/usr/share/pyshared/ase/gui/surfaceslab.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 | # encoding: utf-8
"""surfaceslab.py - Window for setting up surfaces
"""
import gtk
from gettext import gettext as _
from ase.gui.widgets import pack, cancel_apply_ok, oops
from ase.gui.pybutton import PyButton
from ase.gui.setupwindow import SetupWindow
import ase.lattice.surface as _surf
import ase
import numpy as np
introtext = _("""\
Use this dialog to create surface slabs. Select the element by
writing the chemical symbol or the atomic number in the box. Then
select the desired surface structure. Note that some structures can
be created with an othogonal or a non-orthogonal unit cell, in these
cases the non-orthogonal unit cell will contain fewer atoms.
If the structure matches the experimental crystal structure, you can
look up the lattice constant, otherwise you have to specify it
yourself.""")
# Name, structure, orthogonal, support-nonorthogonal, function
surfaces = [(_('FCC(100)'), _('fcc'), True, False, _surf.fcc100),
(_('FCC(110)'), _('fcc'), True, False, _surf.fcc110),
(_('FCC(111) non-orthogonal'), _('fcc'), False, True,
_surf.fcc111),
(_('FCC(111) orthogonal'), _('fcc'), True, True, _surf.fcc111),
(_('BCC(100)'), _('bcc'), True, False, _surf.bcc100),
(_('BCC(110) non-orthogonal'), _('bcc'), False, True,
_surf.bcc110),
(_('BCC(110) orthogonal'), _('bcc'), True, True, _surf.bcc110),
(_('BCC(111) non-orthogonal'), _('bcc'), False, True,
_surf.bcc111),
(_('BCC(111) orthogonal'), _('bcc'), True, True, _surf.bcc111),
(_('HCP(0001) non-orthogonal'), _('hcp'), False, True,
_surf.hcp0001),
(_('HCP(0001) orthogonal'), _('hcp'), True, True, _surf.hcp0001),
(_('HCP(10-10) orthogonal'), _('hcp'), True, False,
_surf.hcp10m10),
(_('DIAMOND(100) orthogonal'), _('diamond'), True, False,
_surf.diamond100),
(_('DIAMOND(111) non-orthogonal'), _('diamond'), False, True,
_surf.diamond111),
]
py_template = """
from ase.lattice.surface import %(func)s
atoms = %(func)s(symbol='%(symbol)s', size=%(size)s,
a=%(a).3f, vacuum=%(vacuum).3f%(orthoarg)s)
"""
class SetupSurfaceSlab(SetupWindow):
"""Window for setting up a surface."""
def __init__(self, gui):
SetupWindow.__init__(self)
self.set_title(_("Surface"))
self.atoms = None
vbox = gtk.VBox()
# Intoductory text
self.packtext(vbox, introtext)
# Choose the element
label = gtk.Label(_("Element: "))
element = gtk.Entry(max=3)
self.element = element
self.elementinfo = gtk.Label("")
pack(vbox, [label, element, self.elementinfo])
self.element.connect('activate', self.update)
self.legal_element = False
# Choose the surface structure
label = gtk.Label(_("Structure: "))
self.structchoice = gtk.combo_box_new_text()
self.surfinfo = {}
for s in surfaces:
assert len(s) == 5
self.structchoice.append_text(s[0])
self.surfinfo[s[0]] = s
pack(vbox, [label, self.structchoice])
self.structchoice.connect('changed', self.update)
# Choose the lattice constant
tbl = gtk.Table(2, 3)
label = gtk.Label(_("Lattice constant: "))
tbl.attach(label, 0, 1, 0, 1)
vbox2 = gtk.VBox() # For the non-HCP stuff
self.vbox_hcp = gtk.VBox() # For the HCP stuff.
self.lattice_const = gtk.Adjustment(3.0, 0.0, 1000.0, 0.01)
lattice_box = gtk.SpinButton(self.lattice_const, 10.0, 3)
lattice_box.numeric = True
pack(vbox2, [gtk.Label(_("a:")), lattice_box, gtk.Label(_("Å"))])
tbl.attach(vbox2, 1, 2, 0, 1)
lattice_button = gtk.Button(_("Get from database"))
tbl.attach(lattice_button, 2, 3, 0, 1)
# HCP stuff
self.hcp_ideal = (8.0/3)**(1.0/3)
self.lattice_const_c = gtk.Adjustment(self.lattice_const.value * self.hcp_ideal,
0.0, 1000.0, 0.01)
lattice_box_c = gtk.SpinButton(self.lattice_const_c, 10.0, 3)
lattice_box_c.numeric = True
pack(self.vbox_hcp, [gtk.Label("c:"),
lattice_box_c, gtk.Label("Å")])
self.hcp_c_over_a_format = "c/a: %.3f " + _("(%.1f %% of ideal)")
self.hcp_c_over_a_label = gtk.Label(self.hcp_c_over_a_format % \
(self.hcp_ideal, 100.0))
pack(self.vbox_hcp, [self.hcp_c_over_a_label])
tbl.attach(self.vbox_hcp, 1, 2, 1, 2)
tbl.show_all()
pack(vbox, [tbl])
self.lattice_const.connect('value-changed', self.update)
self.lattice_const_c.connect('value-changed', self.update)
lattice_button.connect('clicked', self.get_lattice_const)
pack(vbox, gtk.Label(""))
# System size
self.size = [gtk.Adjustment(1, 1, 100, 1) for i in range(3)]
buttons = [gtk.SpinButton(s, 0, 0) for s in self.size]
self.vacuum = gtk.Adjustment(10.0, 0, 100.0, 0.1)
vacuum_box = gtk.SpinButton(self.vacuum, 0.0, 1)
pack(vbox, [gtk.Label(_("Size: \tx: ")), buttons[0],
gtk.Label(_(" unit cells"))])
pack(vbox, [gtk.Label(_("\t\ty: ")), buttons[1],
gtk.Label(_(" unit cells"))])
pack(vbox, [gtk.Label(_(" \t\tz: ")), buttons[2],
gtk.Label(_(" layers, ")),
vacuum_box, gtk.Label(_(" Å vacuum"))])
self.nosize = _("\t\tNo size information yet.")
self.sizelabel = gtk.Label(self.nosize)
pack(vbox, [self.sizelabel])
for s in self.size:
s.connect('value-changed', self.update)
self.vacuum.connect('value-changed', self.update)
pack(vbox, gtk.Label(""))
# Buttons
self.pybut = PyButton(_("Creating a surface slab."))
self.pybut.connect('clicked', self.update)
buts = cancel_apply_ok(cancel=lambda widget: self.destroy(),
apply=self.apply,
ok=self.ok)
pack(vbox, [self.pybut, buts], end=True, bottom=True)
self.add(vbox)
vbox.show()
self.show()
self.gui = gui
# Hide the HCP stuff to begin with.
self.vbox_hcp.hide_all()
# update_element inherited from SetupWindow
def update(self, *args):
"Called when something has changed."
struct = self.structchoice.get_active_text()
if struct:
structinfo = self.surfinfo[struct]
if structinfo[1] == 'hcp':
self.vbox_hcp.show_all()
ca = self.lattice_const_c.value / self.lattice_const.value
self.hcp_c_over_a_label.set_text(self.hcp_c_over_a_format %
(ca, 100 * ca / self.hcp_ideal))
else:
self.vbox_hcp.hide_all()
# Abort if element or structure is invalid
if not (self.update_element() and struct):
self.sizelabel.set_text(self.nosize)
self.atoms = None
self.pybut.python = None
return False
# Make the atoms
assert self.legal_element
kw = {}
kw2 = {}
if structinfo[3]: # Support othogonal keyword?
kw['orthogonal'] = structinfo[2]
kw2['orthoarg'] = ', orthogonal=' + str(kw['orthogonal'])
else:
kw2['orthoarg'] = ''
kw2['func'] = structinfo[4].__name__
kw['symbol'] = self.legal_element
kw['size'] = [int(s.value) for s in self.size]
kw['a'] = self.lattice_const.value
kw['vacuum'] = self.vacuum.value
# Now create the atoms
try:
self.atoms = structinfo[4](**kw)
except ValueError, e:
# The values were illegal - for example some size
# constants must be even for some structures.
self.pybut.python = None
self.atoms = None
self.sizelabel.set_text(str(e).replace(". ", ".\n"))
return False
kw2.update(kw)
self.pybut.python = py_template % kw2
# Find the heights of the unit cell
h = np.zeros(3)
uc = self.atoms.get_cell()
for i in range(3):
norm = np.cross(uc[i-1], uc[i-2])
norm /= np.sqrt(np.dot(norm, norm))
h[i] = np.abs(np.dot(norm, uc[i]))
natoms = len(self.atoms)
txt = ("\t\t%.2f Å x %.2f Å x %.2f Å, %s"
% (h[0], h[1], h[2], _('%i atoms.') % natoms))
self.sizelabel.set_text(txt)
return True
def get_lattice_const(self, *args):
if not self.update_element():
oops(_("Invalid element."))
return
z = ase.atomic_numbers[self.legal_element]
ref = ase.data.reference_states[z]
surface = self.structchoice.get_active_text()
if not surface:
oops(_("No structure specified!"))
return
struct = self.surfinfo[surface][1]
if ref is None or ref['symmetry'] != struct:
from ase.data.alternatives import alternative_structures
alt = alternative_structures[z]
if alt and alt['symmetry'] == struct:
ref = alt
else:
oops(_('%(struct)s lattice constant unknown for %(element)s.')
% dict(struct=struct.upper(), element=self.legal_element))
a = ref['a']
self.lattice_const.set_value(a)
if struct == 'hcp':
c = ref['c/a'] * a
self.lattice_const_c.set_value(c)
def apply(self, *args):
self.update()
if self.atoms is not None:
self.gui.new_atoms(self.atoms)
return True
else:
oops(_("No valid atoms."),
_("You have not (yet) specified "
"a consistent set of parameters."))
return False
def ok(self, *args):
if self.apply():
self.destroy()
|