/usr/share/pyshared/ase/dft/kpoints.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | from __future__ import division
import warnings
import numpy as np
def monkhorst_pack(size):
"""Construct a uniform sampling of k-space of given size."""
if np.less_equal(size, 0).any():
raise ValueError('Illegal size: %s' % list(size))
kpts = np.indices(size).transpose((1, 2, 3, 0)).reshape((-1, 3))
return (kpts + 0.5) / size - 0.5
def get_monkhorst_pack_size_and_offset(kpts):
"""Find Monkhorst-Pack size and offset.
Returns (size, offset), where::
kpts = monkhorst_pack(size) + offset.
The set of k-points must not have been symmetry reduced."""
if len(kpts) == 1:
return np.ones(3, int), np.array(kpts[0], dtype=float)
size = np.zeros(3, int)
for c in range(3):
# Determine increment between k-points along current axis
delta = max(np.diff(np.sort(kpts[:, c])))
# Determine number of k-points as inverse of distance between kpoints
if delta > 1e-8:
size[c] = int(round(1.0 / delta))
else:
size[c] = 1
kpts0 = monkhorst_pack(size)
offsets = kpts - kpts0
# All offsets must be identical:
if (offsets.ptp(axis=0) > 1e-9).any():
raise ValueError('Not an ASE-style Monkhorst-Pack grid!')
return size, offsets[0].copy()
def get_monkhorst_shape(kpts):
warnings.warn('Use get_monkhorst_pack_size_and_offset()[0] instead.')
return get_monkhorst_pack_size_and_offset(kpts)[0]
def kpoint_convert(cell_cv, skpts_kc=None, ckpts_kv=None):
"""Convert k-points between scaled and cartesian coordinates.
Given the atomic unit cell, and either the scaled or cartesian k-point
coordinates, the other is determined.
The k-point arrays can be either a single point, or a list of points,
i.e. the dimension k can be empty or multidimensional.
"""
if ckpts_kv is None:
icell_cv = 2 * np.pi * np.linalg.inv(cell_cv).T
return np.dot(skpts_kc, icell_cv)
elif skpts_kc is None:
return np.dot(ckpts_kv, cell_cv.T) / (2 * np.pi)
else:
raise KeyError('Either scaled or cartesian coordinates must be given.')
def get_bandpath(points, cell, npoints=50):
"""Make a list of kpoints defining the path between the given points.
points: list
List of special IBZ point pairs, e.g. ``points =
[W, L, Gamma, X, W, K]``. These should be given in
scaled coordinates.
cell: 3x3 ndarray
Unit cell of the atoms.
npoints: int
Length of the output kpts list.
Return list of k-points, list of x-coordinates and list of
x-coordinates of special points."""
points = np.asarray(points)
dists = points[1:] - points[:-1]
lengths = [np.linalg.norm(d) for d in kpoint_convert(cell, skpts_kc=dists)]
length = sum(lengths)
kpts = []
x0 = 0
x = []
X = [0]
for P, d, L in zip(points[:-1], dists, lengths):
n = int(round(L * (npoints - 1 - len(x)) / (length - x0)))
for t in np.linspace(0, 1, n, endpoint=False):
kpts.append(P + t * d)
x.append(x0 + t * L)
x0 += L
X.append(x0)
kpts.append(points[-1])
x.append(x0)
return kpts, np.array(x), np.array(X)
# The following is a list of the critical points in the 1. Brillouin zone
# for some typical crystal structures.
# (In units of the reciprocal basis vectors)
# See http://en.wikipedia.org/wiki/Brillouin_zone
ibz_points = {'cubic': {'Gamma': [0, 0, 0 ],
'X': [0, 0 / 2, 1 / 2],
'R': [1 / 2, 1 / 2, 1 / 2],
'M': [0 / 2, 1 / 2, 1 / 2]},
'fcc': {'Gamma': [0, 0, 0 ],
'X': [1 / 2, 0, 1 / 2],
'W': [1 / 2, 1 / 4, 3 / 4],
'K': [3 / 8, 3 / 8, 3 / 4],
'U': [5 / 8, 1 / 4, 5 / 8],
'L': [1 / 2, 1 / 2, 1 / 2]},
'bcc': {'Gamma': [0, 0, 0 ],
'H': [1 / 2, -1 / 2, 1 / 2],
'N': [0, 0, 1 / 2],
'P': [1 / 4, 1 / 4, 1 / 4]},
'hexagonal':
{'Gamma': [0, 0, 0 ],
'M': [0, 1 / 2, 0 ],
'K': [-1 / 3, 1 / 3, 0 ],
'A': [0, 0, 1 / 2 ],
'L': [0, 1 / 2, 1 / 2 ],
'H': [-1 / 3, 1 / 3, 1 / 2 ]},
'tetragonal':
{'Gamma': [0, 0, 0 ],
'X': [1 / 2, 0, 0 ],
'M': [1 / 2, 1 / 2, 0 ],
'Z': [0, 0, 1 / 2 ],
'R': [1 / 2, 0, 1 / 2 ],
'A': [1 / 2, 1 / 2, 1 / 2 ]},
'orthorhombic':
{'Gamma': [0, 0, 0 ],
'R': [1 / 2, 1 / 2, 1 / 2 ],
'S': [1 / 2, 1 / 2, 0 ],
'T': [0, 1 / 2, 1 / 2 ],
'U': [1 / 2, 0, 1 / 2 ],
'X': [1 / 2, 0, 0 ],
'Y': [0, 1 / 2, 0 ],
'Z': [0, 0, 1 / 2 ]},
}
# ChadiCohen k point grids. The k point grids are given in units of the
# reciprocal unit cell. The variables are named after the following
# convention: cc+'<Nkpoints>'+_+'shape'. For example an 18 k point
# sq(3)xsq(3) is named 'cc18_sq3xsq3'.
cc6_1x1 = np.array([1, 1, 0, 1, 0, 0, 0, -1, 0, -1, -1, 0, -1, 0, 0,
0, 1, 0]).reshape((6, 3)) / 3.0
cc12_2x3 = np.array([3, 4, 0, 3, 10, 0, 6, 8, 0, 3, -2, 0, 6, -4, 0,
6, 2, 0, -3, 8, 0, -3, 2, 0, -3, -4, 0, -6, 4, 0, -6, -2, 0, -6,
-8, 0]).reshape((12, 3)) / 18.0
cc18_sq3xsq3 = np.array([2, 2, 0, 4, 4, 0, 8, 2, 0, 4, -2, 0, 8, -4,
0, 10, -2, 0, 10, -8, 0, 8, -10, 0, 2, -10, 0, 4, -8, 0, -2, -8,
0, 2, -4, 0, -4, -4, 0, -2, -2, 0, -4, 2, 0, -2, 4, 0, -8, 4, 0,
-4, 8, 0]).reshape((18, 3)) / 18.0
cc18_1x1 = np.array([2, 4, 0, 2, 10, 0, 4, 8, 0, 8, 4, 0, 8, 10, 0,
10, 8, 0, 2, -2, 0, 4, -4, 0, 4, 2, 0, -2, 8, 0, -2, 2, 0, -2, -4,
0, -4, 4, 0, -4, -2, 0, -4, -8, 0, -8, 2, 0, -8, -4, 0, -10, -2,
0]).reshape((18, 3)) / 18.0
cc54_sq3xsq3 = np.array([4, -10, 0, 6, -10, 0, 0, -8, 0, 2, -8, 0, 6,
-8, 0, 8, -8, 0, -4, -6, 0, -2, -6, 0, 2, -6, 0, 4, -6, 0, 8, -6,
0, 10, -6, 0, -6, -4, 0, -2, -4, 0, 0, -4, 0, 4, -4, 0, 6, -4, 0,
10, -4, 0, -6, -2, 0, -4, -2, 0, 0, -2, 0, 2, -2, 0, 6, -2, 0, 8,
-2, 0, -8, 0, 0, -4, 0, 0, -2, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0,
-8, 2, 0, -6, 2, 0, -2, 2, 0, 0, 2, 0, 4, 2, 0, 6, 2, 0, -10, 4,
0, -6, 4, 0, -4, 4, 0, 0, 4, 0, 2, 4, 0, 6, 4, 0, -10, 6, 0, -8,
6, 0, -4, 6, 0, -2, 6, 0, 2, 6, 0, 4, 6, 0, -8, 8, 0, -6, 8, 0,
-2, 8, 0, 0, 8, 0, -6, 10, 0, -4, 10, 0]).reshape((54, 3)) / 18.0
cc54_1x1 = np.array([2, 2, 0, 4, 4, 0, 8, 8, 0, 6, 8, 0, 4, 6, 0, 6,
10, 0, 4, 10, 0, 2, 6, 0, 2, 8, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, -2,
6, 0, -2, 4, 0, -4, 6, 0, -6, 4, 0, -4, 2, 0, -6, 2, 0, -2, 0, 0,
-4, 0, 0, -8, 0, 0, -8, -2, 0, -6, -2, 0, -10, -4, 0, -10, -6, 0,
-6, -4, 0, -8, -6, 0, -2, -2, 0, -4, -4, 0, -8, -8, 0, 4, -2, 0,
6, -2, 0, 6, -4, 0, 2, 0, 0, 4, 0, 0, 6, 2, 0, 6, 4, 0, 8, 6, 0,
8, 0, 0, 8, 2, 0, 10, 4, 0, 10, 6, 0, 2, -4, 0, 2, -6, 0, 4, -6,
0, 0, -2, 0, 0, -4, 0, -2, -6, 0, -4, -6, 0, -6, -8, 0, 0, -8, 0,
-2, -8, 0, -4, -10, 0, -6, -10, 0]).reshape((54, 3)) / 18.0
cc162_sq3xsq3 = np.array([-8, 16, 0, -10, 14, 0, -7, 14, 0, -4, 14,
0, -11, 13, 0, -8, 13, 0, -5, 13, 0, -2, 13, 0, -13, 11, 0, -10,
11, 0, -7, 11, 0, -4, 11, 0, -1, 11, 0, 2, 11, 0, -14, 10, 0, -11,
10, 0, -8, 10, 0, -5, 10, 0, -2, 10, 0, 1, 10, 0, 4, 10, 0, -16,
8, 0, -13, 8, 0, -10, 8, 0, -7, 8, 0, -4, 8, 0, -1, 8, 0, 2, 8, 0,
5, 8, 0, 8, 8, 0, -14, 7, 0, -11, 7, 0, -8, 7, 0, -5, 7, 0, -2, 7,
0, 1, 7, 0, 4, 7, 0, 7, 7, 0, 10, 7, 0, -13, 5, 0, -10, 5, 0, -7,
5, 0, -4, 5, 0, -1, 5, 0, 2, 5, 0, 5, 5, 0, 8, 5, 0, 11, 5, 0,
-14, 4, 0, -11, 4, 0, -8, 4, 0, -5, 4, 0, -2, 4, 0, 1, 4, 0, 4, 4,
0, 7, 4, 0, 10, 4, 0, -13, 2, 0, -10, 2, 0, -7, 2, 0, -4, 2, 0,
-1, 2, 0, 2, 2, 0, 5, 2, 0, 8, 2, 0, 11, 2, 0, -11, 1, 0, -8, 1,
0, -5, 1, 0, -2, 1, 0, 1, 1, 0, 4, 1, 0, 7, 1, 0, 10, 1, 0, 13, 1,
0, -10, -1, 0, -7, -1, 0, -4, -1, 0, -1, -1, 0, 2, -1, 0, 5, -1,
0, 8, -1, 0, 11, -1, 0, 14, -1, 0, -11, -2, 0, -8, -2, 0, -5, -2,
0, -2, -2, 0, 1, -2, 0, 4, -2, 0, 7, -2, 0, 10, -2, 0, 13, -2, 0,
-10, -4, 0, -7, -4, 0, -4, -4, 0, -1, -4, 0, 2, -4, 0, 5, -4, 0,
8, -4, 0, 11, -4, 0, 14, -4, 0, -8, -5, 0, -5, -5, 0, -2, -5, 0,
1, -5, 0, 4, -5, 0, 7, -5, 0, 10, -5, 0, 13, -5, 0, 16, -5, 0, -7,
-7, 0, -4, -7, 0, -1, -7, 0, 2, -7, 0, 5, -7, 0, 8, -7, 0, 11, -7,
0, 14, -7, 0, 17, -7, 0, -8, -8, 0, -5, -8, 0, -2, -8, 0, 1, -8,
0, 4, -8, 0, 7, -8, 0, 10, -8, 0, 13, -8, 0, 16, -8, 0, -7, -10,
0, -4, -10, 0, -1, -10, 0, 2, -10, 0, 5, -10, 0, 8, -10, 0, 11,
-10, 0, 14, -10, 0, 17, -10, 0, -5, -11, 0, -2, -11, 0, 1, -11, 0,
4, -11, 0, 7, -11, 0, 10, -11, 0, 13, -11, 0, 16, -11, 0, -1, -13,
0, 2, -13, 0, 5, -13, 0, 8, -13, 0, 11, -13, 0, 14, -13, 0, 1,
-14, 0, 4, -14, 0, 7, -14, 0, 10, -14, 0, 13, -14, 0, 5, -16, 0,
8, -16, 0, 11, -16, 0, 7, -17, 0, 10, -17, 0]).reshape((162, 3)) / 27.0
cc162_1x1 = np.array([-8, -16, 0, -10, -14, 0, -7, -14, 0, -4, -14,
0, -11, -13, 0, -8, -13, 0, -5, -13, 0, -2, -13, 0, -13, -11, 0,
-10, -11, 0, -7, -11, 0, -4, -11, 0, -1, -11, 0, 2, -11, 0, -14,
-10, 0, -11, -10, 0, -8, -10, 0, -5, -10, 0, -2, -10, 0, 1, -10,
0, 4, -10, 0, -16, -8, 0, -13, -8, 0, -10, -8, 0, -7, -8, 0, -4,
-8, 0, -1, -8, 0, 2, -8, 0, 5, -8, 0, 8, -8, 0, -14, -7, 0, -11,
-7, 0, -8, -7, 0, -5, -7, 0, -2, -7, 0, 1, -7, 0, 4, -7, 0, 7, -7,
0, 10, -7, 0, -13, -5, 0, -10, -5, 0, -7, -5, 0, -4, -5, 0, -1,
-5, 0, 2, -5, 0, 5, -5, 0, 8, -5, 0, 11, -5, 0, -14, -4, 0, -11,
-4, 0, -8, -4, 0, -5, -4, 0, -2, -4, 0, 1, -4, 0, 4, -4, 0, 7, -4,
0, 10, -4, 0, -13, -2, 0, -10, -2, 0, -7, -2, 0, -4, -2, 0, -1,
-2, 0, 2, -2, 0, 5, -2, 0, 8, -2, 0, 11, -2, 0, -11, -1, 0, -8,
-1, 0, -5, -1, 0, -2, -1, 0, 1, -1, 0, 4, -1, 0, 7, -1, 0, 10, -1,
0, 13, -1, 0, -10, 1, 0, -7, 1, 0, -4, 1, 0, -1, 1, 0, 2, 1, 0, 5,
1, 0, 8, 1, 0, 11, 1, 0, 14, 1, 0, -11, 2, 0, -8, 2, 0, -5, 2, 0,
-2, 2, 0, 1, 2, 0, 4, 2, 0, 7, 2, 0, 10, 2, 0, 13, 2, 0, -10, 4,
0, -7, 4, 0, -4, 4, 0, -1, 4, 0, 2, 4, 0, 5, 4, 0, 8, 4, 0, 11, 4,
0, 14, 4, 0, -8, 5, 0, -5, 5, 0, -2, 5, 0, 1, 5, 0, 4, 5, 0, 7, 5,
0, 10, 5, 0, 13, 5, 0, 16, 5, 0, -7, 7, 0, -4, 7, 0, -1, 7, 0, 2,
7, 0, 5, 7, 0, 8, 7, 0, 11, 7, 0, 14, 7, 0, 17, 7, 0, -8, 8, 0,
-5, 8, 0, -2, 8, 0, 1, 8, 0, 4, 8, 0, 7, 8, 0, 10, 8, 0, 13, 8, 0,
16, 8, 0, -7, 10, 0, -4, 10, 0, -1, 10, 0, 2, 10, 0, 5, 10, 0, 8,
10, 0, 11, 10, 0, 14, 10, 0, 17, 10, 0, -5, 11, 0, -2, 11, 0, 1,
11, 0, 4, 11, 0, 7, 11, 0, 10, 11, 0, 13, 11, 0, 16, 11, 0, -1,
13, 0, 2, 13, 0, 5, 13, 0, 8, 13, 0, 11, 13, 0, 14, 13, 0, 1, 14,
0, 4, 14, 0, 7, 14, 0, 10, 14, 0, 13, 14, 0, 5, 16, 0, 8, 16, 0,
11, 16, 0, 7, 17, 0, 10, 17, 0]).reshape((162, 3)) / 27.0
|