/usr/share/pyshared/ase/constraints.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 | from math import sqrt
import numpy as np
__all__ = ['FixCartesian', 'FixBondLength', 'FixedMode', 'FixConstraintSingle',
'FixAtoms', 'UnitCellFilter', 'FixScaled', 'StrainFilter',
'FixedPlane', 'Filter', 'FixConstraint', 'FixedLine',
'FixBondLengths', 'FixInternals']
def slice2enlist(s):
"""Convert a slice object into a list of (new, old) tuples."""
if isinstance(s, (list, tuple)):
return enumerate(s)
if s.step == None:
step = 1
else:
step = s.step
if s.start == None:
start = 0
else:
start = s.start
return enumerate(range(start, s.stop, step))
class FixConstraint:
"""Base class for classes that fix one or more atoms in some way."""
def index_shuffle(self, ind):
"""Change the indices.
When the ordering of the atoms in the Atoms object changes,
this method can be called to shuffle the indices of the
constraints.
ind -- List or tuple of indices.
"""
raise NotImplementedError
def repeat(self, m, n):
""" basic method to multiply by m, needs to know the length
of the underlying atoms object for the assignment of
multiplied constraints to work.
"""
raise NotImplementedError
class FixConstraintSingle(FixConstraint):
"""Base class for classes that fix a single atom."""
def index_shuffle(self, ind):
"""The atom index must be stored as self.a."""
newa = -1 # Signal error
for new, old in slice2enlist(ind):
if old == self.a:
newa = new
break
if newa == -1:
raise IndexError('Constraint not part of slice')
self.a = newa
class FixAtoms(FixConstraint):
"""Constraint object for fixing some chosen atoms."""
def __init__(self, indices=None, mask=None):
"""Constrain chosen atoms.
Parameters
----------
indices : list of int
Indices for those atoms that should be constrained.
mask : list of bool
One boolean per atom indicating if the atom should be
constrained or not.
Examples
--------
Fix all Copper atoms:
>>> c = FixAtoms(mask=[s == 'Cu' for s in atoms.get_chemical_symbols()])
>>> atoms.set_constraint(c)
Fix all atoms with z-coordinate less than 1.0 Angstrom:
>>> c = FixAtoms(mask=atoms.positions[:, 2] < 1.0)
>>> atoms.set_constraint(c)
"""
if indices is None and mask is None:
raise ValueError('Use "indices" or "mask".')
if indices is not None and mask is not None:
raise ValueError('Use only one of "indices" and "mask".')
if mask is not None:
self.index = np.asarray(mask, bool)
else:
# Check for duplicates
srt = np.sort(indices)
for i in range(len(indices) - 1):
if srt[i] == srt[i+1]:
raise ValueError(
'FixAtoms: The indices array contained duplicates. '
'Perhaps you wanted to specify a mask instead, but '
'forgot the mask= keyword.')
self.index = np.asarray(indices, int)
if self.index.ndim != 1:
raise ValueError('Wrong argument to FixAtoms class!')
def adjust_positions(self, old, new):
new[self.index] = old[self.index]
def adjust_forces(self, positions, forces):
forces[self.index] = 0.0
def index_shuffle(self, ind):
# See docstring of superclass
if self.index.dtype == bool:
self.index = self.index[ind]
else:
index = []
for new, old in slice2enlist(ind):
if old in self.index:
index.append(new)
if len(index) == 0:
raise IndexError('All indices in FixAtoms not part of slice')
self.index = np.asarray(index, int)
def copy(self):
if self.index.dtype == bool:
return FixAtoms(mask=self.index.copy())
else:
return FixAtoms(indices=self.index.copy())
def __repr__(self):
if self.index.dtype == bool:
return 'FixAtoms(mask=%s)' % ints2string(self.index.astype(int))
return 'FixAtoms(indices=%s)' % ints2string(self.index)
def repeat(self, m, n):
i0 = 0
l = len(self.index)
natoms = 0
if isinstance(m, int):
m = (m, m, m)
index_new = []
for m2 in range(m[2]):
for m1 in range(m[1]):
for m0 in range(m[0]):
i1 = i0 + n
if self.index.dtype == bool:
index_new.extend(self.index)
else:
index_new += [i+natoms for i in self.index]
i0 = i1
natoms += n
if self.index.dtype == bool:
self.index = np.asarray(index_new, bool)
else:
self.index = np.asarray(index_new, int)
return self
def delete_atom(self, ind):
""" Removes atom number ind from the index array, if present.
Required for removing atoms with existing FixAtoms constraints.
"""
if self.index.dtype == bool:
self.index = np.delete(self.index, ind)
else:
if ind in self.index:
i = list(self.index).index(ind)
self.index = np.delete(self.index, i)
for i in range(len(self.index)):
if self.index[i] >= ind:
self.index[i] -= 1
def ints2string(x, threshold=10):
"""Convert ndarray of ints to string."""
if len(x) <= threshold:
return str(x.tolist())
return str(x[:threshold].tolist())[:-1] + ', ...]'
class FixBondLengths(FixConstraint):
def __init__(self, pairs, iterations=10):
self.constraints = [FixBondLength(a1, a2)
for a1, a2 in pairs]
self.iterations = iterations
def adjust_positions(self, old, new):
for i in range(self.iterations):
for constraint in self.constraints:
constraint.adjust_positions(old, new)
def adjust_forces(self, positions, forces):
for i in range(self.iterations):
for constraint in self.constraints:
constraint.adjust_forces(positions, forces)
def copy(self):
return FixBondLengths([constraint.indices
for constraint in self.constraints])
class FixBondLength(FixConstraint):
"""Constraint object for fixing a bond length."""
def __init__(self, a1, a2):
"""Fix distance between atoms with indices a1 and a2."""
self.indices = [a1, a2]
def adjust_positions(self, old, new):
p1, p2 = old[self.indices]
d = p2 - p1
p = sqrt(np.dot(d, d))
q1, q2 = new[self.indices]
d = q2 - q1
q = sqrt(np.dot(d, d))
d *= 0.5 * (p - q) / q
new[self.indices] = (q1 - d, q2 + d)
def adjust_forces(self, positions, forces):
d = np.subtract.reduce(positions[self.indices])
d2 = np.dot(d, d)
d *= 0.5 * np.dot(np.subtract.reduce(forces[self.indices]), d) / d2
forces[self.indices] += (-d, d)
def index_shuffle(self, ind):
'Shuffle the indices of the two atoms in this constraint'
newa = [-1, -1] # Signal error
for new, old in slice2enlist(ind):
for i, a in enumerate(self.indices):
if old == a:
newa[i] = new
if newa[0] == -1 or newa[1] == -1:
raise IndexError('Constraint not part of slice')
self.indices = newa
def copy(self):
return FixBondLength(*self.indices)
def __repr__(self):
return 'FixBondLength(%d, %d)' % tuple(self.indices)
class FixedMode(FixConstraint):
"""Constrain atoms to move along directions orthogonal to
a given mode only."""
def __init__(self, indices, mode):
if indices is None:
raise ValueError('Use "indices".')
if indices is not None:
self.index = np.asarray(indices, int)
self.mode = (np.asarray(mode) / np.sqrt((mode **2).sum())).reshape(-1)
def adjust_positions(self, oldpositions, newpositions):
newpositions = newpositions.ravel()
oldpositions = oldpositions.ravel()
step = newpositions - oldpositions
newpositions -= self.mode * np.dot(step, self.mode)
newpositions = newpositions.reshape(-1, 3)
oldpositions = oldpositions.reshape(-1, 3)
def adjust_forces(self, positions, forces):
forces = forces.ravel()
forces -= self.mode * np.dot(forces, self.mode)
forces = forces.reshape(-1, 3)
def copy(self):
return FixedMode(self.index.copy(), self.mode)
def __repr__(self):
return 'FixedMode(%s, %s)' % (ints2string(self.index),
self.mode.tolist())
class FixedPlane(FixConstraintSingle):
"""Constrain an atom *a* to move in a given plane only.
The plane is defined by its normal: *direction*."""
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, oldpositions, newpositions):
step = newpositions[self.a] - oldpositions[self.a]
newpositions[self.a] -= self.dir * np.dot(step, self.dir)
def adjust_forces(self, positions, forces):
forces[self.a] -= self.dir * np.dot(forces[self.a], self.dir)
def copy(self):
return FixedPlane(self.a, self.dir)
def __repr__(self):
return 'FixedPlane(%d, %s)' % (self.a, self.dir.tolist())
class FixedLine(FixConstraintSingle):
"""Constrain an atom *a* to move on a given line only.
The line is defined by its *direction*."""
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, oldpositions, newpositions):
step = newpositions[self.a] - oldpositions[self.a]
x = np.dot(step, self.dir)
newpositions[self.a] = oldpositions[self.a] + x * self.dir
def adjust_forces(self, positions, forces):
forces[self.a] = self.dir * np.dot(forces[self.a], self.dir)
def copy(self):
return FixedLine(self.a, self.dir)
def __repr__(self):
return 'FixedLine(%d, %s)' % (self.a, self.dir.tolist())
class FixCartesian(FixConstraintSingle):
"Fix an atom in the directions of the cartesian coordinates."
def __init__(self, a, mask=(1, 1, 1)):
self.a = a
self.mask = -(np.array(mask) - 1)
def adjust_positions(self, old, new):
step = new[self.a] - old[self.a]
step *= self.mask
new[self.a] = old[self.a] + step
def adjust_forces(self, positions, forces):
forces[self.a] *= self.mask
def copy(self):
return FixCartesian(self.a, 1 - self.mask)
def __repr__(self):
return 'FixCartesian(indice=%s mask=%s)' % (self.a, self.mask)
class fix_cartesian(FixCartesian):
"Backwards compatibility for FixCartesian."
def __init__(self, a, mask=(1, 1, 1)):
import warnings
super(fix_cartesian, self).__init__(a, mask)
warnings.warn('fix_cartesian is deprecated. Please use FixCartesian'
' instead.', DeprecationWarning, stacklevel=2)
class FixScaled(FixConstraintSingle):
"Fix an atom in the directions of the unit vectors."
def __init__(self, cell, a, mask=(1, 1, 1)):
self.cell = cell
self.a = a
self.mask = np.array(mask)
def adjust_positions(self, old, new):
scaled_old = np.linalg.solve(self.cell.T, old.T).T
scaled_new = np.linalg.solve(self.cell.T, new.T).T
for n in range(3):
if self.mask[n]:
scaled_new[self.a, n] = scaled_old[self.a, n]
new[self.a] = np.dot(scaled_new, self.cell)[self.a]
def adjust_forces(self, positions, forces):
scaled_forces = np.linalg.solve(self.cell.T, forces.T).T
scaled_forces[self.a] *= -(self.mask - 1)
forces[self.a] = np.dot(scaled_forces, self.cell)[self.a]
def copy(self):
return FixScaled(self.cell, self.a, self.mask)
def __repr__(self):
return 'FixScaled(%s, %d, %s)' % (repr(self.cell),
self.a,
repr(self.mask))
class fix_scaled(FixScaled):
"Backwards compatibility for FixScaled."
def __init__(self, cell, a, mask=(1, 1, 1)):
import warnings
super(fix_scaled, self).__init__(cell, a, mask)
warnings.warn('fix_scaled is deprecated. Please use FixScaled '
'instead.', DeprecationWarning, stacklevel=2)
class FixInternals(FixConstraint):
"""Constraint object for fixing multiple internal coordinates.
Allows fixing bonds, angles, and dihedrals."""
def __init__(self, atoms=None, bonds=None, angles=None, dihedrals=None,
epsilon=1.e-7, _copy_init=None):
if _copy_init is None:
if atoms is None:
raise ValueError('Atoms object has to be defined.')
masses = atoms.get_masses()
if bonds is None:
bonds = []
if angles is None:
angles = []
if dihedrals is None:
dihedrals = []
self.n = len(bonds) + len(angles) + len(dihedrals)
self.constraints = []
for bond in bonds:
masses_bond = masses[bond[1]]
self.constraints.append(self.FixBondLengthAlt(bond[0], bond[1],
masses_bond))
for angle in angles:
masses_angle = masses[angle[1]]
self.constraints.append(self.FixAngle(angle[0], angle[1],
masses_angle))
for dihedral in dihedrals:
masses_dihedral = masses[dihedral[1]]
self.constraints.append(self.FixDihedral(dihedral[0],
dihedral[1],
masses_dihedral))
self.epsilon = epsilon
#copy case for __init__
else:
self.constraints = _copy_init
self.n = len(self.constraints)
self.epsilon = epsilon
def adjust_positions(self, old, new):
for constraint in self.constraints:
constraint.set_h_vectors(old)
for j in range(50):
maxerr = 0.0
for constraint in self.constraints:
constraint.adjust_positions(old, new)
maxerr = max(abs(constraint.sigma), maxerr)
if maxerr < self.epsilon:
return
raise ValueError('Shake did not converge.')
def adjust_forces(self, positions, forces):
#Project out translations and rotations and all other constraints
N = len(forces)
list2_constraints = list(np.zeros((6, N, 3)))
tx, ty, tz, rx, ry, rz = list2_constraints
list_constraints = [r.ravel() for r in list2_constraints]
tx[:, 0] = 1.0
ty[:, 1] = 1.0
tz[:, 2] = 1.0
ff = forces.ravel()
#Calculate the center of mass
center = positions.sum(axis=0) / N
rx[:, 1] = -(positions[:, 2] - center[2])
rx[:, 2] = positions[:, 1] - center[1]
ry[:, 0] = positions[:, 2] - center[2]
ry[:, 2] = -(positions[:, 0] - center[0])
rz[:, 0] = -(positions[:, 1] - center[1])
rz[:, 1] = positions[:, 0] - center[0]
#Normalizing transl., rotat. constraints
for r in list2_constraints:
r /= np.linalg.norm(r.ravel())
#Add all angle, etc. constraint vectors
for constraint in self.constraints:
constraint.adjust_forces(positions, forces)
list_constraints.insert(0, constraint.h)
#QR DECOMPOSITION - GRAM SCHMIDT
list_constraints = [r.ravel() for r in list_constraints]
aa = np.column_stack(list_constraints)
(aa, bb) = np.linalg.qr(aa, mode = 'full')
#Projektion
hh = []
for i, constraint in enumerate(self.constraints):
hh.append(aa[:, i] * np.row_stack(aa[:, i]))
txx = aa[:, self.n] * np.row_stack(aa[:, self.n])
tyy = aa[:, self.n+1] * np.row_stack(aa[:, self.n+1])
tzz = aa[:, self.n+2] * np.row_stack(aa[:, self.n+2])
rxx = aa[:, self.n+3] * np.row_stack(aa[:, self.n+3])
ryy = aa[:, self.n+4] * np.row_stack(aa[:, self.n+4])
rzz = aa[:, self.n+5] * np.row_stack(aa[:, self.n+5])
T = txx + tyy + tzz + rxx + ryy + rzz
for vec in hh:
T += vec
ff = np.dot(T, np.row_stack(ff))
forces[:, :] -= np.dot(T, np.row_stack(ff)).reshape(-1, 3)
def copy(self):
return FixInternals(epsilon=self.epsilon, _copy_init=self.constraints)
def __repr__(self):
constraints = repr(self.constraints)
return 'FixInternals(_copy_init=%s, epsilon=%s)' % (constraints,
repr(self.epsilon))
def __str__(self):
return '\n'.join([repr(c) for c in self.constraints])
#Classes for internal use in FixInternals
class FixBondLengthAlt:
"""Constraint subobject for fixing bond length within FixInternals."""
def __init__(self, bond, indices, masses, maxstep=0.01):
"""Fix distance between atoms with indices a1, a2."""
self.indices = indices
self.bond = bond
self.h1, self.h2 = None
self.masses = masses
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
dist1 = pos[self.indices[0]] - pos[self.indices[1]]
self.h1 = 2 * dist1
self.h2 = -self.h1
def adjust_positions(self, old, new):
h1 = self.h1 / self.masses[0]
h2 = self.h2 / self.masses[1]
dist1 = new[self.indices[0]] - new[self.indices[1]]
dist = np.dot(dist1, dist1)
self.sigma = dist - self.bond**2
lamda = -self.sigma / (2 * np.dot(dist1, (h1 - h2)))
new[self.indices[0]] += lamda * h1
new[self.indices[1]] += lamda * h2
def adjust_forces(self, positions, forces):
self.h1 = 2 * (positions[self.indices[0]] -
positions[self.indices[1]])
self.h2 = -self.h1
self.h = np.zeros([len(forces)*3])
self.h[(self.indices[0])*3] = self.h1[0]
self.h[(self.indices[0])*3+1] = self.h1[1]
self.h[(self.indices[0])*3+2] = self.h1[2]
self.h[(self.indices[1])*3] = self.h2[0]
self.h[(self.indices[1])*3+1] = self.h2[1]
self.h[(self.indices[1])*3+2] = self.h2[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixBondLengthAlt(%d, %d, %d)' % \
tuple(self.bond, self.indices)
class FixAngle:
"""Constraint object for fixing an angle within
FixInternals."""
def __init__(self, angle, indices, masses):
"""Fix atom movement to construct a constant angle."""
self.indices = indices
self.a1m, self.a2m, self.a3m = masses
self.angle = np.cos(angle)
self.h1 = self.h2 = self.h3 = None
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
r21 = pos[self.indices[0]] - pos[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = pos[self.indices[2]] - pos[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.h1 = -2 * angle * ((angle * e21 - e23) / (r21_len))
self.h3 = -2 * angle * ((angle * e23 - e21) / (r23_len))
self.h2 = -(self.h1 + self.h3)
def adjust_positions(self, oldpositions, newpositions):
r21 = newpositions[self.indices[0]] - newpositions[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.sigma = (angle - self.angle) * (angle + self.angle)
h1 = self.h1 / self.a1m
h3 = self.h3 / self.a3m
h2 = self.h2 / self.a2m
h21 = h1 - h2
h23 = h3 - h2
# Calculating new positions
deriv = (((np.dot(r21, h23) + np.dot(r23, h21))
/ (r21_len * r23_len))
- (np.dot(r21, h21) / (r21_len * r21_len)
+ np.dot(r23, h23) / (r23_len * r23_len)) * angle)
deriv *= 2 * angle
lamda = -self.sigma / deriv
newpositions[self.indices[0]] += lamda * h1
newpositions[self.indices[1]] += lamda * h2
newpositions[self.indices[2]] += lamda * h3
def adjust_forces(self, positions, forces):
r21 = positions[self.indices[0]] - positions[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = positions[self.indices[2]] - positions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.h1 = -2 * angle * (angle * e21 - e23) / r21_len
self.h3 = -2 * angle * (angle * e23 - e21) / r23_len
self.h2 = -(self.h1 + self.h3)
self.h = np.zeros([len(positions)*3])
self.h[(self.indices[0])*3] = self.h1[0]
self.h[(self.indices[0])*3+1] = self.h1[1]
self.h[(self.indices[0])*3+2] = self.h1[2]
self.h[(self.indices[1])*3] = self.h2[0]
self.h[(self.indices[1])*3+1] = self.h2[1]
self.h[(self.indices[1])*3+2] = self.h2[2]
self.h[(self.indices[2])*3] = self.h3[0]
self.h[(self.indices[2])*3+1] = self.h3[1]
self.h[(self.indices[2])*3+2] = self.h3[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixAngle(%s, %f)' % (tuple(self.indices),
np.arccos(self.angle))
class FixDihedral:
"""Constraint object for fixing an dihedral using
the shake algorithm. This one allows also other constraints."""
def __init__(self, angle, indices, masses):
"""Fix atom movement to construct a constant dihedral angle."""
self.indices = indices
self.a1m, self.a2m, self.a3m, self.a4m = masses
self.angle = np.cos(angle)
self.h1 = self.h2 = self.h3 = self.h4 = None
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
r12 = pos[self.indices[1]] - pos[self.indices[0]]
r12_len = np.linalg.norm(r12)
e12 = r12 / r12_len
r23 = pos[self.indices[2]] - pos[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
r34 = pos[self.indices[3]] - pos[self.indices[2]]
r34_len = np.linalg.norm(r34)
e34 = r34 / r34_len
a = -r12 - np.dot(-r12, e23) * e23
a_len = np.linalg.norm(a)
ea = a / a_len
b = r34 - np.dot(r34, e23) * e23
b_len = np.linalg.norm(b)
eb = b / b_len
angle = np.dot(ea, eb).clip(-1.0, 1.0)
self.h1 = (eb - angle * ea) / a_len
self.h4 = (ea - angle * eb) / b_len
self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len -1)
self.h2 += np.dot(r34, e23) / r23_len * self.h4
self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
self.h3 += np.dot(r12, e23) / r23_len * self.h1
def adjust_positions(self, oldpositions, newpositions):
r12 = newpositions[self.indices[1]] - newpositions[self.indices[0]]
r12_len = np.linalg.norm(r12)
e12 = r12 / r12_len
r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
r34 = newpositions[self.indices[3]] - newpositions[self.indices[2]]
r34_len = np.linalg.norm(r34)
e34 = r34 / r34_len
n1 = np.cross(r12, r23)
n1_len = np.linalg.norm(n1)
n1e = n1 / n1_len
n2 = np.cross(r23, r34)
n2_len = np.linalg.norm(n2)
n2e = n2 / n2_len
angle = np.dot(n1e, n2e).clip(-1.0, 1.0)
self.sigma = (angle - self.angle) * (angle + self.angle)
h1 = self.h1 / self.a1m
h2 = self.h2 / self.a2m
h3 = self.h3 / self.a3m
h4 = self.h4 / self.a4m
h12 = h2 - h1
h23 = h3 - h2
h34 = h4 - h3
deriv = ((np.dot(n1, np.cross(r34, h23) + np.cross(h34, r23))
+ np.dot(n2, np.cross(r23, h12) + np.cross(h23, r12)))
/ (n1_len * n2_len))
deriv -= (((np.dot(n1, np.cross(r23, h12) + np.cross(h23, r12))
/ n1_len**2)
+ (np.dot(n2, np.cross(r34, h23) + np.cross(h34, r23))
/ n2_len**2)) * angle)
deriv *= -2 * angle
lamda = -self.sigma / deriv
newpositions[self.indices[0]] += lamda * h1
newpositions[self.indices[1]] += lamda * h2
newpositions[self.indices[2]] += lamda * h3
newpositions[self.indices[3]] += lamda * h4
def adjust_forces(self, positions, forces):
r12 = positions[self.indices[1]] - positions[self.indices[0]]
r12_len = np.linalg.norm(r12)
e12 = r12 / r12_len
r23 = positions[self.indices[2]] - positions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
r34 = positions[self.indices[3]] - positions[self.indices[2]]
r34_len = np.linalg.norm(r34)
e34 = r34 / r34_len
a = -r12 - np.dot(-r12, e23) * e23
a_len = np.linalg.norm(a)
ea = a / a_len
b = r34 - np.dot(r34, e23) * e23
b_len = np.linalg.norm(b)
eb = b / b_len
angle = np.dot(ea, eb).clip(-1.0, 1.0)
self.h1 = (eb - angle * ea) / a_len
self.h4 = (ea - angle * eb) / b_len
self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len - 1)
self.h2 += np.dot(r34, e23) / r23_len * self.h4
self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
self.h3 -= np.dot(-r12, e23) / r23_len * self.h1
self.h = np.zeros([len(positions)*3])
self.h[(self.indices[0])*3] = self.h1[0]
self.h[(self.indices[0])*3+1] = self.h1[1]
self.h[(self.indices[0])*3+2] = self.h1[2]
self.h[(self.indices[1])*3] = self.h2[0]
self.h[(self.indices[1])*3+1] = self.h2[1]
self.h[(self.indices[1])*3+2] = self.h2[2]
self.h[(self.indices[2])*3] = self.h3[0]
self.h[(self.indices[2])*3+1] = self.h3[1]
self.h[(self.indices[2])*3+2] = self.h3[2]
self.h[(self.indices[3])*3] = self.h4[0]
self.h[(self.indices[3])*3+1] = self.h4[1]
self.h[(self.indices[3])*3+2] = self.h4[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixDihedral(%s, %f)' % (tuple(self.indices), self.angle)
class BondSpring(FixConstraint):
"""Forces two atoms to stay close together by applying no force if they
are below threshhold_length, and applying a Hookian force when the
distance between them exceeds the thresshhold_length.
a1, a2 : indices of atoms 1 and 2
a2 can alternately be a position in space to tether a1 to
threshhold_length (float) : the length below which there is no force
springconstant (integer) : Hook's law constant to apply when distance
between the two atoms exceeds threshhold_length, dimensions of
(force / length)
"""
def __init__(self, a1, a2, threshhold_length, springconstant):
if type(a2) == int:
self._type = 2 # two atoms tethered together
self.indices = [a1, a2]
else:
self._type = 1 # one atom tethered to a point in space
self.index = a1
self.origin = np.array(a2)
self.threshhold = threshhold_length
self.spring = springconstant
def adjust_positions(self, oldpositions, newpositions):
pass
def adjust_forces(self, positions, forces):
if self._type == 2:
p1, p2 = positions[self.indices]
else:
p1 = positions[self.index]
p2 = self.origin
displace = p2 - p1
bondlength = np.linalg.norm(displace)
if bondlength > self.threshhold:
magnitude = self.spring * (bondlength - self.threshhold)
direction = displace / np.linalg.norm(displace)
if self._type == 2:
forces[self.indices[0]] += direction * magnitude / 2.
forces[self.indices[1]] -= direction * magnitude / 2.
else:
forces[self.index] += direction * magnitude
def __repr__(self):
if self._type == 2:
return 'BondSpring(%d, %d)' % tuple(self.indices)
else:
return 'BondSpring(%d) to cartesian' % self.index
def copy(self):
if self._type == 2:
return BondSpring(a1=self.indices[0], a2=self.indices[1],
threshhold_length=self.threshhold,
springconstant=self.spring)
else:
return BondSpring(a1=self.index, a2=self.origin,
threshhold_length=self.threshhold,
springconstant=self.spring)
class Filter:
"""Subset filter class."""
def __init__(self, atoms, indices=None, mask=None):
"""Filter atoms.
This filter can be used to hide degrees of freedom in an Atoms
object.
Parameters
----------
indices : list of int
Indices for those atoms that should remain visible.
mask : list of bool
One boolean per atom indicating if the atom should remain
visible or not.
"""
self.atoms = atoms
self.constraints = []
if indices is None and mask is None:
raise ValueError('Use "indices" or "mask".')
if indices is not None and mask is not None:
raise ValueError('Use only one of "indices" and "mask".')
if mask is not None:
self.index = np.asarray(mask, bool)
self.n = self.index.sum()
else:
self.index = np.asarray(indices, int)
self.n = len(self.index)
def get_cell(self):
"""Returns the computational cell.
The computational cell is the same as for the original system.
"""
return self.atoms.get_cell()
def get_pbc(self):
"""Returns the periodic boundary conditions.
The boundary conditions are the same as for the original system.
"""
return self.atoms.get_pbc()
def get_positions(self):
"Return the positions of the visible atoms."
return self.atoms.get_positions()[self.index]
def set_positions(self, positions):
"Set the positions of the visible atoms."
pos = self.atoms.get_positions()
pos[self.index] = positions
self.atoms.set_positions(pos)
positions = property(get_positions, set_positions,
doc='Positions of the atoms')
def get_momenta(self):
"Return the momenta of the visible atoms."
return self.atoms.get_momenta()[self.index]
def set_momenta(self, momenta):
"Set the momenta of the visible atoms."
mom = self.atoms.get_momenta()
mom[self.index] = momenta
self.atoms.set_momenta(mom)
def get_atomic_numbers(self):
"Return the atomic numbers of the visible atoms."
return self.atoms.get_atomic_numbers()[self.index]
def set_atomic_numbers(self, atomic_numbers):
"Set the atomic numbers of the visible atoms."
z = self.atoms.get_atomic_numbers()
z[self.index] = atomic_numbers
self.atoms.set_atomic_numbers(z)
def get_tags(self):
"Return the tags of the visible atoms."
return self.atoms.get_tags()[self.index]
def set_tags(self, tags):
"Set the tags of the visible atoms."
tg = self.atoms.get_tags()
tg[self.index] = tags
self.atoms.set_tags(tg)
def get_forces(self, *args, **kwargs):
return self.atoms.get_forces(*args, **kwargs)[self.index]
def get_stress(self):
return self.atoms.get_stress()
def get_stresses(self):
return self.atoms.get_stresses()[self.index]
def get_masses(self):
return self.atoms.get_masses()[self.index]
def get_potential_energy(self):
"""Calculate potential energy.
Returns the potential energy of the full system.
"""
return self.atoms.get_potential_energy()
def get_chemical_symbols(self):
return self.atoms.get_chemical_symbols()
def get_initial_magnetic_moments(self):
return self.atoms.get_initial_magnetic_moments()
def get_calculator(self):
"""Returns the calculator.
WARNING: The calculator is unaware of this filter, and sees a
different number of atoms.
"""
return self.atoms.get_calculator()
def has(self, name):
"""Check for existance of array."""
return self.atoms.has(name)
def __len__(self):
"Return the number of movable atoms."
return self.n
def __getitem__(self, i):
"Return an atom."
return self.atoms[self.index[i]]
class StrainFilter(Filter):
"""Modify the supercell while keeping the scaled positions fixed.
Presents the strain of the supercell as the generalized positions,
and the global stress tensor (times the volume) as the generalized
force.
This filter can be used to relax the unit cell until the stress is
zero. If MDMin is used for this, the timestep (dt) to be used
depends on the system size. 0.01/x where x is a typical dimension
seems like a good choice.
The stress and strain are presented as 6-vectors, the order of the
components follow the standard engingeering practice: xx, yy, zz,
yz, xz, xy.
"""
def __init__(self, atoms, mask=None):
"""Create a filter applying a homogeneous strain to a list of atoms.
The first argument, atoms, is the atoms object.
The optional second argument, mask, is a list of six booleans,
indicating which of the six independent components of the
strain that are allowed to become non-zero. It defaults to
[1,1,1,1,1,1].
"""
self.atoms = atoms
self.strain = np.zeros(6)
if mask is None:
self.mask = np.ones(6)
else:
self.mask = np.array(mask)
self.index = np.arange(len(atoms))
self.n = self.index.sum()
self.origcell = atoms.get_cell()
def get_positions(self):
return self.strain.reshape((2, 3))
def set_positions(self, new):
new = new.ravel() * self.mask
eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]],
[0.5 * new[5], 1.0 + new[1], 0.5 * new[3]],
[0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]])
self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True)
self.strain[:] = new
def get_forces(self):
stress = self.atoms.get_stress()
return -self.atoms.get_volume() * (stress * self.mask).reshape((2, 3))
def get_potential_energy(self):
return self.atoms.get_potential_energy()
def has(self, x):
return self.atoms.has(x)
def __len__(self):
return 2
class UnitCellFilter(Filter):
"""Modify the supercell and the atom positions. """
def __init__(self, atoms, mask=None):
"""Create a filter that returns the atomic forces and unit
cell stresses together, so they can simultaneously be
minimized.
The first argument, atoms, is the atoms object.
The optional second argument, mask, is a list of booleans,
indicating which of the six independent
components of the strain are relaxed.
1, True = relax to zero
0, False = fixed, ignore this component
use atom Constraints, e.g. FixAtoms, to control relaxation of
the atoms.
#this should be equivalent to the StrainFilter
>>> atoms = Atoms(...)
>>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
>>> ucf = UCFilter(atoms)
You should not attach this UCFilter object to a
trajectory. Instead, create a trajectory for the atoms, and
attach it to an optimizer like this:
>>> atoms = Atoms(...)
>>> ucf = UCFilter(atoms)
>>> qn = QuasiNewton(ucf)
>>> traj = PickleTrajectory('TiO2.traj','w',atoms)
>>> qn.attach(traj)
>>> qn.run(fmax=0.05)
Helpful conversion table
========================
0.05 eV/A^3 = 8 GPA
0.003 eV/A^3 = 0.48 GPa
0.0006 eV/A^3 = 0.096 GPa
0.0003 eV/A^3 = 0.048 GPa
0.0001 eV/A^3 = 0.02 GPa
"""
Filter.__init__(self, atoms, indices=range(len(atoms)))
self.atoms = atoms
self.strain = np.zeros(6)
if mask is None:
self.mask = np.ones(6)
else:
self.mask = np.array(mask)
self.origcell = atoms.get_cell()
def get_positions(self):
'''
this returns an array with shape (natoms + 2,3).
the first natoms rows are the positions of the atoms, the last
two rows are the strains associated with the unit cell
'''
atom_positions = self.atoms.get_positions()
strains = self.strain.reshape((2, 3))
natoms = len(self.atoms)
all_pos = np.zeros((natoms + 2, 3), np.float)
all_pos[0:natoms, :] = atom_positions
all_pos[natoms:, :] = strains
return all_pos
def set_positions(self, new):
'''
new is an array with shape (natoms+2,3).
the first natoms rows are the positions of the atoms, the last
two rows are the strains used to change the cell shape.
The atom positions are set first, then the unit cell is
changed keeping the atoms in their scaled positions.
'''
natoms = len(self.atoms)
atom_positions = new[0:natoms, :]
self.atoms.set_positions(atom_positions)
new = new[natoms:, :] #this is only the strains
new = new.ravel() * self.mask
eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]],
[0.5 * new[5], 1.0 + new[1], 0.5 * new[3]],
[0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]])
self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True)
self.strain[:] = new
def get_forces(self, apply_constraint=False):
'''
returns an array with shape (natoms+2,3) of the atomic forces
and unit cell stresses.
the first natoms rows are the forces on the atoms, the last
two rows are the stresses on the unit cell, which have been
reshaped to look like "atomic forces". i.e.,
f[-2] = -vol*[sxx,syy,szz]*mask[0:3]
f[-1] = -vol*[syz, sxz, sxy]*mask[3:]
apply_constraint is an argument expected by ase
'''
stress = self.atoms.get_stress()
atom_forces = self.atoms.get_forces()
natoms = len(self.atoms)
all_forces = np.zeros((natoms+2, 3), np.float)
all_forces[0:natoms, :] = atom_forces
vol = self.atoms.get_volume()
stress_forces = -vol * (stress * self.mask).reshape((2, 3))
all_forces[natoms:, :] = stress_forces
return all_forces
def get_potential_energy(self):
return self.atoms.get_potential_energy()
def has(self, x):
return self.atoms.has(x)
def __len__(self):
return (2 + len(self.atoms))
|