/usr/share/pyshared/ase/dft/wannier.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | """ Maximally localized Wannier Functions
Find the set of maximally localized Wannier functions
using the spread functional of Marzari and Vanderbilt
(PRB 56, 1997 page 12847).
"""
from time import time
from math import sqrt, pi
from pickle import dump, load
import numpy as np
from ase.parallel import paropen
from ase.calculators.dacapo import Dacapo
from ase.dft.kpoints import get_monkhorst_pack_size_and_offset
from ase.transport.tools import dagger, normalize
dag = dagger
def gram_schmidt(U):
"""Orthonormalize columns of U according to the Gram-Schmidt procedure."""
for i, col in enumerate(U.T):
for col2 in U.T[:i]:
col -= col2 * np.dot(col2.conj(), col)
col /= np.linalg.norm(col)
def gram_schmidt_single(U, n):
"""Orthogonalize columns of U to column n"""
N = len(U.T)
v_n = U.T[n]
indices = range(N)
del indices[indices.index(n)]
for i in indices:
v_i = U.T[i]
v_i -= v_n * np.dot(v_n.conj(), v_i)
def lowdin(U, S=None):
"""Orthonormalize columns of U according to the Lowdin procedure.
If the overlap matrix is know, it can be specified in S.
"""
if S is None:
S = np.dot(dag(U), U)
eig, rot = np.linalg.eigh(S)
rot = np.dot(rot / np.sqrt(eig), dag(rot))
U[:] = np.dot(U, rot)
def neighbor_k_search(k_c, G_c, kpt_kc, tol=1e-4):
# search for k1 (in kpt_kc) and k0 (in alldir), such that
# k1 - k - G + k0 = 0
alldir_dc = np.array([[0,0,0],[1,0,0],[0,1,0],[0,0,1],
[1,1,0],[1,0,1],[0,1,1]], int)
for k0_c in alldir_dc:
for k1, k1_c in enumerate(kpt_kc):
if np.linalg.norm(k1_c - k_c - G_c + k0_c) < tol:
return k1, k0_c
print 'Wannier: Did not find matching kpoint for kpt=', k_c
print 'Probably non-uniform k-point grid'
raise NotImplementedError
def calculate_weights(cell_cc):
""" Weights are used for non-cubic cells, see PRB **61**, 10040"""
alldirs_dc = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1],
[1, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=int)
g = np.dot(cell_cc, cell_cc.T)
# NOTE: Only first 3 of following 6 weights are presently used:
w = np.zeros(6)
w[0] = g[0, 0] - g[0, 1] - g[0, 2]
w[1] = g[1, 1] - g[0, 1] - g[1, 2]
w[2] = g[2, 2] - g[0, 2] - g[1, 2]
w[3] = g[0, 1]
w[4] = g[0, 2]
w[5] = g[1, 2]
# Make sure that first 3 Gdir vectors are included -
# these are used to calculate Wanniercenters.
Gdir_dc = alldirs_dc[:3]
weight_d = w[:3]
for d in range(3, 6):
if abs(w[d]) > 1e-5:
Gdir_dc = np.concatenate((Gdir_dc, alldirs_dc[d:d + 1]))
weight_d = np.concatenate((weight_d, w[d:d + 1]))
weight_d /= max(abs(weight_d))
return weight_d, Gdir_dc
def random_orthogonal_matrix(dim, seed=None, real=False):
"""Generate a random orthogonal matrix"""
if seed is not None:
np.random.seed(seed)
H = np.random.rand(dim, dim)
np.add(dag(H), H, H)
np.multiply(.5, H, H)
if real:
gram_schmidt(H)
return H
else:
val, vec = np.linalg.eig(H)
return np.dot(vec * np.exp(1.j * val), dag(vec))
def steepest_descent(func, step=.005, tolerance=1e-6, **kwargs):
fvalueold = 0.
fvalue = fvalueold + 10
count=0
while abs((fvalue - fvalueold) / fvalue) > tolerance:
fvalueold = fvalue
dF = func.get_gradients()
func.step(dF * step, **kwargs)
fvalue = func.get_functional_value()
count += 1
print 'SteepestDescent: iter=%s, value=%s' % (count, fvalue)
def md_min(func, step=.25, tolerance=1e-6, verbose=False, **kwargs):
if verbose:
print 'Localize with step =', step, 'and tolerance =', tolerance
t = -time()
fvalueold = 0.
fvalue = fvalueold + 10
count = 0
V = np.zeros(func.get_gradients().shape, dtype=complex)
while abs((fvalue - fvalueold) / fvalue) > tolerance:
fvalueold = fvalue
dF = func.get_gradients()
V *= (dF * V.conj()).real > 0
V += step * dF
func.step(V, **kwargs)
fvalue = func.get_functional_value()
if fvalue < fvalueold:
step *= 0.5
count += 1
if verbose:
print 'MDmin: iter=%s, step=%s, value=%s' % (count, step, fvalue)
if verbose:
t += time()
print '%d iterations in %0.2f seconds (%0.2f ms/iter), endstep = %s' %(
count, t, t * 1000. / count, step)
def rotation_from_projection2(proj_nw, fixed):
V_ni = proj_nw
Nb, Nw = proj_nw.shape
M = fixed
L = Nw - M
print 'M=%i, L=%i, Nb=%i, Nw=%i' % (M, L, Nb, Nw)
U_ww = np.zeros((Nw, Nw), dtype=proj_nw.dtype)
c_ul = np.zeros((Nb-M, L), dtype=proj_nw.dtype)
for V_n in V_ni.T:
V_n /= np.linalg.norm(V_n)
# Find EDF
P_ui = V_ni[M:].copy()
la = np.linalg
for l in range(L):
norm_list = np.array([la.norm(v) for v in P_ui.T])
perm_list = np.argsort(-norm_list)
P_ui = P_ui[:, perm_list].copy() # largest norm to the left
P_ui[:, 0] /= la.norm(P_ui[:, 0]) # normalize
c_ul[:, l] = P_ui[:, 0] # save normalized EDF
gram_schmidt_single(P_ui, 0) # ortho remain. to this EDF
P_ui = P_ui[:, 1:].copy() # remove this EDF
U_ww[:M] = V_ni[:M, :]
U_ww[M:] = np.dot(c_ul.T.conj(), V_ni[M:])
gram_schmidt(U_ww)
return U_ww, c_ul
def rotation_from_projection(proj_nw, fixed, ortho=True):
"""Determine rotation and coefficient matrices from projections
proj_nw = <psi_n|p_w>
psi_n: eigenstates
p_w: localized function
Nb (n) = Number of bands
Nw (w) = Number of wannier functions
M (f) = Number of fixed states
L (l) = Number of extra degrees of freedom
U (u) = Number of non-fixed states
"""
Nb, Nw = proj_nw.shape
M = fixed
L = Nw - M
U_ww = np.empty((Nw, Nw), dtype=proj_nw.dtype)
U_ww[:M] = proj_nw[:M]
if L > 0:
proj_uw = proj_nw[M:]
eig_w, C_ww = np.linalg.eigh(np.dot(dag(proj_uw), proj_uw))
C_ul = np.dot(proj_uw, C_ww[:, np.argsort(-eig_w.real)[:L]])
#eig_u, C_uu = np.linalg.eigh(np.dot(proj_uw, dag(proj_uw)))
#C_ul = C_uu[:, np.argsort(-eig_u.real)[:L]]
U_ww[M:] = np.dot(dag(C_ul), proj_uw)
else:
C_ul = np.empty((Nb - M, 0))
normalize(C_ul)
if ortho:
lowdin(U_ww)
else:
normalize(U_ww)
return U_ww, C_ul
class Wannier:
"""Maximally localized Wannier Functions
Find the set of maximally localized Wannier functions using the
spread functional of Marzari and Vanderbilt (PRB 56, 1997 page
12847).
"""
def __init__(self, nwannier, calc,
file=None,
nbands=None,
fixedenergy=None,
fixedstates=None,
spin=0,
initialwannier='random',
seed=None,
verbose=False):
"""
Required arguments:
``nwannier``: The number of Wannier functions you wish to construct.
This must be at least half the number of electrons in the system
and at most equal to the number of bands in the calculation.
``calc``: A converged DFT calculator class.
If ``file`` arg. is not provided, the calculator *must* provide the
method ``get_wannier_localization_matrix``, and contain the
wavefunctions (save files with only the density is not enough).
If the localization matrix is read from file, this is not needed,
unless ``get_function`` or ``write_cube`` is called.
Optional arguments:
``nbands``: Bands to include in localization.
The number of bands considered by Wannier can be smaller than the
number of bands in the calculator. This is useful if the highest
bands of the DFT calculation are not well converged.
``spin``: The spin channel to be considered.
The Wannier code treats each spin channel independently.
``fixedenergy`` / ``fixedstates``: Fixed part of Heilbert space.
Determine the fixed part of Hilbert space by either a maximal
energy *or* a number of bands (possibly a list for multiple
k-points).
Default is None meaning that the number of fixed states is equated
to ``nwannier``.
``file``: Read localization and rotation matrices from this file.
``initialwannier``: Initial guess for Wannier rotation matrix.
Can be 'bloch' to start from the Bloch states, 'random' to be
randomized, or a list passed to calc.get_initial_wannier.
``seed``: Seed for random ``initialwannier``.
``verbose``: True / False level of verbosity.
"""
# Bloch phase sign convention
sign = -1
classname = calc.__class__.__name__
if classname in ['Dacapo', 'Jacapo']:
print 'Using ' + classname
sign = +1
self.nwannier = nwannier
self.calc = calc
self.spin = spin
self.verbose = verbose
self.kpt_kc = calc.get_ibz_k_points()
assert len(calc.get_bz_k_points()) == len(self.kpt_kc)
self.kptgrid = get_monkhorst_pack_size_and_offset(self.kpt_kc)[0]
self.kpt_kc *= sign
self.Nk = len(self.kpt_kc)
self.unitcell_cc = calc.get_atoms().get_cell()
self.largeunitcell_cc = (self.unitcell_cc.T * self.kptgrid).T
self.weight_d, self.Gdir_dc = calculate_weights(self.largeunitcell_cc)
self.Ndir = len(self.weight_d) # Number of directions
if nbands is not None:
self.nbands = nbands
else:
self.nbands = calc.get_number_of_bands()
if fixedenergy is None:
if fixedstates is None:
self.fixedstates_k = np.array([nwannier] * self.Nk, int)
else:
if type(fixedstates) is int:
fixedstates = [fixedstates] * self.Nk
self.fixedstates_k = np.array(fixedstates, int)
else:
# Setting number of fixed states and EDF from specified energy.
# All states below this energy (relative to Fermi level) are fixed.
fixedenergy += calc.get_fermi_level()
print fixedenergy
self.fixedstates_k = np.array(
[calc.get_eigenvalues(k, spin).searchsorted(fixedenergy)
for k in range(self.Nk)], int)
self.edf_k = self.nwannier - self.fixedstates_k
if verbose:
print 'Wannier: Fixed states : %s' % self.fixedstates_k
print 'Wannier: Extra degrees of freedom: %s' % self.edf_k
# Set the list of neighboring k-points k1, and the "wrapping" k0,
# such that k1 - k - G + k0 = 0
#
# Example: kpoints = (-0.375,-0.125,0.125,0.375), dir=0
# G = [0.25,0,0]
# k=0.375, k1= -0.375 : -0.375-0.375-0.25 => k0=[1,0,0]
#
# For a gamma point calculation k1 = k = 0, k0 = [1,0,0] for dir=0
if self.Nk == 1:
self.kklst_dk = np.zeros((self.Ndir, 1), int)
k0_dkc = self.Gdir_dc.reshape(-1, 1, 3)
else:
self.kklst_dk = np.empty((self.Ndir, self.Nk), int)
k0_dkc = np.empty((self.Ndir, self.Nk, 3), int)
# Distance between kpoints
kdist_c = np.empty(3)
for c in range(3):
# make a sorted list of the kpoint values in this direction
slist = np.argsort(self.kpt_kc[:, c], kind='mergesort')
skpoints_kc = np.take(self.kpt_kc, slist, axis=0)
kdist_c[c] = max([skpoints_kc[n + 1, c] - skpoints_kc[n, c]
for n in range(self.Nk - 1)])
for d, Gdir_c in enumerate(self.Gdir_dc):
for k, k_c in enumerate(self.kpt_kc):
# setup dist vector to next kpoint
G_c = np.where(Gdir_c > 0, kdist_c, 0)
if max(G_c) < 1e-4:
self.kklst_dk[d, k] = k
k0_dkc[d, k] = Gdir_c
else:
self.kklst_dk[d, k], k0_dkc[d, k] = \
neighbor_k_search(k_c, G_c, self.kpt_kc)
# Set the inverse list of neighboring k-points
self.invkklst_dk = np.empty((self.Ndir, self.Nk), int)
for d in range(self.Ndir):
for k1 in range(self.Nk):
self.invkklst_dk[d, k1] = self.kklst_dk[d].tolist().index(k1)
Nw = self.nwannier
Nb = self.nbands
self.Z_dkww = np.empty((self.Ndir, self.Nk, Nw, Nw), complex)
self.V_knw = np.zeros((self.Nk, Nb, Nw), complex)
if file is None:
self.Z_dknn = np.empty((self.Ndir, self.Nk, Nb, Nb), complex)
for d, dirG in enumerate(self.Gdir_dc):
for k in range(self.Nk):
k1 = self.kklst_dk[d, k]
k0_c = k0_dkc[d, k]
self.Z_dknn[d, k] = calc.get_wannier_localization_matrix(
nbands=Nb, dirG=dirG, kpoint=k, nextkpoint=k1,
G_I=k0_c, spin=self.spin)
self.initialize(file=file, initialwannier=initialwannier, seed=seed)
def initialize(self, file=None, initialwannier='random', seed=None):
"""Re-initialize current rotation matrix.
Keywords are identical to those of the constructor.
"""
Nw = self.nwannier
Nb = self.nbands
if file is not None:
self.Z_dknn, self.U_kww, self.C_kul = load(paropen(file))
elif initialwannier == 'bloch':
# Set U and C to pick the lowest Bloch states
self.U_kww = np.zeros((self.Nk, Nw, Nw), complex)
self.C_kul = []
for U, M, L in zip(self.U_kww, self.fixedstates_k, self.edf_k):
U[:] = np.identity(Nw, complex)
if L > 0:
self.C_kul.append(
np.identity(Nb - M, complex)[:, :L])
else:
self.C_kul.append([])
elif initialwannier == 'random':
# Set U and C to random (orthogonal) matrices
self.U_kww = np.zeros((self.Nk, Nw, Nw), complex)
self.C_kul = []
for U, M, L in zip(self.U_kww, self.fixedstates_k, self.edf_k):
U[:] = random_orthogonal_matrix(Nw, seed, real=False)
if L > 0:
self.C_kul.append(random_orthogonal_matrix(
Nb - M, seed=seed, real=False)[:, :L])
else:
self.C_kul.append(np.array([]))
else:
# Use initial guess to determine U and C
self.C_kul, self.U_kww = self.calc.initial_wannier(
initialwannier, self.kptgrid, self.fixedstates_k,
self.edf_k, self.spin, self.nbands)
self.update()
def save(self, file):
"""Save information on localization and rotation matrices to file."""
dump((self.Z_dknn, self.U_kww, self.C_kul), paropen(file, 'w'))
def update(self):
# Update large rotation matrix V (from rotation U and coeff C)
for k, M in enumerate(self.fixedstates_k):
self.V_knw[k, :M] = self.U_kww[k, :M]
if M < self.nwannier:
self.V_knw[k, M:] = np.dot(self.C_kul[k], self.U_kww[k, M:])
# else: self.V_knw[k, M:] = 0.0
# Calculate the Zk matrix from the large rotation matrix:
# Zk = V^d[k] Zbloch V[k1]
for d in range(self.Ndir):
for k in range(self.Nk):
k1 = self.kklst_dk[d, k]
self.Z_dkww[d, k] = np.dot(dag(self.V_knw[k]), np.dot(
self.Z_dknn[d, k], self.V_knw[k1]))
# Update the new Z matrix
self.Z_dww = self.Z_dkww.sum(axis=1) / self.Nk
def get_centers(self, scaled=False):
"""Calculate the Wannier centers
::
pos = L / 2pi * phase(diag(Z))
"""
coord_wc = np.angle(self.Z_dww[:3].diagonal(0, 1, 2)).T / (2 * pi) % 1
if not scaled:
coord_wc = np.dot(coord_wc, self.largeunitcell_cc)
return coord_wc
def get_radii(self):
"""Calculate the spread of the Wannier functions.
::
-- / L \ 2 2
radius**2 = - > | --- | ln |Z|
--d \ 2pi /
"""
r2 = -np.dot(self.largeunitcell_cc.diagonal()**2 / (2 * pi)**2,
np.log(abs(self.Z_dww[:3].diagonal(0, 1, 2))**2))
return np.sqrt(r2)
def get_spectral_weight(self, w):
return abs(self.V_knw[:, :, w])**2 / self.Nk
def get_pdos(self, w, energies, width):
"""Projected density of states (PDOS).
Returns the (PDOS) for Wannier function ``w``. The calculation
is performed over the energy grid specified in energies. The
PDOS is produced as a sum of Gaussians centered at the points
of the energy grid and with the specified width.
"""
spec_kn = self.get_spectral_weight(w)
dos = np.zeros(len(energies))
for k, spec_n in enumerate(spec_kn):
eig_n = self.calc.get_eigenvalues(k=kpt, s=self.spin)
for weight, eig in zip(spec_n, eig):
# Add gaussian centered at the eigenvalue
x = ((energies - center) / width)**2
dos += weight * np.exp(-x.clip(0., 40.)) / (sqrt(pi) * width)
return dos
def max_spread(self, directions=[0, 1, 2]):
"""Returns the index of the most delocalized Wannier function
together with the value of the spread functional"""
d = np.zeros(self.nwannier)
for dir in directions:
d[dir] = np.abs(self.Z_dww[dir].diagonal())**2 *self.weight_d[dir]
index = np.argsort(d)[0]
print 'Index:', index
print 'Spread:', d[index]
def translate(self, w, R):
"""Translate the w'th Wannier function
The distance vector R = [n1, n2, n3], is in units of the basis
vectors of the small cell.
"""
for kpt_c, U_ww in zip(self.kpt_kc, self.U_kww):
U_ww[:, w] *= np.exp(2.j * pi * np.dot(np.array(R), kpt_c))
self.update()
def translate_to_cell(self, w, cell):
"""Translate the w'th Wannier function to specified cell"""
scaled_c = np.angle(self.Z_dww[:3, w, w]) * self.kptgrid / (2 * pi)
trans = np.array(cell) - np.floor(scaled_c)
self.translate(w, trans)
def translate_all_to_cell(self, cell=[0, 0, 0]):
"""Translate all Wannier functions to specified cell.
Move all Wannier orbitals to a specific unit cell. There
exists an arbitrariness in the positions of the Wannier
orbitals relative to the unit cell. This method can move all
orbitals to the unit cell specified by ``cell``. For a
`\Gamma`-point calculation, this has no effect. For a
**k**-point calculation the periodicity of the orbitals are
given by the large unit cell defined by repeating the original
unitcell by the number of **k**-points in each direction. In
this case it is usefull to move the orbitals away from the
boundaries of the large cell before plotting them. For a bulk
calculation with, say 10x10x10 **k** points, one could move
the orbitals to the cell [2,2,2]. In this way the pbc
boundary conditions will not be noticed.
"""
scaled_wc = np.angle(self.Z_dww[:3].diagonal(0, 1, 2)).T * \
self.kptgrid / (2 * pi)
trans_wc = np.array(cell)[None] - np.floor(scaled_wc)
for kpt_c, U_ww in zip(self.kpt_kc, self.U_kww):
U_ww *= np.exp(2.j * pi * np.dot(trans_wc, kpt_c))
self.update()
def distances(self, R):
Nw = self.nwannier
cen = self.get_centers()
r1 = cen.repeat(Nw, axis=0).reshape(Nw, Nw, 3)
r2 = cen.copy()
for i in range(3):
r2 += self.unitcell_cc[i] * R[i]
r2 = np.swapaxes(r2.repeat(Nw, axis=0).reshape(Nw, Nw, 3), 0, 1)
return np.sqrt(np.sum((r1 - r2)**2, axis=-1))
def get_hopping(self, R):
"""Returns the matrix H(R)_nm=<0,n|H|R,m>.
::
1 _ -ik.R
H(R) = <0,n|H|R,m> = --- >_ e H(k)
Nk k
where R is the cell-distance (in units of the basis vectors of
the small cell) and n,m are indices of the Wannier functions.
"""
H_ww = np.zeros([self.nwannier, self.nwannier], complex)
for k, kpt_c in enumerate(self.kpt_kc):
phase = np.exp(-2.j * pi * np.dot(np.array(R), kpt_c))
H_ww += self.get_hamiltonian(k) * phase
return H_ww / self.Nk
def get_hamiltonian(self, k=0):
"""Get Hamiltonian at existing k-vector of index k
::
dag
H(k) = V diag(eps ) V
k k k
"""
eps_n = self.calc.get_eigenvalues(kpt=k, spin=self.spin)[:self.nbands]
return np.dot(dag(self.V_knw[k]) * eps_n, self.V_knw[k])
def get_hamiltonian_kpoint(self, kpt_c):
"""Get Hamiltonian at some new arbitrary k-vector
::
_ ik.R
H(k) = >_ e H(R)
R
Warning: This method moves all Wannier functions to cell (0, 0, 0)
"""
if self.verbose:
print 'Translating all Wannier functions to cell (0, 0, 0)'
self.translate_all_to_cell()
max = (self.kptgrid - 1) / 2
N1, N2, N3 = max
Hk = np.zeros([self.nwannier, self.nwannier], complex)
for n1 in xrange(-N1, N1 + 1):
for n2 in xrange(-N2, N2 + 1):
for n3 in xrange(-N3, N3 + 1):
R = np.array([n1, n2, n3], float)
hop_ww = self.get_hopping(R)
phase = np.exp(+2.j * pi * np.dot(R, kpt_c))
Hk += hop_ww * phase
return Hk
def get_function(self, index, repeat=None):
"""Get Wannier function on grid.
Returns an array with the funcion values of the indicated Wannier
function on a grid with the size of the *repeated* unit cell.
For a calculation using **k**-points the relevant unit cell for
eg. visualization of the Wannier orbitals is not the original unit
cell, but rather a larger unit cell defined by repeating the
original unit cell by the number of **k**-points in each direction.
Note that for a `\Gamma`-point calculation the large unit cell
coinsides with the original unit cell.
The large unitcell also defines the periodicity of the Wannier
orbitals.
``index`` can be either a single WF or a coordinate vector in terms
of the WFs.
"""
# Default size of plotting cell is the one corresponding to k-points.
if repeat is None:
repeat = self.kptgrid
N1, N2, N3 = repeat
dim = self.calc.get_number_of_grid_points()
largedim = dim * [N1, N2, N3]
wanniergrid = np.zeros(largedim, dtype=complex)
for k, kpt_c in enumerate(self.kpt_kc):
# The coordinate vector of wannier functions
if type(index) == int:
vec_n = self.V_knw[k, :, index]
else:
vec_n = np.dot(self.V_knw[k], index)
wan_G = np.zeros(dim, complex)
for n, coeff in enumerate(vec_n):
wan_G += coeff * self.calc.get_pseudo_wave_function(
n, k, self.spin, pad=True)
# Distribute the small wavefunction over large cell:
for n1 in xrange(N1):
for n2 in xrange(N2):
for n3 in xrange(N3): # sign?
e = np.exp(-2.j * pi * np.dot([n1, n2, n3], kpt_c))
wanniergrid[n1 * dim[0]:(n1 + 1) * dim[0],
n2 * dim[1]:(n2 + 1) * dim[1],
n3 * dim[2]:(n3 + 1) * dim[2]] += e * wan_G
# Normalization
wanniergrid /= np.sqrt(self.Nk)
return wanniergrid
def write_cube(self, index, fname, repeat=None, real=True):
"""Dump specified Wannier function to a cube file"""
from ase.io.cube import write_cube
# Default size of plotting cell is the one corresponding to k-points.
if repeat is None:
repeat = self.kptgrid
atoms = self.calc.get_atoms() * repeat
func = self.get_function(index, repeat)
# Handle separation of complex wave into real parts
if real:
if self.Nk == 1:
func *= np.exp(-1.j * np.angle(func.max()))
if 0: assert max(abs(func.imag).flat) < 1e-4
func = func.real
else:
func = abs(func)
else:
phase_fname = fname.split('.')
phase_fname.insert(1, 'phase')
phase_fname = '.'.join(phase_fname)
write_cube(phase_fname, atoms, data=np.angle(func))
func = abs(func)
write_cube(fname, atoms, data=func)
def localize(self, step=0.25, tolerance=1e-08,
updaterot=True, updatecoeff=True):
"""Optimize rotation to give maximal localization"""
md_min(self, step, tolerance, verbose=self.verbose,
updaterot=updaterot, updatecoeff=updatecoeff)
def get_functional_value(self):
"""Calculate the value of the spread functional.
::
Tr[|ZI|^2]=sum(I)sum(n) w_i|Z_(i)_nn|^2,
where w_i are weights."""
a_d = np.sum(np.abs(self.Z_dww.diagonal(0, 1, 2))**2, axis=1)
return np.dot(a_d, self.weight_d).real
def get_gradients(self):
# Determine gradient of the spread functional.
#
# The gradient for a rotation A_kij is::
#
# dU = dRho/dA_{k,i,j} = sum(I) sum(k')
# + Z_jj Z_kk',ij^* - Z_ii Z_k'k,ij^*
# - Z_ii^* Z_kk',ji + Z_jj^* Z_k'k,ji
#
# The gradient for a change of coefficients is::
#
# dRho/da^*_{k,i,j} = sum(I) [[(Z_0)_{k} V_{k'} diag(Z^*) +
# (Z_0_{k''})^d V_{k''} diag(Z)] *
# U_k^d]_{N+i,N+j}
#
# where diag(Z) is a square,diagonal matrix with Z_nn in the diagonal,
# k' = k + dk and k = k'' + dk.
#
# The extra degrees of freedom chould be kept orthonormal to the fixed
# space, thus we introduce lagrange multipliers, and minimize instead::
#
# Rho_L=Rho- sum_{k,n,m} lambda_{k,nm} <c_{kn}|c_{km}>
#
# for this reason the coefficient gradients should be multiplied
# by (1 - c c^d).
Nb = self.nbands
Nw = self.nwannier
dU = []
dC = []
for k in xrange(self.Nk):
M = self.fixedstates_k[k]
L = self.edf_k[k]
U_ww = self.U_kww[k]
C_ul = self.C_kul[k]
Utemp_ww = np.zeros((Nw, Nw), complex)
Ctemp_nw = np.zeros((Nb, Nw), complex)
for d, weight in enumerate(self.weight_d):
if abs(weight) < 1.0e-6:
continue
Z_knn = self.Z_dknn[d]
diagZ_w = self.Z_dww[d].diagonal()
Zii_ww = np.repeat(diagZ_w, Nw).reshape(Nw, Nw)
k1 = self.kklst_dk[d, k]
k2 = self.invkklst_dk[d, k]
V_knw = self.V_knw
Z_kww = self.Z_dkww[d]
if L > 0:
Ctemp_nw += weight * np.dot(
np.dot(Z_knn[k], V_knw[k1]) * diagZ_w.conj() +
np.dot(dag(Z_knn[k2]), V_knw[k2]) * diagZ_w,
dag(U_ww))
temp = Zii_ww.T * Z_kww[k].conj() - Zii_ww * Z_kww[k2].conj()
Utemp_ww += weight * (temp - dag(temp))
dU.append(Utemp_ww.ravel())
if L > 0:
# Ctemp now has same dimension as V, the gradient is in the
# lower-right (Nb-M) x L block
Ctemp_ul = Ctemp_nw[M:, M:]
G_ul = Ctemp_ul - np.dot(np.dot(C_ul, dag(C_ul)), Ctemp_ul)
dC.append(G_ul.ravel())
return np.concatenate(dU + dC)
def step(self, dX, updaterot=True, updatecoeff=True):
# dX is (A, dC) where U->Uexp(-A) and C->C+dC
Nw = self.nwannier
Nk = self.Nk
M_k = self.fixedstates_k
L_k = self.edf_k
if updaterot:
A_kww = dX[:Nk * Nw**2].reshape(Nk, Nw, Nw)
for U, A in zip(self.U_kww, A_kww):
H = -1.j * A.conj()
epsilon, Z = np.linalg.eigh(H)
# Z contains the eigenvectors as COLUMNS.
# Since H = iA, dU = exp(-A) = exp(iH) = ZDZ^d
dU = np.dot(Z * np.exp(1.j * epsilon), dag(Z))
if U.dtype == float:
U[:] = np.dot(U, dU).real
else:
U[:] = np.dot(U, dU)
if updatecoeff:
start = 0
for C, unocc, L in zip(self.C_kul, self.nbands - M_k, L_k):
if L == 0 or unocc == 0:
continue
Ncoeff = L * unocc
deltaC = dX[Nk * Nw**2 + start: Nk * Nw**2 + start + Ncoeff]
C += deltaC.reshape(unocc, L)
gram_schmidt(C)
start += Ncoeff
self.update()
|