This file is indexed.

/usr/share/pyshared/ase/dft/wannier.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
""" Maximally localized Wannier Functions

    Find the set of maximally localized Wannier functions
    using the spread functional of Marzari and Vanderbilt
    (PRB 56, 1997 page 12847). 
"""
from time import time
from math import sqrt, pi
from pickle import dump, load

import numpy as np

from ase.parallel import paropen
from ase.calculators.dacapo import Dacapo
from ase.dft.kpoints import get_monkhorst_pack_size_and_offset
from ase.transport.tools import dagger, normalize

dag = dagger


def gram_schmidt(U):
    """Orthonormalize columns of U according to the Gram-Schmidt procedure."""
    for i, col in enumerate(U.T):
        for col2 in U.T[:i]:
            col -= col2 * np.dot(col2.conj(), col)
        col /= np.linalg.norm(col)


def gram_schmidt_single(U, n):
    """Orthogonalize columns of U to column n"""
    N = len(U.T)
    v_n = U.T[n]
    indices = range(N)
    del indices[indices.index(n)]
    for i in indices:
        v_i = U.T[i]
        v_i -=  v_n * np.dot(v_n.conj(), v_i)
        

def lowdin(U, S=None):
    """Orthonormalize columns of U according to the Lowdin procedure.
    
    If the overlap matrix is know, it can be specified in S.
    """
    if S is None:
        S = np.dot(dag(U), U)
    eig, rot = np.linalg.eigh(S)
    rot = np.dot(rot / np.sqrt(eig), dag(rot))
    U[:] = np.dot(U, rot)


def neighbor_k_search(k_c, G_c, kpt_kc, tol=1e-4):
    # search for k1 (in kpt_kc) and k0 (in alldir), such that
    # k1 - k - G + k0 = 0
    alldir_dc = np.array([[0,0,0],[1,0,0],[0,1,0],[0,0,1],
                           [1,1,0],[1,0,1],[0,1,1]], int)
    for k0_c in alldir_dc:
        for k1, k1_c in enumerate(kpt_kc):
            if np.linalg.norm(k1_c - k_c - G_c + k0_c) < tol:
                return k1, k0_c

    print 'Wannier: Did not find matching kpoint for kpt=', k_c
    print 'Probably non-uniform k-point grid'
    raise NotImplementedError


def calculate_weights(cell_cc):
    """ Weights are used for non-cubic cells, see PRB **61**, 10040"""
    alldirs_dc = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1],
                           [1, 1, 0], [1, 0, 1], [0, 1, 1]], dtype=int)
    g = np.dot(cell_cc, cell_cc.T)
    # NOTE: Only first 3 of following 6 weights are presently used:
    w = np.zeros(6)              
    w[0] = g[0, 0] - g[0, 1] - g[0, 2]
    w[1] = g[1, 1] - g[0, 1] - g[1, 2]
    w[2] = g[2, 2] - g[0, 2] - g[1, 2]
    w[3] = g[0, 1]
    w[4] = g[0, 2]
    w[5] = g[1, 2]
    # Make sure that first 3 Gdir vectors are included - 
    # these are used to calculate Wanniercenters.
    Gdir_dc = alldirs_dc[:3]
    weight_d = w[:3]
    for d in range(3, 6):
        if abs(w[d]) > 1e-5:
            Gdir_dc = np.concatenate((Gdir_dc, alldirs_dc[d:d + 1]))
            weight_d = np.concatenate((weight_d, w[d:d + 1]))
    weight_d /= max(abs(weight_d))
    return weight_d, Gdir_dc


def random_orthogonal_matrix(dim, seed=None, real=False):
    """Generate a random orthogonal matrix"""
    if seed is not None:
        np.random.seed(seed)

    H = np.random.rand(dim, dim)
    np.add(dag(H), H, H)
    np.multiply(.5, H, H)

    if real:
        gram_schmidt(H)
        return H
    else: 
        val, vec = np.linalg.eig(H)
        return np.dot(vec * np.exp(1.j * val), dag(vec))


def steepest_descent(func, step=.005, tolerance=1e-6, **kwargs):
    fvalueold = 0.
    fvalue = fvalueold + 10
    count=0
    while abs((fvalue - fvalueold) / fvalue) > tolerance:
        fvalueold = fvalue
        dF = func.get_gradients()
        func.step(dF * step, **kwargs)
        fvalue = func.get_functional_value()
        count += 1
        print 'SteepestDescent: iter=%s, value=%s' % (count, fvalue)


def md_min(func, step=.25, tolerance=1e-6, verbose=False, **kwargs):
    if verbose:
        print 'Localize with step =', step, 'and tolerance =', tolerance
        t = -time()
    fvalueold = 0.
    fvalue = fvalueold + 10
    count = 0
    V = np.zeros(func.get_gradients().shape, dtype=complex)
    while abs((fvalue - fvalueold) / fvalue) > tolerance:
        fvalueold = fvalue
        dF = func.get_gradients()
        V *= (dF * V.conj()).real > 0
        V += step * dF
        func.step(V, **kwargs)
        fvalue = func.get_functional_value()
        if fvalue < fvalueold:
            step *= 0.5
        count += 1
        if verbose:
            print 'MDmin: iter=%s, step=%s, value=%s' % (count, step, fvalue)
    if verbose:
        t += time()
        print '%d iterations in %0.2f seconds (%0.2f ms/iter), endstep = %s' %(
            count, t, t * 1000. / count, step)


def rotation_from_projection2(proj_nw, fixed):
    V_ni = proj_nw
    Nb, Nw = proj_nw.shape
    M = fixed
    L = Nw - M
    print 'M=%i, L=%i, Nb=%i, Nw=%i' % (M, L, Nb, Nw) 
    U_ww = np.zeros((Nw, Nw), dtype=proj_nw.dtype)
    c_ul = np.zeros((Nb-M, L), dtype=proj_nw.dtype)
    for V_n in V_ni.T:
        V_n /= np.linalg.norm(V_n)
    
    # Find EDF
    P_ui = V_ni[M:].copy()
    la = np.linalg
    for l in range(L):
        norm_list = np.array([la.norm(v) for v in P_ui.T])
        perm_list = np.argsort(-norm_list)
        P_ui = P_ui[:, perm_list].copy()    # largest norm to the left
        P_ui[:, 0] /= la.norm(P_ui[:, 0])   # normalize
        c_ul[:, l] = P_ui[:, 0]             # save normalized EDF
        gram_schmidt_single(P_ui, 0)        # ortho remain. to this EDF
        P_ui = P_ui[:, 1:].copy()           # remove this EDF

    U_ww[:M] = V_ni[:M, :]
    U_ww[M:] = np.dot(c_ul.T.conj(), V_ni[M:])
    gram_schmidt(U_ww)
    return U_ww, c_ul


def rotation_from_projection(proj_nw, fixed, ortho=True):
    """Determine rotation and coefficient matrices from projections
    
    proj_nw = <psi_n|p_w>
    psi_n: eigenstates
    p_w: localized function
    
    Nb (n) = Number of bands
    Nw (w) = Number of wannier functions
    M  (f) = Number of fixed states
    L  (l) = Number of extra degrees of freedom
    U  (u) = Number of non-fixed states
    """

    Nb, Nw = proj_nw.shape
    M = fixed
    L = Nw - M

    U_ww = np.empty((Nw, Nw), dtype=proj_nw.dtype)
    U_ww[:M] = proj_nw[:M]

    if L > 0:
        proj_uw = proj_nw[M:]
        eig_w, C_ww = np.linalg.eigh(np.dot(dag(proj_uw), proj_uw))
        C_ul = np.dot(proj_uw, C_ww[:, np.argsort(-eig_w.real)[:L]])
        #eig_u, C_uu = np.linalg.eigh(np.dot(proj_uw, dag(proj_uw)))
        #C_ul = C_uu[:, np.argsort(-eig_u.real)[:L]]

        U_ww[M:] = np.dot(dag(C_ul), proj_uw)
    else:
        C_ul = np.empty((Nb - M, 0))

    normalize(C_ul)
    if ortho:
        lowdin(U_ww)
    else:
        normalize(U_ww)

    return U_ww, C_ul


class Wannier:
    """Maximally localized Wannier Functions

    Find the set of maximally localized Wannier functions using the
    spread functional of Marzari and Vanderbilt (PRB 56, 1997 page
    12847).
    """

    def __init__(self, nwannier, calc,
                 file=None,
                 nbands=None,
                 fixedenergy=None,
                 fixedstates=None,
                 spin=0,
                 initialwannier='random',
                 seed=None,
                 verbose=False):
        """
        Required arguments:

          ``nwannier``: The number of Wannier functions you wish to construct.
            This must be at least half the number of electrons in the system
            and at most equal to the number of bands in the calculation.

          ``calc``: A converged DFT calculator class.
            If ``file`` arg. is not provided, the calculator *must* provide the
            method ``get_wannier_localization_matrix``, and contain the
            wavefunctions (save files with only the density is not enough).
            If the localization matrix is read from file, this is not needed,
            unless ``get_function`` or ``write_cube`` is called.
          
        Optional arguments:

          ``nbands``: Bands to include in localization.
            The number of bands considered by Wannier can be smaller than the
            number of bands in the calculator. This is useful if the highest
            bands of the DFT calculation are not well converged.

          ``spin``: The spin channel to be considered.
            The Wannier code treats each spin channel independently.

          ``fixedenergy`` / ``fixedstates``: Fixed part of Heilbert space.
            Determine the fixed part of Hilbert space by either a maximal
            energy *or* a number of bands (possibly a list for multiple
            k-points).
            Default is None meaning that the number of fixed states is equated
            to ``nwannier``.

          ``file``: Read localization and rotation matrices from this file.

          ``initialwannier``: Initial guess for Wannier rotation matrix.
            Can be 'bloch' to start from the Bloch states, 'random' to be
            randomized, or a list passed to calc.get_initial_wannier.

          ``seed``: Seed for random ``initialwannier``.

          ``verbose``: True / False level of verbosity.
          """
        # Bloch phase sign convention
        sign = -1
        classname = calc.__class__.__name__
        if classname in ['Dacapo', 'Jacapo']:
            print 'Using ' + classname
            sign = +1
            
        self.nwannier = nwannier
        self.calc = calc
        self.spin = spin
        self.verbose = verbose
        self.kpt_kc = calc.get_ibz_k_points()
        assert len(calc.get_bz_k_points()) == len(self.kpt_kc)
        self.kptgrid = get_monkhorst_pack_size_and_offset(self.kpt_kc)[0]
        self.kpt_kc *= sign

        self.Nk = len(self.kpt_kc)
        self.unitcell_cc = calc.get_atoms().get_cell()
        self.largeunitcell_cc = (self.unitcell_cc.T * self.kptgrid).T
        self.weight_d, self.Gdir_dc = calculate_weights(self.largeunitcell_cc)
        self.Ndir = len(self.weight_d) # Number of directions

        if nbands is not None:
            self.nbands = nbands
        else:
            self.nbands = calc.get_number_of_bands()
        if fixedenergy is None:
            if fixedstates is None:
                self.fixedstates_k = np.array([nwannier] * self.Nk, int)
            else:
                if type(fixedstates) is int:
                    fixedstates = [fixedstates] * self.Nk
                self.fixedstates_k = np.array(fixedstates, int)
        else:
            # Setting number of fixed states and EDF from specified energy.
            # All states below this energy (relative to Fermi level) are fixed.
            fixedenergy += calc.get_fermi_level()
            print fixedenergy
            self.fixedstates_k = np.array(
                [calc.get_eigenvalues(k, spin).searchsorted(fixedenergy)
                 for k in range(self.Nk)], int)
        self.edf_k = self.nwannier - self.fixedstates_k
        if verbose:
            print 'Wannier: Fixed states            : %s' % self.fixedstates_k
            print 'Wannier: Extra degrees of freedom: %s' % self.edf_k

        # Set the list of neighboring k-points k1, and the "wrapping" k0,
        # such that k1 - k - G + k0 = 0
        #
        # Example: kpoints = (-0.375,-0.125,0.125,0.375), dir=0
        # G = [0.25,0,0]
        # k=0.375, k1= -0.375 : -0.375-0.375-0.25 => k0=[1,0,0]
        #
        # For a gamma point calculation k1 = k = 0,  k0 = [1,0,0] for dir=0
        if self.Nk == 1:
            self.kklst_dk = np.zeros((self.Ndir, 1), int)
            k0_dkc = self.Gdir_dc.reshape(-1, 1, 3)
        else:
            self.kklst_dk = np.empty((self.Ndir, self.Nk), int)
            k0_dkc = np.empty((self.Ndir, self.Nk, 3), int)

            # Distance between kpoints
            kdist_c = np.empty(3)
            for c in range(3):
                # make a sorted list of the kpoint values in this direction
                slist = np.argsort(self.kpt_kc[:, c], kind='mergesort')
                skpoints_kc = np.take(self.kpt_kc, slist, axis=0)
                kdist_c[c] = max([skpoints_kc[n + 1, c] - skpoints_kc[n, c]
                                  for n in range(self.Nk - 1)])               

            for d, Gdir_c in enumerate(self.Gdir_dc):
                for k, k_c in enumerate(self.kpt_kc):
                    # setup dist vector to next kpoint
                    G_c = np.where(Gdir_c > 0, kdist_c, 0)
                    if max(G_c) < 1e-4:
                        self.kklst_dk[d, k] = k
                        k0_dkc[d, k] = Gdir_c
                    else:
                        self.kklst_dk[d, k], k0_dkc[d, k] = \
                                       neighbor_k_search(k_c, G_c, self.kpt_kc)

        # Set the inverse list of neighboring k-points
        self.invkklst_dk = np.empty((self.Ndir, self.Nk), int)
        for d in range(self.Ndir):
            for k1 in range(self.Nk):
                self.invkklst_dk[d, k1] = self.kklst_dk[d].tolist().index(k1)

        Nw = self.nwannier
        Nb = self.nbands
        self.Z_dkww = np.empty((self.Ndir, self.Nk, Nw, Nw), complex)
        self.V_knw = np.zeros((self.Nk, Nb, Nw), complex)
        if file is None:
            self.Z_dknn = np.empty((self.Ndir, self.Nk, Nb, Nb), complex)
            for d, dirG in enumerate(self.Gdir_dc):
                for k in range(self.Nk):
                    k1 = self.kklst_dk[d, k]
                    k0_c = k0_dkc[d, k]
                    self.Z_dknn[d, k] = calc.get_wannier_localization_matrix(
                        nbands=Nb, dirG=dirG, kpoint=k, nextkpoint=k1,
                        G_I=k0_c, spin=self.spin)
        self.initialize(file=file, initialwannier=initialwannier, seed=seed)

    def initialize(self, file=None, initialwannier='random', seed=None):
        """Re-initialize current rotation matrix.

        Keywords are identical to those of the constructor.
        """
        Nw = self.nwannier
        Nb = self.nbands

        if file is not None:
            self.Z_dknn, self.U_kww, self.C_kul = load(paropen(file))
        elif initialwannier == 'bloch':
            # Set U and C to pick the lowest Bloch states
            self.U_kww = np.zeros((self.Nk, Nw, Nw), complex)
            self.C_kul = []
            for U, M, L in zip(self.U_kww, self.fixedstates_k, self.edf_k):
                U[:] = np.identity(Nw, complex)
                if L > 0:
                    self.C_kul.append(
                        np.identity(Nb - M, complex)[:, :L])
                else:
                    self.C_kul.append([])
        elif initialwannier == 'random':
            # Set U and C to random (orthogonal) matrices
            self.U_kww = np.zeros((self.Nk, Nw, Nw), complex)
            self.C_kul = []
            for U, M, L in zip(self.U_kww, self.fixedstates_k, self.edf_k):
                U[:] = random_orthogonal_matrix(Nw, seed, real=False)
                if L > 0:
                    self.C_kul.append(random_orthogonal_matrix(
                        Nb - M, seed=seed, real=False)[:, :L])
                else:
                    self.C_kul.append(np.array([]))        
        else:
            # Use initial guess to determine U and C
            self.C_kul, self.U_kww = self.calc.initial_wannier(
                initialwannier, self.kptgrid, self.fixedstates_k,
                self.edf_k, self.spin, self.nbands)
        self.update()

    def save(self, file):
        """Save information on localization and rotation matrices to file."""
        dump((self.Z_dknn, self.U_kww, self.C_kul), paropen(file, 'w'))

    def update(self):
        # Update large rotation matrix V (from rotation U and coeff C)
        for k, M in enumerate(self.fixedstates_k):
            self.V_knw[k, :M] = self.U_kww[k, :M]
            if M < self.nwannier:
                self.V_knw[k, M:] = np.dot(self.C_kul[k], self.U_kww[k, M:])
            # else: self.V_knw[k, M:] = 0.0

        # Calculate the Zk matrix from the large rotation matrix:
        # Zk = V^d[k] Zbloch V[k1]
        for d in range(self.Ndir):
            for k in range(self.Nk):
                k1 = self.kklst_dk[d, k]
                self.Z_dkww[d, k] = np.dot(dag(self.V_knw[k]), np.dot(
                    self.Z_dknn[d, k], self.V_knw[k1]))

        # Update the new Z matrix
        self.Z_dww = self.Z_dkww.sum(axis=1) / self.Nk

    def get_centers(self, scaled=False):
        """Calculate the Wannier centers

        ::
        
          pos =  L / 2pi * phase(diag(Z))
        """
        coord_wc = np.angle(self.Z_dww[:3].diagonal(0, 1, 2)).T / (2 * pi) % 1
        if not scaled:
            coord_wc = np.dot(coord_wc, self.largeunitcell_cc)
        return coord_wc

    def get_radii(self):
        """Calculate the spread of the Wannier functions.

        ::
          
                        --  /  L  \ 2       2
          radius**2 = - >   | --- |   ln |Z| 
                        --d \ 2pi /
        """
        r2 = -np.dot(self.largeunitcell_cc.diagonal()**2 / (2 * pi)**2,
                     np.log(abs(self.Z_dww[:3].diagonal(0, 1, 2))**2))
        return np.sqrt(r2)

    def get_spectral_weight(self, w):
        return abs(self.V_knw[:, :, w])**2 / self.Nk

    def get_pdos(self, w, energies, width):
        """Projected density of states (PDOS).

        Returns the (PDOS) for Wannier function ``w``. The calculation
        is performed over the energy grid specified in energies. The
        PDOS is produced as a sum of Gaussians centered at the points
        of the energy grid and with the specified width.
        """
        spec_kn = self.get_spectral_weight(w)
        dos = np.zeros(len(energies))
        for k, spec_n in enumerate(spec_kn):
            eig_n = self.calc.get_eigenvalues(k=kpt, s=self.spin)
            for weight, eig in zip(spec_n, eig):
                # Add gaussian centered at the eigenvalue
                x = ((energies - center) / width)**2
                dos += weight * np.exp(-x.clip(0., 40.)) / (sqrt(pi) * width)
        return dos

    def max_spread(self, directions=[0, 1, 2]):
        """Returns the index of the most delocalized Wannier function
        together with the value of the spread functional"""
        d = np.zeros(self.nwannier)
        for dir in directions:
            d[dir] = np.abs(self.Z_dww[dir].diagonal())**2 *self.weight_d[dir]
        index = np.argsort(d)[0]
        print 'Index:', index
        print 'Spread:', d[index]           

    def translate(self, w, R):
        """Translate the w'th Wannier function

        The distance vector R = [n1, n2, n3], is in units of the basis
        vectors of the small cell.
        """
        for kpt_c, U_ww in zip(self.kpt_kc, self.U_kww):
            U_ww[:, w] *= np.exp(2.j * pi * np.dot(np.array(R), kpt_c))
        self.update()

    def translate_to_cell(self, w, cell):
        """Translate the w'th Wannier function to specified cell"""
        scaled_c = np.angle(self.Z_dww[:3, w, w]) * self.kptgrid / (2 * pi)
        trans = np.array(cell) - np.floor(scaled_c)
        self.translate(w, trans)

    def translate_all_to_cell(self, cell=[0, 0, 0]):
        """Translate all Wannier functions to specified cell.

        Move all Wannier orbitals to a specific unit cell.  There
        exists an arbitrariness in the positions of the Wannier
        orbitals relative to the unit cell. This method can move all
        orbitals to the unit cell specified by ``cell``.  For a
        `\Gamma`-point calculation, this has no effect. For a
        **k**-point calculation the periodicity of the orbitals are
        given by the large unit cell defined by repeating the original
        unitcell by the number of **k**-points in each direction.  In
        this case it is usefull to move the orbitals away from the
        boundaries of the large cell before plotting them. For a bulk
        calculation with, say 10x10x10 **k** points, one could move
        the orbitals to the cell [2,2,2].  In this way the pbc
        boundary conditions will not be noticed.
        """
        scaled_wc = np.angle(self.Z_dww[:3].diagonal(0, 1, 2)).T  * \
                    self.kptgrid / (2 * pi)
        trans_wc =  np.array(cell)[None] - np.floor(scaled_wc)
        for kpt_c, U_ww in zip(self.kpt_kc, self.U_kww):
            U_ww *= np.exp(2.j * pi * np.dot(trans_wc, kpt_c))
        self.update()

    def distances(self, R):
        Nw = self.nwannier
        cen = self.get_centers()
        r1 = cen.repeat(Nw, axis=0).reshape(Nw, Nw, 3)
        r2 = cen.copy()
        for i in range(3):
            r2 += self.unitcell_cc[i] * R[i]

        r2 = np.swapaxes(r2.repeat(Nw, axis=0).reshape(Nw, Nw, 3), 0, 1)
        return np.sqrt(np.sum((r1 - r2)**2, axis=-1))

    def get_hopping(self, R):
        """Returns the matrix H(R)_nm=<0,n|H|R,m>.

        ::
        
                                1   _   -ik.R 
          H(R) = <0,n|H|R,m> = --- >_  e      H(k)
                                Nk  k         

        where R is the cell-distance (in units of the basis vectors of
        the small cell) and n,m are indices of the Wannier functions.
        """
        H_ww = np.zeros([self.nwannier, self.nwannier], complex)
        for k, kpt_c in enumerate(self.kpt_kc):
            phase = np.exp(-2.j * pi * np.dot(np.array(R), kpt_c))
            H_ww += self.get_hamiltonian(k) * phase
        return H_ww / self.Nk

    def get_hamiltonian(self, k=0):
        """Get Hamiltonian at existing k-vector of index k

        ::
        
                  dag
          H(k) = V    diag(eps )  V
                  k           k    k
        """
        eps_n = self.calc.get_eigenvalues(kpt=k, spin=self.spin)[:self.nbands]
        return np.dot(dag(self.V_knw[k]) * eps_n, self.V_knw[k])

    def get_hamiltonian_kpoint(self, kpt_c):
        """Get Hamiltonian at some new arbitrary k-vector

        ::
        
                  _   ik.R 
          H(k) = >_  e     H(R)
                  R         

        Warning: This method moves all Wannier functions to cell (0, 0, 0)
        """
        if self.verbose:
            print 'Translating all Wannier functions to cell (0, 0, 0)'
        self.translate_all_to_cell()
        max = (self.kptgrid - 1) / 2
        N1, N2, N3 = max
        Hk = np.zeros([self.nwannier, self.nwannier], complex)
        for n1 in xrange(-N1, N1 + 1):
            for n2 in xrange(-N2, N2 + 1):
                for n3 in xrange(-N3, N3 + 1):
                    R = np.array([n1, n2, n3], float)
                    hop_ww = self.get_hopping(R)
                    phase = np.exp(+2.j * pi * np.dot(R, kpt_c))
                    Hk += hop_ww * phase
        return Hk

    def get_function(self, index, repeat=None):
        """Get Wannier function on grid.

        Returns an array with the funcion values of the indicated Wannier
        function on a grid with the size of the *repeated* unit cell.
       
        For a calculation using **k**-points the relevant unit cell for
        eg. visualization of the Wannier orbitals is not the original unit
        cell, but rather a larger unit cell defined by repeating the
        original unit cell by the number of **k**-points in each direction.
        Note that for a `\Gamma`-point calculation the large unit cell
        coinsides with the original unit cell.
        The large unitcell also defines the periodicity of the Wannier
        orbitals.

        ``index`` can be either a single WF or a coordinate vector in terms
        of the WFs.
        """

        # Default size of plotting cell is the one corresponding to k-points.
        if repeat is None:
            repeat = self.kptgrid
        N1, N2, N3 = repeat

        dim = self.calc.get_number_of_grid_points()
        largedim = dim * [N1, N2, N3]
        
        wanniergrid = np.zeros(largedim, dtype=complex)
        for k, kpt_c in enumerate(self.kpt_kc):
            # The coordinate vector of wannier functions
            if type(index) == int:
                vec_n = self.V_knw[k, :, index]
            else:   
                vec_n = np.dot(self.V_knw[k], index)

            wan_G = np.zeros(dim, complex)
            for n, coeff in enumerate(vec_n):
                wan_G += coeff * self.calc.get_pseudo_wave_function(
                    n, k, self.spin, pad=True)

            # Distribute the small wavefunction over large cell:
            for n1 in xrange(N1):
                for n2 in xrange(N2):
                    for n3 in xrange(N3): # sign?
                        e = np.exp(-2.j * pi * np.dot([n1, n2, n3], kpt_c))
                        wanniergrid[n1 * dim[0]:(n1 + 1) * dim[0],
                                    n2 * dim[1]:(n2 + 1) * dim[1],
                                    n3 * dim[2]:(n3 + 1) * dim[2]] += e * wan_G

        # Normalization
        wanniergrid /= np.sqrt(self.Nk)
        return wanniergrid

    def write_cube(self, index, fname, repeat=None, real=True):
        """Dump specified Wannier function to a cube file"""
        from ase.io.cube import write_cube

        # Default size of plotting cell is the one corresponding to k-points.
        if repeat is None:
            repeat = self.kptgrid
        atoms = self.calc.get_atoms() * repeat
        func = self.get_function(index, repeat)

        # Handle separation of complex wave into real parts
        if real:
            if self.Nk == 1:
                func *= np.exp(-1.j * np.angle(func.max()))
                if 0: assert max(abs(func.imag).flat) < 1e-4
                func = func.real
            else:
                func = abs(func)
        else:
            phase_fname = fname.split('.')
            phase_fname.insert(1, 'phase')
            phase_fname = '.'.join(phase_fname)
            write_cube(phase_fname, atoms, data=np.angle(func))
            func = abs(func)

        write_cube(fname, atoms, data=func)

    def localize(self, step=0.25, tolerance=1e-08,
                 updaterot=True, updatecoeff=True):
        """Optimize rotation to give maximal localization"""
        md_min(self, step, tolerance, verbose=self.verbose,
               updaterot=updaterot, updatecoeff=updatecoeff)

    def get_functional_value(self): 
        """Calculate the value of the spread functional.

        ::

          Tr[|ZI|^2]=sum(I)sum(n) w_i|Z_(i)_nn|^2,

        where w_i are weights."""
        a_d = np.sum(np.abs(self.Z_dww.diagonal(0, 1, 2))**2, axis=1)
        return np.dot(a_d, self.weight_d).real

    def get_gradients(self):
        # Determine gradient of the spread functional.
        # 
        # The gradient for a rotation A_kij is::
        # 
        #    dU = dRho/dA_{k,i,j} = sum(I) sum(k')
        #            + Z_jj Z_kk',ij^* - Z_ii Z_k'k,ij^*
        #            - Z_ii^* Z_kk',ji + Z_jj^* Z_k'k,ji
        # 
        # The gradient for a change of coefficients is::
        # 
        #   dRho/da^*_{k,i,j} = sum(I) [[(Z_0)_{k} V_{k'} diag(Z^*) +
        #                                (Z_0_{k''})^d V_{k''} diag(Z)] *
        #                                U_k^d]_{N+i,N+j}
        # 
        # where diag(Z) is a square,diagonal matrix with Z_nn in the diagonal, 
        # k' = k + dk and k = k'' + dk.
        # 
        # The extra degrees of freedom chould be kept orthonormal to the fixed
        # space, thus we introduce lagrange multipliers, and minimize instead::
        # 
        #     Rho_L=Rho- sum_{k,n,m} lambda_{k,nm} <c_{kn}|c_{km}>
        # 
        # for this reason the coefficient gradients should be multiplied
        # by (1 - c c^d).
        
        Nb = self.nbands
        Nw = self.nwannier
        
        dU = []
        dC = []
        for k in xrange(self.Nk):
            M = self.fixedstates_k[k]
            L = self.edf_k[k]
            U_ww = self.U_kww[k]
            C_ul = self.C_kul[k]
            Utemp_ww = np.zeros((Nw, Nw), complex)
            Ctemp_nw = np.zeros((Nb, Nw), complex)

            for d, weight in enumerate(self.weight_d):
                if abs(weight) < 1.0e-6:
                    continue

                Z_knn = self.Z_dknn[d]
                diagZ_w = self.Z_dww[d].diagonal()
                Zii_ww = np.repeat(diagZ_w, Nw).reshape(Nw, Nw)
                k1 = self.kklst_dk[d, k]
                k2 = self.invkklst_dk[d, k]
                V_knw = self.V_knw
                Z_kww = self.Z_dkww[d]
                
                if L > 0:
                    Ctemp_nw += weight * np.dot(
                        np.dot(Z_knn[k], V_knw[k1]) * diagZ_w.conj() +
                        np.dot(dag(Z_knn[k2]), V_knw[k2]) * diagZ_w,
                        dag(U_ww))

                temp = Zii_ww.T * Z_kww[k].conj() - Zii_ww * Z_kww[k2].conj()
                Utemp_ww += weight * (temp - dag(temp))
            dU.append(Utemp_ww.ravel())
            if L > 0:
                # Ctemp now has same dimension as V, the gradient is in the
                # lower-right (Nb-M) x L block
                Ctemp_ul = Ctemp_nw[M:, M:]
                G_ul = Ctemp_ul - np.dot(np.dot(C_ul, dag(C_ul)), Ctemp_ul)
                dC.append(G_ul.ravel())

        return np.concatenate(dU + dC)
                        
    def step(self, dX, updaterot=True, updatecoeff=True):
        # dX is (A, dC) where U->Uexp(-A) and C->C+dC
        Nw = self.nwannier
        Nk = self.Nk
        M_k = self.fixedstates_k
        L_k = self.edf_k
        if updaterot:
            A_kww = dX[:Nk * Nw**2].reshape(Nk, Nw, Nw)
            for U, A in zip(self.U_kww, A_kww):
                H = -1.j * A.conj()
                epsilon, Z = np.linalg.eigh(H)
                # Z contains the eigenvectors as COLUMNS.
                # Since H = iA, dU = exp(-A) = exp(iH) = ZDZ^d
                dU = np.dot(Z * np.exp(1.j * epsilon), dag(Z))
                if U.dtype == float:
                    U[:] = np.dot(U, dU).real
                else:
                    U[:] = np.dot(U, dU)

        if updatecoeff:
            start = 0
            for C, unocc, L in zip(self.C_kul, self.nbands - M_k, L_k):
                if L == 0 or unocc == 0:
                    continue
                Ncoeff = L * unocc
                deltaC = dX[Nk * Nw**2 + start: Nk * Nw**2 + start + Ncoeff]
                C += deltaC.reshape(unocc, L)
                gram_schmidt(C)
                start += Ncoeff

        self.update()