/usr/share/pyshared/ase/atoms.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 | # Copyright 2008, 2009 CAMd
# (see accompanying license files for details).
"""Definition of the Atoms class.
This module defines the central object in the ASE package: the Atoms
object.
"""
from math import cos, sin
import numpy as np
from ase.atom import Atom
from ase.data import atomic_numbers, chemical_symbols, atomic_masses
import ase.units as units
class Atoms(object):
"""Atoms object.
The Atoms object can represent an isolated molecule, or a
periodically repeated structure. It has a unit cell and
there may be periodic boundary conditions along any of the three
unit cell axes.
Information about the atoms (atomic numbers and position) is
stored in ndarrays. Optionally, there can be information about
tags, momenta, masses, magnetic moments and charges.
In order to calculate energies, forces and stresses, a calculator
object has to attached to the atoms object.
Parameters:
symbols: str (formula) or list of str
Can be a string formula, a list of symbols or a list of
Atom objects. Examples: 'H2O', 'COPt12', ['H', 'H', 'O'],
[Atom('Ne', (x, y, z)), ...].
positions: list of xyz-positions
Atomic positions. Anything that can be converted to an
ndarray of shape (n, 3) will do: [(x1,y1,z1), (x2,y2,z2),
...].
scaled_positions: list of scaled-positions
Like positions, but given in units of the unit cell.
Can not be set at the same time as positions.
numbers: list of int
Atomic numbers (use only one of symbols/numbers).
tags: list of int
Special purpose tags.
momenta: list of xyz-momenta
Momenta for all atoms.
masses: list of float
Atomic masses in atomic units.
magmoms: list of float or list of xyz-values
Magnetic moments. Can be either a single value for each atom
for collinear calculations or three numbers for each atom for
non-collinear calculations.
charges: list of float
Atomic charges.
cell: 3x3 matrix
Unit cell vectors. Can also be given as just three
numbers for orthorhombic cells. Default value: [1, 1, 1].
pbc: one or three bool
Periodic boundary conditions flags. Examples: True,
False, 0, 1, (1, 1, 0), (True, False, False). Default
value: False.
constraint: constraint object(s)
Used for applying one or more constraints during structure
optimization.
calculator: calculator object
Used to attach a calculator for calculating energies and atomic
forces.
info: dict of key-value pairs
Dictionary of key-value pairs with additional information
about the system. The following keys may be used by ase:
- spacegroup: Spacegroup instance
- unit_cell: 'conventional' | 'primitive' | int | 3 ints
- adsorbate_info:
Items in the info attribute survives copy and slicing and can
be store to and retrieved from trajectory files given that the
key is a string, the value is picklable and, if the value is a
user-defined object, its base class is importable. One should
not make any assumptions about the existence of keys.
Examples:
These three are equivalent:
>>> d = 1.104 # N2 bondlength
>>> a = Atoms('N2', [(0, 0, 0), (0, 0, d)])
>>> a = Atoms(numbers=[7, 7], positions=[(0, 0, 0), (0, 0, d)])
>>> a = Atoms([Atom('N', (0, 0, 0)), Atom('N', (0, 0, d)])
FCC gold:
>>> a = 4.05 # Gold lattice constant
>>> b = a / 2
>>> fcc = Atoms('Au',
... cell=[(0, b, b), (b, 0, b), (b, b, 0)],
... pbc=True)
Hydrogen wire:
>>> d = 0.9 # H-H distance
>>> L = 7.0
>>> h = Atoms('H', positions=[(0, L / 2, L / 2)],
... cell=(d, L, L),
... pbc=(1, 0, 0))
"""
def __init__(self, symbols=None,
positions=None, numbers=None,
tags=None, momenta=None, masses=None,
magmoms=None, charges=None,
scaled_positions=None,
cell=None, pbc=None,
constraint=None,
calculator=None,
info=None):
atoms = None
if hasattr(symbols, 'GetUnitCell'):
from ase.old import OldASEListOfAtomsWrapper
atoms = OldASEListOfAtomsWrapper(symbols)
symbols = None
elif hasattr(symbols, 'get_positions'):
atoms = symbols
symbols = None
elif (isinstance(symbols, (list, tuple)) and
len(symbols) > 0 and isinstance(symbols[0], Atom)):
# Get data from a list or tuple of Atom objects:
data = [[atom.get_raw(name) for atom in symbols]
for name in
['position', 'number', 'tag', 'momentum',
'mass', 'magmom', 'charge']]
atoms = self.__class__(None, *data)
symbols = None
if atoms is not None:
# Get data from another Atoms object:
if scaled_positions is not None:
raise NotImplementedError
if symbols is None and numbers is None:
numbers = atoms.get_atomic_numbers()
if positions is None:
positions = atoms.get_positions()
if tags is None and atoms.has('tags'):
tags = atoms.get_tags()
if momenta is None and atoms.has('momenta'):
momenta = atoms.get_momenta()
if magmoms is None and atoms.has('magmoms'):
magmoms = atoms.get_initial_magnetic_moments()
if masses is None and atoms.has('masses'):
masses = atoms.get_masses()
if charges is None and atoms.has('charges'):
charges = atoms.get_charges()
if cell is None:
cell = atoms.get_cell()
if pbc is None:
pbc = atoms.get_pbc()
if constraint is None:
constraint = [c.copy() for c in atoms.constraints]
if calculator is None:
calculator = atoms.get_calculator()
self.arrays = {}
if symbols is None:
if numbers is None:
if positions is not None:
natoms = len(positions)
elif scaled_positions is not None:
natoms = len(scaled_positions)
else:
natoms = 0
numbers = np.zeros(natoms, int)
self.new_array('numbers', numbers, int)
else:
if numbers is not None:
raise ValueError(
'Use only one of "symbols" and "numbers".')
else:
self.new_array('numbers', symbols2numbers(symbols), int)
if cell is None:
cell = np.eye(3)
self.set_cell(cell)
if positions is None:
if scaled_positions is None:
positions = np.zeros((len(self.arrays['numbers']), 3))
else:
positions = np.dot(scaled_positions, self._cell)
else:
if scaled_positions is not None:
raise RuntimeError('Both scaled and cartesian positions set!')
self.new_array('positions', positions, float, (3,))
self.set_constraint(constraint)
self.set_tags(default(tags, 0))
self.set_momenta(default(momenta, (0.0, 0.0, 0.0)))
self.set_masses(default(masses, None))
self.set_initial_magnetic_moments(default(magmoms, 0.0))
self.set_charges(default(charges, 0.0))
if pbc is None:
pbc = False
self.set_pbc(pbc)
if info is None:
self.info = {}
else:
self.info = dict(info)
self.adsorbate_info = {}
self.set_calculator(calculator)
def set_calculator(self, calc=None):
"""Attach calculator object."""
if hasattr(calc, '_SetListOfAtoms'):
from ase.old import OldASECalculatorWrapper
calc = OldASECalculatorWrapper(calc, self)
if hasattr(calc, 'set_atoms'):
calc.set_atoms(self)
self._calc = calc
def get_calculator(self):
"""Get currently attached calculator object."""
return self._calc
def _del_calculator(self):
self._calc = None
calc = property(get_calculator, set_calculator, _del_calculator,
doc='Calculator object.')
def set_constraint(self, constraint=None):
"""Apply one or more constrains.
The *constraint* argument must be one constraint object or a
list of constraint objects."""
if constraint is None:
self._constraints = []
else:
if isinstance(constraint, (list, tuple)):
self._constraints = constraint
else:
self._constraints = [constraint]
def _get_constraints(self):
return self._constraints
def _del_constraints(self):
self._constraints = []
constraints = property(_get_constraints, set_constraint, _del_constraints,
'Constraints of the atoms.')
def set_cell(self, cell, scale_atoms=False, fix=None):
"""Set unit cell vectors.
Parameters:
cell :
Unit cell. A 3x3 matrix (the three unit cell vectors) or
just three numbers for an orthorhombic cell.
scale_atoms : bool
Fix atomic positions or move atoms with the unit cell?
Default behavior is to *not* move the atoms (scale_atoms=False).
Examples:
Two equivalent ways to define an orthorhombic cell:
>>> a.set_cell([a, b, c])
>>> a.set_cell([(a, 0, 0), (0, b, 0), (0, 0, c)])
FCC unit cell:
>>> a.set_cell([(0, b, b), (b, 0, b), (b, b, 0)])
"""
if fix is not None:
raise TypeError('Please use scale_atoms=%s' % (not fix))
cell = np.array(cell, float)
if cell.shape == (3,):
cell = np.diag(cell)
elif cell.shape != (3, 3):
raise ValueError('Cell must be length 3 sequence or '
'3x3 matrix!')
if scale_atoms:
M = np.linalg.solve(self._cell, cell)
self.arrays['positions'][:] = np.dot(self.arrays['positions'], M)
self._cell = cell
def get_cell(self):
"""Get the three unit cell vectors as a 3x3 ndarray."""
return self._cell.copy()
def get_reciprocal_cell(self):
"""Get the three reciprocal lattice vectors as a 3x3 ndarray.
Note that the commonly used factor of 2 pi for Fourier
transforms is not included here."""
rec_unit_cell = np.linalg.inv(self.get_cell()).transpose()
return rec_unit_cell
def set_pbc(self, pbc):
"""Set periodic boundary condition flags."""
if isinstance(pbc, int):
pbc = (pbc,) * 3
self._pbc = np.array(pbc, bool)
def get_pbc(self):
"""Get periodic boundary condition flags."""
return self._pbc.copy()
def new_array(self, name, a, dtype=None, shape=None):
"""Add new array.
If *shape* is not *None*, the shape of *a* will be checked."""
if dtype is not None:
a = np.array(a, dtype)
else:
a = a.copy()
if name in self.arrays:
raise RuntimeError
for b in self.arrays.values():
if len(a) != len(b):
raise ValueError('Array has wrong length: %d != %d.' %
(len(a), len(b)))
break
if shape is not None and a.shape[1:] != shape:
raise ValueError('Array has wrong shape %s != %s.' %
(a.shape, (a.shape[0:1] + shape)))
self.arrays[name] = a
def get_array(self, name, copy=True):
"""Get an array.
Returns a copy unless the optional argument copy is false.
"""
if copy:
return self.arrays[name].copy()
else:
return self.arrays[name]
def set_array(self, name, a, dtype=None, shape=None):
"""Update array.
If *shape* is not *None*, the shape of *a* will be checked.
If *a* is *None*, then the array is deleted."""
b = self.arrays.get(name)
if b is None:
if a is not None:
self.new_array(name, a, dtype, shape)
else:
if a is None:
del self.arrays[name]
else:
a = np.asarray(a)
if a.shape != b.shape:
raise ValueError('Array has wrong shape %s != %s.' %
(a.shape, b.shape))
b[:] = a
def has(self, name):
"""Check for existence of array.
name must be one of: 'tags', 'momenta', 'masses', 'magmoms',
'charges'."""
return name in self.arrays
def set_atomic_numbers(self, numbers):
"""Set atomic numbers."""
self.set_array('numbers', numbers, int, ())
def get_atomic_numbers(self):
"""Get integer array of atomic numbers."""
return self.arrays['numbers'].copy()
def set_chemical_symbols(self, symbols):
"""Set chemical symbols."""
self.set_array('numbers', symbols2numbers(symbols), int, ())
def get_chemical_symbols(self, reduce=False):
"""Get list of chemical symbol strings.
If reduce is True, a single string is returned, where repeated
elements have been contracted to a single symbol and a number.
E.g. instead of ['C', 'O', 'O', 'H'], the string 'CO2H' is returned.
"""
if not reduce:
# XXX
return [chemical_symbols[Z] for Z in self.arrays['numbers']]
else:
num = self.get_atomic_numbers()
N = len(num)
dis = np.concatenate(([0], np.arange(1, N)[num[1:] != num[:-1]]))
repeat = np.append(dis[1:], N) - dis
symbols = ''.join([chemical_symbols[num[d]] + str(r) * (r != 1)
for r, d in zip(repeat, dis)])
return symbols
def set_tags(self, tags):
"""Set tags for all atoms."""
self.set_array('tags', tags, int, ())
def get_tags(self):
"""Get integer array of tags."""
if 'tags' in self.arrays:
return self.arrays['tags'].copy()
else:
return np.zeros(len(self), int)
def set_momenta(self, momenta):
"""Set momenta."""
if len(self.constraints) > 0 and momenta is not None:
momenta = np.array(momenta) # modify a copy
for constraint in self.constraints:
constraint.adjust_forces(self.arrays['positions'], momenta)
self.set_array('momenta', momenta, float, (3,))
def set_velocities(self, velocities):
"""Set the momenta by specifying the velocities."""
self.set_momenta(self.get_masses()[:, np.newaxis] * velocities)
def get_momenta(self):
"""Get array of momenta."""
if 'momenta' in self.arrays:
return self.arrays['momenta'].copy()
else:
return np.zeros((len(self), 3))
def set_masses(self, masses='defaults'):
"""Set atomic masses.
The array masses should contain a list of masses. In case
the masses argument is not given or for those elements of the
masses list that are None, standard values are set."""
if masses == 'defaults':
masses = atomic_masses[self.arrays['numbers']]
elif isinstance(masses, (list, tuple)):
newmasses = []
for m, Z in zip(masses, self.arrays['numbers']):
if m is None:
newmasses.append(atomic_masses[Z])
else:
newmasses.append(m)
masses = newmasses
self.set_array('masses', masses, float, ())
def get_masses(self):
"""Get array of masses."""
if 'masses' in self.arrays:
return self.arrays['masses'].copy()
else:
return atomic_masses[self.arrays['numbers']]
def set_initial_magnetic_moments(self, magmoms=None):
"""Set the initial magnetic moments.
Use either one or three numbers for every atom (collinear
or non-collinear spins)."""
if magmoms is None:
self.set_array('magmoms', None)
else:
magmoms = np.asarray(magmoms)
self.set_array('magmoms', magmoms, float, magmoms.shape[1:])
def get_initial_magnetic_moments(self):
"""Get array of initial magnetic moments."""
if 'magmoms' in self.arrays:
return self.arrays['magmoms'].copy()
else:
return np.zeros(len(self))
def get_magnetic_moments(self):
"""Get calculated local magnetic moments."""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
if self._calc.get_spin_polarized():
return self._calc.get_magnetic_moments(self)
else:
return np.zeros(len(self))
def get_magnetic_moment(self):
"""Get calculated total magnetic moment."""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
if self._calc.get_spin_polarized():
return self._calc.get_magnetic_moment(self)
else:
return 0.0
def set_charges(self, charges):
"""Set charges."""
self.set_array('charges', charges, float, ())
def get_charges(self):
"""Get array of charges."""
if 'charges' in self.arrays:
return self.arrays['charges'].copy()
else:
return np.zeros(len(self))
def set_positions(self, newpositions):
"""Set positions."""
positions = self.arrays['positions']
if self.constraints:
newpositions = np.asarray(newpositions, float)
for constraint in self.constraints:
constraint.adjust_positions(positions, newpositions)
self.set_array('positions', newpositions, shape=(3,))
def get_positions(self):
"""Get array of positions."""
return self.arrays['positions'].copy()
def get_calculation_done(self):
"""Let the calculator calculate its thing,
using the current input.
"""
if self.calc is None:
raise RuntimeError('Atoms object has no calculator.')
self.calc.initialize(self)
self.calc.calculate(self)
def get_potential_energy(self):
"""Calculate potential energy."""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
return self._calc.get_potential_energy(self)
def get_potential_energies(self):
"""Calculate the potential energies of all the atoms.
Only available with calculators supporting per-atom energies
(e.g. classical potentials).
"""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
return self._calc.get_potential_energies(self)
def get_kinetic_energy(self):
"""Get the kinetic energy."""
momenta = self.arrays.get('momenta')
if momenta is None:
return 0.0
return 0.5 * np.vdot(momenta, self.get_velocities())
def get_velocities(self):
"""Get array of velocities."""
momenta = self.arrays.get('momenta')
if momenta is None:
return None
m = self.arrays.get('masses')
if m is None:
m = atomic_masses[self.arrays['numbers']]
return momenta / m.reshape(-1, 1)
def get_total_energy(self):
"""Get the total energy - potential plus kinetic energy."""
return self.get_potential_energy() + self.get_kinetic_energy()
def get_forces(self, apply_constraint=True):
"""Calculate atomic forces.
Ask the attached calculator to calculate the forces and apply
constraints. Use *apply_constraint=False* to get the raw
forces."""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
forces = self._calc.get_forces(self)
if apply_constraint:
for constraint in self.constraints:
constraint.adjust_forces(self.arrays['positions'], forces)
return forces
def get_stress(self):
"""Calculate stress tensor.
Returns an array of the six independent components of the
symmetric stress tensor, in the traditional order
(s_xx, s_yy, s_zz, s_yz, s_xz, s_xy).
"""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
stress = self._calc.get_stress(self)
shape = getattr(stress, 'shape', None)
if shape == (3, 3):
return np.array([stress[0, 0], stress[1, 1], stress[2, 2],
stress[1, 2], stress[0, 2], stress[0, 1]])
else:
# Hopefully a 6-vector, but don't check in case some weird
# calculator does something else.
return stress
def get_stresses(self):
"""Calculate the stress-tensor of all the atoms.
Only available with calculators supporting per-atom energies and
stresses (e.g. classical potentials). Even for such calculators
there is a certain arbitrariness in defining per-atom stresses.
"""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
return self._calc.get_stresses(self)
def get_dipole_moment(self):
"""Calculate the electric dipole moment for the atoms object.
Only available for calculators which has a get_dipole_moment()
method."""
if self._calc is None:
raise RuntimeError('Atoms object has no calculator.')
try:
dipole = self._calc.get_dipole_moment(self)
except AttributeError:
raise AttributeError(
'Calculator object has no get_dipole_moment method.')
return dipole
def copy(self):
"""Return a copy."""
import copy
atoms = self.__class__(cell=self._cell, pbc=self._pbc, info=self.info)
atoms.arrays = {}
for name, a in self.arrays.items():
atoms.arrays[name] = a.copy()
atoms.constraints = copy.deepcopy(self.constraints)
atoms.adsorbate_info = copy.deepcopy(self.adsorbate_info)
return atoms
def __len__(self):
return len(self.arrays['positions'])
def get_number_of_atoms(self):
"""Returns the number of atoms.
Equivalent to len(atoms) in the standard ASE Atoms class.
"""
return len(self)
def __repr__(self):
num = self.get_atomic_numbers()
N = len(num)
if N == 0:
symbols = ''
elif N <= 60:
symbols = self.get_chemical_symbols(reduce=True)
else:
symbols = ''.join([chemical_symbols[Z] for Z in num[:15]]) + '...'
s = "%s(symbols='%s', " % (self.__class__.__name__, symbols)
for name in self.arrays:
if name == 'numbers':
continue
s += '%s=..., ' % name
if (self._cell - np.diag(self._cell.diagonal())).any():
s += 'cell=%s, ' % self._cell.tolist()
else:
s += 'cell=%s, ' % self._cell.diagonal().tolist()
s += 'pbc=%s, ' % self._pbc.tolist()
if len(self.constraints) == 1:
s += 'constraint=%s, ' % repr(self.constraints[0])
if len(self.constraints) > 1:
s += 'constraint=%s, ' % repr(self.constraints)
if self._calc is not None:
s += 'calculator=%s(...), ' % self._calc.__class__.__name__
return s[:-2] + ')'
def __add__(self, other):
atoms = self.copy()
atoms += other
return atoms
def extend(self, other):
"""Extend atoms object by appending atoms from *other*."""
if isinstance(other, Atom):
other = self.__class__([other])
n1 = len(self)
n2 = len(other)
for name, a1 in self.arrays.items():
a = np.zeros((n1 + n2,) + a1.shape[1:], a1.dtype)
a[:n1] = a1
a2 = other.arrays.get(name)
if a2 is not None:
a[n1:] = a2
self.arrays[name] = a
for name, a2 in other.arrays.items():
if name in self.arrays:
continue
a = np.empty((n1 + n2,) + a2.shape[1:], a2.dtype)
a[n1:] = a2
if name == 'masses':
a[:n1] = self.get_masses()
else:
a[:n1] = 0
self.set_array(name, a)
return self
__iadd__ = extend
def append(self, atom):
"""Append atom to end."""
self.extend(self.__class__([atom]))
def __getitem__(self, i):
"""Return a subset of the atoms.
i -- scalar integer, list of integers, or slice object
describing which atoms to return.
If i is a scalar, return an Atom object. If i is a list or a
slice, return an Atoms object with the same cell, pbc, and
other associated info as the original Atoms object. The
indices of the constraints will be shuffled so that they match
the indexing in the subset returned.
"""
if isinstance(i, int):
natoms = len(self)
if i < -natoms or i >= natoms:
raise IndexError('Index out of range.')
return Atom(atoms=self, index=i)
import copy
from ase.constraints import FixConstraint
atoms = self.__class__(cell=self._cell, pbc=self._pbc, info=self.info)
# TODO: Do we need to shuffle indices in adsorbate_info too?
atoms.adsorbate_info = self.adsorbate_info
atoms.arrays = {}
for name, a in self.arrays.items():
atoms.arrays[name] = a[i].copy()
# Constraints need to be deepcopied, since we need to shuffle
# the indices
atoms.constraints = copy.deepcopy(self.constraints)
condel = []
for con in atoms.constraints:
if isinstance(con, FixConstraint):
try:
con.index_shuffle(i)
except IndexError:
condel.append(con)
for con in condel:
atoms.constraints.remove(con)
return atoms
def __delitem__(self, i):
from ase.constraints import FixAtoms
check_constraint = np.array([isinstance(c, FixAtoms)
for c in self._constraints])
if len(self._constraints) > 0 and not check_constraint.all():
raise RuntimeError('Remove constraint using set_constraint() ' +
'before deleting atoms.')
mask = np.ones(len(self), bool)
mask[i] = False
for name, a in self.arrays.items():
self.arrays[name] = a[mask]
if len(self._constraints) > 0:
for n in range(len(self._constraints)):
self._constraints[n].delete_atom(range(len(mask))[i])
def pop(self, i=-1):
"""Remove and return atom at index *i* (default last)."""
atom = self[i]
atom.cut_reference_to_atoms()
del self[i]
return atom
def __imul__(self, m):
"""In-place repeat of atoms."""
if isinstance(m, int):
m = (m, m, m)
M = np.product(m)
n = len(self)
for name, a in self.arrays.items():
self.arrays[name] = np.tile(a, (M,) + (1,) * (len(a.shape) - 1))
positions = self.arrays['positions']
i0 = 0
for m0 in range(m[0]):
for m1 in range(m[1]):
for m2 in range(m[2]):
i1 = i0 + n
positions[i0:i1] += np.dot((m0, m1, m2), self._cell)
i0 = i1
if self.constraints is not None:
self.constraints = [c.repeat(m, n) for c in self.constraints]
self._cell = np.array([m[c] * self._cell[c] for c in range(3)])
return self
def repeat(self, rep):
"""Create new repeated atoms object.
The *rep* argument should be a sequence of three positive
integers like *(2,3,1)* or a single integer (*r*) equivalent
to *(r,r,r)*."""
atoms = self.copy()
atoms *= rep
return atoms
__mul__ = repeat
def translate(self, displacement):
"""Translate atomic positions.
The displacement argument can be a float an xyz vector or an
nx3 array (where n is the number of atoms)."""
self.arrays['positions'] += np.array(displacement)
def center(self, vacuum=None, axis=None):
"""Center atoms in unit cell.
Centers the atoms in the unit cell, so there is the same
amount of vacuum on all sides.
Parameters:
vacuum (default: None): If specified adjust the amount of
vacuum when centering. If vacuum=10.0 there will thus be 10
Angstrom of vacuum on each side.
axis (default: None): If specified, only act on the specified
axis. Default: Act on all axes.
"""
# Find the orientations of the faces of the unit cell
c = self.get_cell()
dirs = np.zeros_like(c)
for i in range(3):
dirs[i] = np.cross(c[i - 1], c[i - 2])
dirs[i] /= np.sqrt(np.dot(dirs[i], dirs[i])) # normalize
if np.dot(dirs[i], c[i]) < 0.0:
dirs[i] *= -1
# Now, decide how much each basis vector should be made longer
if axis is None:
axes = (0, 1, 2)
else:
axes = (axis,)
p = self.arrays['positions']
longer = np.zeros(3)
shift = np.zeros(3)
for i in axes:
p0 = np.dot(p, dirs[i]).min()
p1 = np.dot(p, dirs[i]).max()
height = np.dot(c[i], dirs[i])
if vacuum is not None:
lng = (p1 - p0 + 2 * vacuum) - height
else:
lng = 0.0 # Do not change unit cell size!
top = lng + height - p1
shf = 0.5 * (top - p0)
cosphi = np.dot(c[i], dirs[i]) / np.sqrt(np.dot(c[i], c[i]))
longer[i] = lng / cosphi
shift[i] = shf / cosphi
# Now, do it!
translation = np.zeros(3)
for i in axes:
nowlen = np.sqrt(np.dot(c[i], c[i]))
self._cell[i] *= 1 + longer[i] / nowlen
translation += shift[i] * c[i] / nowlen
self.arrays['positions'] += translation
def get_center_of_mass(self, scaled=False):
"""Get the center of mass.
If scaled=True the center of mass in scaled coordinates
is returned."""
m = self.arrays.get('masses')
if m is None:
m = atomic_masses[self.arrays['numbers']]
com = np.dot(m, self.arrays['positions']) / m.sum()
if scaled:
return np.linalg.solve(self._cell.T, com)
else:
return com
def get_moments_of_inertia(self, vectors=False):
"""Get the moments of inertia along the principal axes.
The three principal moments of inertia are computed from the
eigenvalues of the symmetric inertial tensor. Periodic boundary
conditions are ignored. Units of the moments of inertia are
amu*angstrom**2.
"""
com = self.get_center_of_mass()
positions = self.get_positions()
positions -= com # translate center of mass to origin
masses = self.get_masses()
#initialize elements of the inertial tensor
I11 = I22 = I33 = I12 = I13 = I23 = 0.0
for i in range(len(self)):
x, y, z = positions[i]
m = masses[i]
I11 += m * (y**2 + z**2)
I22 += m * (x**2 + z**2)
I33 += m * (x**2 + y**2)
I12 += -m * x * y
I13 += -m * x * z
I23 += -m * y * z
I = np.array([[I11, I12, I13],
[I12, I22, I23],
[I13, I23, I33]])
evals, evecs = np.linalg.eigh(I)
if vectors:
return evals, evecs.transpose()
else:
return evals
def get_angular_momentum(self):
"""Get total angular momentum with respect to the center of mass."""
com = self.get_center_of_mass()
positions = self.get_positions()
positions -= com # translate center of mass to origin
return np.cross(positions, self.get_momenta()).sum(0)
def rotate(self, v, a=None, center=(0, 0, 0), rotate_cell=False):
"""Rotate atoms.
Rotate the angle *a* around the vector *v*. If *a* is not
given, the length of *v* is used as the angle. If *a* is a
vector, then *v* is rotated into *a*. The point at *center*
is fixed. Use *center='COM'* to fix the center of mass.
Vectors can also be strings: 'x', '-x', 'y', ... .
Examples:
Rotate 90 degrees around the z-axis, so that the x-axis is
rotated into the y-axis:
>>> a = pi / 2
>>> atoms.rotate('z', a)
>>> atoms.rotate((0, 0, 1), a)
>>> atoms.rotate('-z', -a)
>>> atoms.rotate((0, 0, a))
>>> atoms.rotate('x', 'y')
"""
norm = np.linalg.norm
v = string2vector(v)
if a is None:
a = norm(v)
if isinstance(a, (float, int)):
v /= norm(v)
c = cos(a)
s = sin(a)
else:
v2 = string2vector(a)
v /= norm(v)
v2 /= norm(v2)
c = np.dot(v, v2)
v = np.cross(v, v2)
s = norm(v)
# In case *v* and *a* are parallel, np.cross(v, v2) vanish
# and can't be used as a rotation axis. However, in this
# case any rotation axis perpendicular to v2 will do.
eps = 1e-7
if s < eps:
v = np.cross((0, 0, 1), v2)
if norm(v) < eps:
v = np.cross((1, 0, 0), v2)
assert norm(v) >= eps
if s > 0:
v /= s
if isinstance(center, str) and center.lower() == 'com':
center = self.get_center_of_mass()
p = self.arrays['positions'] - center
self.arrays['positions'][:] = (c * p -
np.cross(p, s * v) +
np.outer(np.dot(p, v), (1.0 - c) * v) +
center)
if rotate_cell:
rotcell = self.get_cell()
rotcell[:] = (c * rotcell -
np.cross(rotcell, s * v) +
np.outer(np.dot(rotcell, v), (1.0 - c) * v))
self.set_cell(rotcell)
def rotate_euler(self, center=(0, 0, 0), phi=0.0, theta=0.0, psi=0.0):
"""Rotate atoms via Euler angles.
See e.g http://mathworld.wolfram.com/EulerAngles.html for explanation.
Parameters:
center :
The point to rotate about. A sequence of length 3 with the
coordinates, or 'COM' to select the center of mass.
phi :
The 1st rotation angle around the z axis.
theta :
Rotation around the x axis.
psi :
2nd rotation around the z axis.
"""
if isinstance(center, str) and center.lower() == 'com':
center = self.get_center_of_mass()
else:
center = np.array(center)
# First move the molecule to the origin In contrast to MATLAB,
# numpy broadcasts the smaller array to the larger row-wise,
# so there is no need to play with the Kronecker product.
rcoords = self.positions - center
# First Euler rotation about z in matrix form
D = np.array(((cos(phi), sin(phi), 0.),
(-sin(phi), cos(phi), 0.),
(0., 0., 1.)))
# Second Euler rotation about x:
C = np.array(((1., 0., 0.),
(0., cos(theta), sin(theta)),
(0., -sin(theta), cos(theta))))
# Third Euler rotation, 2nd rotation about z:
B = np.array(((cos(psi), sin(psi), 0.),
(-sin(psi), cos(psi), 0.),
(0., 0., 1.)))
# Total Euler rotation
A = np.dot(B, np.dot(C, D))
# Do the rotation
rcoords = np.dot(A, np.transpose(rcoords))
# Move back to the rotation point
self.positions = np.transpose(rcoords) + center
def get_dihedral(self, list):
"""Calculate dihedral angle.
Calculate dihedral angle between the vectors list[0]->list[1]
and list[2]->list[3], where list contains the atomic indexes
in question.
"""
# vector 0->1, 1->2, 2->3 and their normalized cross products:
a = self.positions[list[1]] - self.positions[list[0]]
b = self.positions[list[2]] - self.positions[list[1]]
c = self.positions[list[3]] - self.positions[list[2]]
bxa = np.cross(b, a)
bxa /= np.linalg.norm(bxa)
cxb = np.cross(c, b)
cxb /= np.linalg.norm(cxb)
angle = np.vdot(bxa, cxb)
# check for numerical trouble due to finite precision:
if angle < -1:
angle = -1
if angle > 1:
angle = 1
angle = np.arccos(angle)
if np.vdot(bxa, c) > 0:
angle = 2 * np.pi - angle
return angle
def _masked_rotate(self, center, axis, diff, mask):
# do rotation of subgroup by copying it to temporary atoms object
# and then rotating that
#
# recursive object definition might not be the most elegant thing,
# more generally useful might be a rotation function with a mask?
group = self.__class__()
for i in range(len(self)):
if mask[i]:
group += self[i]
group.translate(-center)
group.rotate(axis, diff)
group.translate(center)
# set positions in original atoms object
j = 0
for i in range(len(self)):
if mask[i]:
self.positions[i] = group[j].get_position()
j += 1
def set_dihedral(self, list, angle, mask=None):
"""
set the dihedral angle between vectors list[0]->list[1] and
list[2]->list[3] by changing the atom indexed by list[3]
if mask is not None, all the atoms described in mask
(read: the entire subgroup) are moved
example: the following defines a very crude
ethane-like molecule and twists one half of it by 30 degrees.
>>> atoms = Atoms('HHCCHH', [[-1, 1, 0], [-1, -1, 0], [0, 0, 0],
[1, 0, 0], [2, 1, 0], [2, -1, 0]])
>>> atoms.set_dihedral([1,2,3,4],7*pi/6,mask=[0,0,0,1,1,1])
"""
# if not provided, set mask to the last atom in the
# dihedral description
if mask is None:
mask = np.zeros(len(self))
mask[list[3]] = 1
# compute necessary in dihedral change, from current value
current = self.get_dihedral(list)
diff = angle - current
axis = self.positions[list[2]] - self.positions[list[1]]
center = self.positions[list[2]]
self._masked_rotate(center, axis, diff, mask)
def rotate_dihedral(self, list, angle, mask=None):
"""Rotate dihedral angle.
Complementing the two routines above: rotate a group by a
predefined dihedral angle, starting from its current
configuration
"""
start = self.get_dihedral(list)
self.set_dihedral(list, angle + start, mask)
def get_angle(self, list):
"""Get angle formed by three atoms.
calculate angle between the vectors list[0]->list[1] and
list[1]->list[2], where list contains the atomic indexes in
question."""
# normalized vector 1->0, 1->2:
v10 = self.positions[list[0]] - self.positions[list[1]]
v12 = self.positions[list[2]] - self.positions[list[1]]
v10 /= np.linalg.norm(v10)
v12 /= np.linalg.norm(v12)
angle = np.vdot(v10, v12)
angle = np.arccos(angle)
return angle
def set_angle(self, list, angle, mask=None):
"""Set angle formed by three atoms.
Sets the angle between vectors list[1]->list[0] and
list[1]->list[2].
Same usage as in set_dihedral."""
# If not provided, set mask to the last atom in the angle description
if mask is None:
mask = np.zeros(len(self))
mask[list[2]] = 1
# Compute necessary in angle change, from current value
current = self.get_angle(list)
diff = current - angle
# Do rotation of subgroup by copying it to temporary atoms object and
# then rotating that
v10 = self.positions[list[0]] - self.positions[list[1]]
v12 = self.positions[list[2]] - self.positions[list[1]]
v10 /= np.linalg.norm(v10)
v12 /= np.linalg.norm(v12)
axis = np.cross(v10, v12)
center = self.positions[list[1]]
self._masked_rotate(center, axis, diff, mask)
def rattle(self, stdev=0.001, seed=42):
"""Randomly displace atoms.
This method adds random displacements to the atomic positions,
taking a possible constraint into account. The random numbers are
drawn from a normal distribution of standard deviation stdev.
For a parallel calculation, it is important to use the same
seed on all processors! """
rs = np.random.RandomState(seed)
positions = self.arrays['positions']
self.set_positions(positions +
rs.normal(scale=stdev, size=positions.shape))
def get_distance(self, a0, a1, mic=False):
"""Return distance between two atoms.
Use mic=True to use the Minimum Image Convention.
"""
R = self.arrays['positions']
D = R[a1] - R[a0]
if mic:
Dr = np.linalg.solve(self._cell.T, D)
D = np.dot(Dr - np.round(Dr) * self._pbc, self._cell)
return np.linalg.norm(D)
def set_distance(self, a0, a1, distance, fix=0.5):
"""Set the distance between two atoms.
Set the distance between atoms *a0* and *a1* to *distance*.
By default, the center of the two atoms will be fixed. Use
*fix=0* to fix the first atom, *fix=1* to fix the second
atom and *fix=0.5* (default) to fix the center of the bond."""
R = self.arrays['positions']
D = R[a1] - R[a0]
x = 1.0 - distance / np.linalg.norm(D)
R[a0] += (x * fix) * D
R[a1] -= (x * (1.0 - fix)) * D
def get_scaled_positions(self):
"""Get positions relative to unit cell.
Atoms outside the unit cell will be wrapped into the cell in
those directions with periodic boundary conditions so that the
scaled coordinates are between zero and one."""
scaled = np.linalg.solve(self._cell.T, self.arrays['positions'].T).T
for i in range(3):
if self._pbc[i]:
# Yes, we need to do it twice.
# See the scaled_positions.py test
scaled[:, i] %= 1.0
scaled[:, i] %= 1.0
return scaled
def set_scaled_positions(self, scaled):
"""Set positions relative to unit cell."""
self.arrays['positions'][:] = np.dot(scaled, self._cell)
def get_temperature(self):
"""Get the temperature. in Kelvin"""
ekin = self.get_kinetic_energy() / len(self)
return ekin / (1.5 * units.kB)
def get_isotropic_pressure(self, stress):
"""Get the current calculated pressure, assume isotropic medium.
in Bar
"""
if type(stress) == type(1.0) or type(stress) == type(1):
return -stress * 1e-5 / units.Pascal
elif stress.shape == (3, 3):
return (-(stress[0, 0] + stress[1, 1] + stress[2, 2]) / 3.0) * \
1e-5 / units.Pascal
elif stress.shape == (6,):
return (-(stress[0] + stress[1] + stress[2]) / 3.0) * \
1e-5 / units.Pascal
else:
raise ValueError('The external stress has the wrong shape.')
def __eq__(self, other):
"""Check for identity of two atoms objects.
Identity means: same positions, atomic numbers, unit cell and
periodic boundary conditions."""
try:
a = self.arrays
b = other.arrays
return (len(self) == len(other) and
(a['positions'] == b['positions']).all() and
(a['numbers'] == b['numbers']).all() and
(self._cell == other.cell).all() and
(self._pbc == other.pbc).all())
except AttributeError:
return NotImplemented
def __ne__(self, other):
eq = self.__eq__(other)
if eq is NotImplemented:
return eq
else:
return not eq
__hash__ = None
def get_volume(self):
"""Get volume of unit cell."""
return abs(np.linalg.det(self._cell))
def _get_positions(self):
"""Return reference to positions-array for in-place manipulations."""
return self.arrays['positions']
def _set_positions(self, pos):
"""Set positions directly, bypassing constraints."""
self.arrays['positions'][:] = pos
positions = property(_get_positions, _set_positions,
doc='Attribute for direct ' +
'manipulation of the positions.')
def _get_atomic_numbers(self):
"""Return reference to atomic numbers for in-place
manipulations."""
return self.arrays['numbers']
numbers = property(_get_atomic_numbers, set_atomic_numbers,
doc='Attribute for direct ' +
'manipulation of the atomic numbers.')
def _get_cell(self):
"""Return reference to unit cell for in-place manipulations."""
return self._cell
cell = property(_get_cell, set_cell, doc='Attribute for direct ' +
'manipulation of the unit cell.')
def _get_pbc(self):
"""Return reference to pbc-flags for in-place manipulations."""
return self._pbc
pbc = property(_get_pbc, set_pbc,
doc='Attribute for direct manipulation ' +
'of the periodic boundary condition flags.')
def get_name(self):
"""Return a name extracted from the elements."""
elements = {}
for a in self:
try:
elements[a.symbol] += 1
except:
elements[a.symbol] = 1
name = ''
for element in elements:
name += element
if elements[element] > 1:
name += str(elements[element])
return name
def write(self, filename, format=None, **kwargs):
"""Write yourself to a file."""
from ase.io import write
write(filename, self, format, **kwargs)
def edit(self):
"""Modify atoms interactively through ag viewer.
Conflicts leading to undesirable behaviour might arise
when matplotlib has been pre-imported with certain
incompatible backends and while trying to use the
plot feature inside the interactive ag. To circumvent,
please set matplotlib.use('gtk') before calling this
method.
"""
from ase.gui.images import Images
from ase.gui.gui import GUI
images = Images([self])
gui = GUI(images)
gui.run()
# use atoms returned from gui:
# (1) delete all currently available atoms
self.set_constraint()
for z in range(len(self)):
self.pop()
edited_atoms = gui.images.get_atoms(0)
# (2) extract atoms from edit session
self.extend(edited_atoms)
self.set_constraint(edited_atoms._get_constraints())
self.set_cell(edited_atoms.get_cell())
self.set_initial_magnetic_moments(edited_atoms.get_magnetic_moments())
self.set_tags(edited_atoms.get_tags())
return
def string2symbols(s):
"""Convert string to list of chemical symbols."""
n = len(s)
if n == 0:
return []
c = s[0]
if c.isdigit():
i = 1
while i < n and s[i].isdigit():
i += 1
return int(s[:i]) * string2symbols(s[i:])
if c == '(':
p = 0
for i, c in enumerate(s):
if c == '(':
p += 1
elif c == ')':
p -= 1
if p == 0:
break
j = i + 1
while j < n and s[j].isdigit():
j += 1
if j > i + 1:
m = int(s[i + 1:j])
else:
m = 1
return m * string2symbols(s[1:i]) + string2symbols(s[j:])
if c.isupper():
i = 1
if 1 < n and s[1].islower():
i += 1
j = i
while j < n and s[j].isdigit():
j += 1
if j > i:
m = int(s[i:j])
else:
m = 1
return m * [s[:i]] + string2symbols(s[j:])
else:
raise ValueError
def symbols2numbers(symbols):
if isinstance(symbols, str):
symbols = string2symbols(symbols)
numbers = []
for s in symbols:
if isinstance(s, str):
numbers.append(atomic_numbers[s])
else:
numbers.append(s)
return numbers
def string2vector(v):
if isinstance(v, str):
if v[0] == '-':
return -string2vector(v[1:])
w = np.zeros(3)
w['xyz'.index(v)] = 1.0
return w
return np.array(v, float)
def default(data, dflt):
"""Helper function for setting default values."""
if data is None:
return None
elif isinstance(data, (list, tuple)):
newdata = []
allnone = True
for x in data:
if x is None:
newdata.append(dflt)
else:
newdata.append(x)
allnone = False
if allnone:
return None
return newdata
else:
return data
|