberType(int id) </strong> <br/>
is 1 for a quark, 2 for a diquark, 3 for a baryon, the same with a
minus sign for antiparticles, and else zero.
<a name="method51"></a>
<p/><strong>void ParticleData::rescaleBR(int id, double newSumBR = 1.) </strong> <br/>
rescales all partial branching ratios by a common factor, such that
the sum afterward becomes <code>newSumBR</code>.
<a name="method52"></a>
<p/><strong>void setResonancePtr(int id, ResonanceWidths* resonancePtr) </strong> <br/>
set a pointer for a particle kind to a <code>ResonanceWidths</code> object.
This is done, from inside <code>ParticleData::initWidths</code>, only for
resonances, i.e. for particles such as <i>Z^0</i>, <i>W^+-</i>, top,
Higgs, and new unstable states beyond the Standard Model. The presence
of such an object will allow a more dynamic calculation of partial and
total widths, as illustrated by the following methods.
<a name="method53"></a>
<p/><strong>void ParticleData::resInit(int id) </strong> <br/>
initialize the treatment of a resonance.
<a name="method54"></a>
<p/><strong>double ParticleData::resWidth(int id, double mHat, int idInFlav = 0, bool openOnly = false, bool setBR = false) </strong> <br/>
calculate the total with for a resonance of a given current mass,
optionally including coupling to incoming flavour state (consider
the <i>gamma*/Z^0</i> combination), optionally excluding decay
channels that have been closed by the user, and optionally storing
the results in the normal decay table.
<a name="method55"></a>
<p/><strong>double ParticleData::resWidthOpen(int id, double mHat, int idInFlav = 0) </strong> <br/>
special case of <code>resWidth</code>, where only open channels are
included, but results are not stored in the normal decay table.
<a name="method56"></a>
<p/><strong>double ParticleData::resWidthStore(int id, double mHat, int idInFlav = 0) </strong> <br/>
special case of <code>resWidth</code>, where only open channels are
included, and results are stored in the normal decay table.
<a name="method57"></a>
<p/><strong>double ParticleData::resOpenFrac(int id1, int id2 = 0, int id3 = 0) </strong> <br/>
calculate the fraction of the full branching ratio that is left
open by the user choice of allowed decay channels. Can be applied
to a final state with up to three resonances. Since the procedure
is multiplicative, it would be easy to generalize also to more.
<a name="method58"></a>
<p/><strong>double ParticleData::resWidthRescaleFactor(int id) </strong> <br/>
the factor used to rescale all partial widths in case the total
width is being forced to a specific value by the user.
<a name="method59"></a>
<p/><strong>double ParticleData::resWidthChan(int id,double mHat, int idAbs1 = 0, int idAbs2 = 0) </strong> <br/>
special case to calculate one final-state width; currently only used
for Higgs decay to <i>q qbar</i>, <i>g g</i> or
<i>gamma gamma</i>.
<a name="method60"></a>
<p/><strong>ParticleDataEntry* ParticleData::particleDataEntryPtr(int id) </strong> <br/>
returns a pointer to the <code>ParticleDataEntry</code> object.
The methods in the next section can then be used to manipulate
this object.
<h3>The ParticleDataEntry methods</h3>
Most of the methods that can be applied to a single
<code>ParticleDataEntry</code> object are almost identical with
those used above for the <code>ParticleData</code>, except
that the <code>id</code> argument is no longer needed to find
the right entry in the table. By and large, this makes direct
access to the <code>ParticleDataEntry</code> methods superfluous.
There are a few methods that are unique to each class, however.
Furthermore, to avoid some naming ambiguities, many methods that
set values begin with <code>set</code>.
<a name="method61"></a>
<p/><strong>ParticleDataEntry::ParticleDataEntry(int id = 0, string name = " ", int spinType = 0, int chargeType = 0, int colType = 0, double m0 = 0., double mWidth = 0., double mMin = 0., double mMax = 0., double tau0 = 0.) </strong> <br/>
<strong>ParticleDataEntry::ParticleDataEntry(int id, string name, string antiName, int spinType = 0, int chargeType = 0, int colType = 0, double m0 = 0., double mWidth = 0., double mMin = 0., double mMax = 0., double tau0 = 0.) </strong> <br/>
there are two alternative constructors, that both expect the
properties of a particle as input. The first assumes that there
is only one particle, the latter that there is a
particle-antiparticle pair (but if the antiparticle name is
<code>void</code> one reverts back to the particle-only case).
<a name="method62"></a>
<p/><strong>ParticleDataEntry::~ParticleDataEntry </strong> <br/>
the destructor is needed to delete any <code>ResonanceWidths</code>
objects that have been created and linked to the respective particle.
<a name="method63"></a>
<p/><strong>void ParticleDataEntry::setDefaults() </strong> <br/>
initialize some particle flags with default values, e.g. whether
a particle is a resonance, may decay, or is visible. Is called from the
constructors and from <code>setAll</code>.
<a name="method64"></a>
<p/><strong>void ParticleDataEntry::initPtr(ParticleData* particleDataPtrIn) </strong> <br/>
initialize pointer back to the whole database (so that masses of
decay products can be accessed, e.g.).
<a name="method65"></a>
<p/><strong>void ParticleDataEntry::setAll( string name, string antiName, int spinType = 0, int chargeType = 0, int colType = 0, double m0 = 0., double mWidth = 0., double mMin = 0., double mMax = 0.,double tau0 = 0.) </strong> <br/>
change all the properties of the particle associated with a given
identity code.
<a name="method66"></a>
<p/><strong>int ParticleDataEntry::id() </strong> <br/>
the PDG identity code.
<a name="method67"></a>
<p/><strong>bool ParticleDataEntry::hasAnti() </strong> <br/>
tell whether a separate antiparticle exists.
<a name="method68"></a>
<p/><strong>void ParticleDataEntry::setName(string name) </strong> <br/>
<strong>void ParticleDataEntry::setAntiName(string antiName) </strong> <br/>
<strong>void ParticleDataEntry::setNames(string name,string antiName) </strong> <br/>
<strong>string ParticleDataEntry::name(int id = 1) </strong> <br/>
set or get the particle or antiparticle name. Only the sign of
<code>id</code> is needed to distinguish particle/antiparticle.
<a name="method69"></a>
<p/><strong>void ParticleDataEntry::setSpinType(int spinType) </strong> <br/>
<strong>int ParticleDataEntry::spinType() </strong> <br/>
set or get the particle spin type, i.e. <i>2 s + 1</i>, or 0 in some
special cases.
<a name="method70"></a>
<p/><strong>void ParticleDataEntry::setChargeType(int chargeType) </strong> <br/>
<strong>int ParticleDataEntry::chargeType(int id = 1) </strong> <br/>
<strong>double ParticleDataEntry::charge(int id = 1) </strong> <br/>
set or get the particle charge type, i.e. three times the charge,
or the charge itself. Only the sign of <code>id</code> is needed
to distinguish particle/antiparticle.
<a name="method71"></a>
<p/><strong>void ParticleDataEntry::setColType(int colType) </strong> <br/>
<strong>int ParticleDataEntry::colType(int id = 1) </strong> <br/>
set or get the particle colour type, 0 for singlet, 1 for triplet,
-1 for antitriplet, 2 for octet. Only the sign of <code>id</code>
is needed to distinguish particle/antiparticle.
<a name="method72"></a>
<p/><strong>void ParticleDataEntry::setM0(double m0) </strong> <br/>
<strong>double ParticleDataEntry::m0() </strong> <br/>
the nominal mass <i>m_0</i> (in GeV).
<a name="method73"></a>
<p/><strong>void ParticleDataEntry::setMWidth(double mWidth) </strong> <br/>
<strong>double ParticleDataEntry::mWidth() </strong> <br/>
the width <i>Gamma</i> of the Breit-Wigner distribution (in GeV).
<a name="method74"></a>
<p/><strong>void ParticleDataEntry::setMMin(double mMin) </strong> <br/>
<strong>double ParticleDataEntry::mMin() </strong> <br/>
the lower limit of the allowed mass range generated by the Breit-Wigner
(in GeV). Has no meaning for particles without width, and would
typically be 0 there.
<a name="method75"></a>
<p/><strong>void ParticleDataEntry::setMMax(double mMax) </strong> <br/>
<strong>double ParticleDataEntry::mMax() </strong> <br/>
the upper limit of the allowed mass range generated by the Breit-Wigner
(in GeV). If <i>mMax < mMin</i> then no upper limit is imposed.
Has no meaning for particles without width, and would typically
be 0 there.
<a name="method76"></a>
<p/><strong>double ParticleDataEntry::m0Min() </strong> <br/>
similar to <code>mMin()</code> above, except that for particles with
no width the <code>m0(id)</code> value is returned.
<a name="method77"></a>
<p/><strong>double ParticleDataEntry::m0Max() </strong> <br/>
similar to <code>mMax()</code> above, except that for particles with
no width the <code>m0(id)</code> value is returned.
<a name="method78"></a>
<p/><strong>void ParticleDataEntry::setTau0(double tau0) </strong> <br/>
<strong>double ParticleDataEntry::tau0() </strong> <br/>
the nominal proper lifetime <i>tau_0</i> (in mm/c).
<a name="method79"></a>
<p/><strong>void ParticleDataEntry::setIsResonance(bool isResonance) </strong> <br/>
<strong>bool ParticleDataEntry::isResonance() </strong> <br/>
a flag telling whether a particle species are considered as a resonance
or not. Here <a href="ResonanceDecays.html" target="page">"resonance"</a>
is used as shorthand for any massive particle
where the decay process should be counted as part of the hard process
itself, and thus be performed before showers and other event aspects
are added. Restrictions on allowed decay channels is also directly
reflected in the cross section of simulated processes, while those of
normal hadrons and other light particles are not.
In practice, it is reserved for states above the <i>b bbar</i>
bound systems in mass, i.e. for <i>W, Z, t</i>, Higgs states,
supersymmetric states and (most?) other states in any new theory.
All particles with <code>m0</code> above 20 GeV are by default
initialized to be considered as resonances.
<a name="method80"></a>
<p/><strong>void ParticleDataEntry::setMayDecay(bool mayDecay) </strong> <br/>
<strong>bool ParticleDataEntry::mayDecay() </strong> <br/>
a flag telling whether a particle species may decay or not, offering
the main user switch. Whether a given particle of this kind then actually
will decay also depends on it having allowed decay channels, and on
other flags for <a href="ParticleDecays.html" target="page">particle decays</a>
(or <a href="ResonanceDecays.html" target="page">resonance decays</a>).
All particles with <code>tau0</code> below 1000 mm are
by default initialized to allow decays.
<a name="method81"></a>
<p/><strong>void ParticleDataEntry::setDoExternalDecays(bool doExternalDecays) </strong> <br/>
<strong>bool ParticleDataEntry::doExternalDecay() </strong> <br/>
a flag telling whether a particle should be handled by an external
decay package or not, with the latter default. Can be manipulated as
described on this page, but should normally not be. Instead the
<code><a href="ExternalDecays.html" target="page">pythia.decayPtr</a></code>
method should be provided with the list of relevant particles.
<a name="method82"></a>
<p/><strong>void ParticleDataEntry::setIsVisible(bool isVisible) </strong> <br/>
<strong>bool ParticleDataEntry::isVisible() </strong> <br/>
a flag telling whether a particle species is to be considered as
visible in a detector or not, as used e.g. in analysis routines.
By default this includes neutrinos and a few BSM particles
(gravitino, sneutrinos, neutralinos) that have neither strong nor
electromagnetic charge, and are not made up of constituents that
have it. The value of this flag is only relevant if a particle is
long-lived enough actually to make it to a detector.
<a name="method83"></a>
<p/><strong>void ParticleDataEntry::setDoForceWidth(bool doForceWidth) </strong> <br/>
<strong>bool ParticleDataEntry::doForceWidth() </strong> <br/>
a flag valid only for resonances where PYTHIA contains code to
calculate the width of the resonance from encoded matrix-element
expressions, i.e. the <i>Z^0</i>, <i>W^+-</i>, <i>t</i>,
<i>h^0</i>, and a few more. The normal behaviour (<code>false</code>)
is then that the width is calculated from the mass, but it is
possible to <a href="ResonanceDecays.html" target="page">force</a> the resonance
to retain the nominal width. Branching ratios and the running of the
total width are unaffected.
<a name="method84"></a>
<p/><strong>void ParticleDataEntry::setHasChanged(bool hasChanged) </strong> <br/>
<a name="method85"></a>
<p/><strong>void ParticleDataEntry::hasChanged(bool hasChanged) </strong> <br/>
keep track of whether the data for a particle has been changed
in any respect between initialization and the current status.
Is used e.g. by the <code>ParticleData::listChanged</code> method
to determine which particles to list.
<a name="method86"></a>
<p/><strong>void ParticleDataEntry::initBWmass() </strong> <br/>
Prepare the Breit-Wigner mass selection by precalculating
frequently-used expressions.
<a name="method87"></a>
<p/><strong>double ParticleDataEntry::constituentMass() </strong> <br/>
is the constituent mass for a quark, hardcoded as
<i>m_u = m_d = 0.325</i>, <i>m_s = 0.50</i>, <i>m_c = 1.60</i>
and <i>m_b = 5.0</i> GeV, for a diquark the sum of quark constituent
masses, and for everything else the same as the ordinary mass.
<a name="method88"></a>
<p/><strong>double ParticleDataEntry::mSel() </strong> <br/>
give the mass of a particle, either at the nominal value
or picked according to a (linear or quadratic) Breit-Wigner.
<a name="method89"></a>
<p/><strong>double ParticleDataEntry::mRun(double mH) </strong> <br/>
calculate the running quark mass at a hard scale <code>mH</code>.
For other particles the on-shell mass is given.
<a name="method90"></a>
<p/><strong>bool ParticleDataEntry::useBreitWigner() </strong> <br/>
tells whether a particle will have a Breit-Wigner mass distribution or
not. Is determined by an internal logic based on the particle width and
on the value of the <code><a href="ParticleData.html" target="page">
ParticleData:modeBreitWigner</a></code> switch.
<a name="method91"></a>
<p/><strong>bool ParticleDataEntry::canDecay(int id) </strong> <br/>
true for a particle with at least one decay channel defined.
<a name="method92"></a>
<p/><strong>bool ParticleDataEntry::isLepton() </strong> <br/>
true for a lepton or an antilepton (including neutrinos).
<a name="method93"></a>
<p/><strong>bool ParticleDataEntry::isQuark() </strong> <br/>
true for a quark or an antiquark.
<a name="method94"></a>
<p/><strong>bool ParticleDataEntry::isGluon() </strong> <br/>
true for a gluon.
<a name="method95"></a>
<p/><strong>bool ParticleDataEntry::isDiquark() </strong> <br/>
true for a diquark or antidiquark.
<a name="method96"></a>
<p/><strong>bool ParticleDataEntry::isParton() </strong> <br/>
true for a gluon, a quark or antiquark up to the b (but excluding top),
and a diquark or antidiquark consisting of quarks up to the b.
<a name="method97"></a>
<p/><strong>bool ParticleDataEntry::isHadron() </strong> <br/>
true for a hadron (made up out of normal quarks and gluons,
i.e. not for R-hadrons and other exotic states).
<a name="method98"></a>
<p/><strong>bool ParticleDataEntry::isMeson() </strong> <br/>
true for a meson.
<a name="method99"></a>
<p/><strong>bool ParticleDataEntry::isBaryon() </strong> <br/>
true for a baryon or antibaryon.
<a name="method100"></a>
<p/><strong>bool ParticleDataEntry::isOctetHadron() </strong> <br/>
true for an intermediate hadron-like state with a colour octet charge
as used in the colour octet model for
<a href="OniaProcesses.html" target="page">onia</a> production.
<a name="method101"></a>
<p/><strong>int ParticleDataEntry::heaviestQuark(int id) </strong> <br/>
extracts the heaviest quark or antiquark, i.e. one with largest
<code>id</code> number, for a hadron. Only the sign of the input
argument is relevant.
<a name="method102"></a>
<p/><strong>int ParticleDataEntry::baryonNumberType(int id) </strong> <br/>
is 1 for a quark, 2 for a diquark, 3 for a baryon, the same with a
minus sign for antiparticles, and else zero. Only the sign of the
input argument is relevant.
<a name="method103"></a>
<p/><strong>void ParticleDataEntry::clearChannels() </strong> <br/>
resets to an empty decay table.
<a name="method104"></a>
<p/><strong>void ParticleDataEntry::addChannel(int onMode = 0, double bRatio = 0., int meMode = 0, int prod0 = 0, int prod1 = 0,int prod2 = 0, int prod3 = 0, int prod4 = 0, int prod5 = 0, int prod6 = 0, int prod7 = 0,) </strong> <br/>
adds a decay channel with up to 8 products.
<a name="method105"></a>
<p/><strong>int ParticleDataEntry::sizeChannels() </strong> <br/>
returns the number of decay channels for a particle.
<a name="method106"></a>
<p/><strong>DecayChannel& ParticleDataEntry::channel(int i) </strong> <br/>
<strong>const DecayChannel& ParticleDataEntry::channel(int i) </strong> <br/>
gain access to a specified channel in the decay table.
<a name="method107"></a>
<p/><strong>void ParticleDataEntry::rescaleBR(double newSumBR = 1.) </strong> <br/>
rescales all partial branching ratios by a common factor, such that
the sum afterward becomes <code>newSumBR</code>.
<a name="method108"></a>
<p/><strong>bool ParticleDataEntry::preparePick(int idSgn, double mHat = 0., int idInFlav = 0) </strong> <br/>
prepare to pick a decay channel.
<a name="method109"></a>
<p/><strong>DecayChannel& ParticleDataEntry::pickChannel() </strong> <br/>
pick a decay channel according to branching ratios from
<code>preparePick</code>.
<a name="method110"></a>
<p/><strong>void ParticleDataEntry::setResonancePtr(ResonanceWidths* resonancePtr) </strong> <br/>
<strong>ResonanceWidths* ParticleDataEntry::getResonancePtr() </strong> <br/>
set or get a pointer to an object that can be used for dynamic calculation
of partial and total resonance widths. Here a resonance is a particle
such as top, <i>Z^0</i>, <i>W^+-</i>, Higgs, and new unstable states
beyond the Standard Model.
<a name="method111"></a>
<p/><strong>void ParticleDataEntry::resInit(Info* infoPtrIn, Settings* settingsPtrIn, ParticleData* particleDataPtrIn, CoupSM* coupSMPtrIn) </strong> <br/>
initialize the treatment of a resonance.
<a name="method112"></a>
<p/><strong>double ParticleDataEntry::resWidth(int idSgn,double mHat, int idInFlav = 0, bool openOnly = false, bool setBR = false) </strong> <br/>
calculate the total with for a resonance of a given current mass,
optionally including coupling to incoming flavour state (consider
the <i>gamma*/Z^0</i> combination), optionally excluding decay
channels that have been closed by the user, and optionally storing
the results in the normal decay table. For the first argument only
the sign is relevant.
<a name="method113"></a>
<p/><strong>double ParticleDataEntry::resWidthOpen(int idSgn,double mHat, int idInFlav = 0) </strong> <br/>
special case of <code>resWidth</code>, where only open channels are
included, but results are not stored in the normal decay table.
<a name="method114"></a>
<p/><strong>double ParticleDataEntry::resWidthStore(int idSgn,double mHat, int idInFlav = 0) </strong> <br/>
special case of <code>resWidth</code>, where only open channels are
included, and results are stored in the normal decay table.
<a name="method115"></a>
<p/><strong>double ParticleDataEntry::resOpenFrac(int idSgn) </strong> <br/>
calculate the fraction of the full branching ratio that is left
open by the user choice of allowed decay channels.
<a name="method116"></a>
<p/><strong>double ParticleDataEntry::resWidthRescaleFactor() </strong> <br/>
the factor used to rescale all partial widths in case the total
width is being forced to a specific value by the user.
<a name="method117"></a>
<p/><strong>double ParticleDataEntry::resWidthChan(double mHat, int idAbs1 = 0, int idAbs2 = 0) </strong> <br/>
special case to calculate one final-state width; currently only used
for Higgs decay to <i>q qbar</i>, <i>g g</i> or
<i>gamma gamma</i>.
<h3>The DecayChannel methods</h3>
The properties stored in an individual decay channel can be set or get
by the methods in this section.
<a name="method118"></a>
<p/><strong>DecayChannel::DecayChannel(int onMode = 0, double bRatio = 0., int meMode = 0, int prod0 = 0, int prod1 = 0, int prod2 = 0, int prod3 = 0, int prod4 = 0, int prod5 = 0, int prod6 = 0, int prod7 = 0) </strong> <br/>
the constructor for a decay channel. Internal.
<a name="method119"></a>
<p/><strong>void DecayChannel::onMode(int onMode) </strong> <br/>
<strong>int DecayChannel::onMode() </strong> <br/>
set or get the <code>onMode</code> of a decay channel,<br/>
0 if a channel is off,<br/>
1 if on,<br/>
2 if on for a particle but off for an antiparticle,<br/>
3 if on for an antiparticle but off for a particle.<br/>
If a particle is its own antiparticle then 2 is on and 3 off
but, of course, for such particles it is much simpler and safer
to use only 1 and 0.<br/>
The 2 and 3 options can be used e.g. to encode CP violation in
B decays, or to let the <i>W</i>'s in a <i>q qbar -> W^+ W^-</i>
process decay in different channels.
<a name="method120"></a>
<p/><strong>void DecayChannel::bRatio(double bRatio, bool countAsChanged = true) </strong> <br/>
<strong>double DecayChannel::bRatio() </strong> <br/>
set or get the branching ratio of the channel. Second argument only
for internal use.
<a name="method121"></a>
<p/><strong>void DecayChannel::rescaleBR(double fac) </strong> <br/>
multiply the current branching ratio by <code>fac</code>.
<a name="method122"></a>
<p/><strong>void DecayChannel::meMode(int meMode) </strong> <br/>
<strong>int DecayChannel::meMode() </strong> <br/>
set or get the mode of processing this channel, possibly with matrix
elements (see the <a href="ParticleDecays.html" target="page">particle decays</a>
and <a href="ResonanceDecays.html" target="page">resonance decays</a> descriptions).
<a name="method123"></a>
<p/><strong>void DecayChannel::multiplicity(int multiplicity) </strong> <br/>
<strong>int DecayChannel::multiplicity() </strong> <br/>
set or get the number of decay products in a channel, at most 8.
(Is normally not to be set by hand, since it is automatically
updated whenever the products list is changed.)
<a name="method124"></a>
<p/><strong>void DecayChannel::product(int i, int product) </strong> <br/>
<strong>int DecayChannel::product(int i) </strong> <br/>
set or get a list of the decay products, 8 products 0 <= i < 8,
with trailing unused ones set to 0.
<a name="method125"></a>
<p/><strong>void DecayChannel::setHasChanged(bool hasChanged) </strong> <br/>
<strong>bool DecayChannel::hasChanged() </strong> <br/>
used for internal purposes, to know which decay modes have been changed.
<a name="method126"></a>
<p/><strong>bool DecayChannel::contains(int id1) </strong> <br/>
<strong>bool DecayChannel::contains(int id1, int id2) </strong> <br/>
<strong>bool DecayChannel::contains(int id1, int id2, int id3) </strong> <br/>
find if the decay product list contains the one, two or three particle
identities provided. If the same code is repeated then so must it be in
the products list. Matching also requires correct sign.
<a name="method127"></a>
<p/><strong>void DecayChannel::currentBR(double currentBR) </strong> <br/>
<strong>double DecayChannel::currentBR() </strong> <br/>
set or get the current branching ratio, taking into account on/off
switches and dynamic width for resonances. For internal use.
<a name="method128"></a>
<p/><strong>void DecayChannel::onShellWidth(double onShellWidth) </strong> <br/>
<strong>double DecayChannel::onShellWidth() </strong> <br/>
set or get the current partial width of the channel; intended for
resonances where the widths are recalculated based on the current
resonance mass. For internal use.
<a name="method129"></a>
<p/><strong>void DecayChannel::onShellWidthFactor(double factor) </strong> <br/>
multiply the current partial width by <code>factor</code>.
<a name="method130"></a>
<p/><strong>void DecayChannel::openSec(int idSgn, double openSecIn) </strong> <br/>
<strong>double DecayChannel::openSec(nt idSgn) </strong> <br/>
set or get the fraction of secondary open widths, separately for
positive and negative particles. For internal use.
</body>
</html>
<!-- Copyright (C) 2013 Torbjorn Sjostrand -->
|