/usr/share/pyshared/ase/gui/view.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 | #!/usr/bin/env python
# Emacs: treat this as -*- python -*-
import os
import gtk
import tempfile
from math import cos, sin, sqrt, atan
from os.path import basename
import numpy as np
from ase.data.colors import jmol_colors
from ase.gui.repeat import Repeat
from ase.gui.rotate import Rotate
from ase.gui.render import Render
from ase.gui.colors import ColorWindow
from ase.utils import rotate
class View:
def __init__(self, vbox, rotations):
self.colormode = 'jmol' # The default colors
self.nselected = 0
self.light_green_markings = 0
self.axes = rotate(rotations)
# this is a hack, in order to be able to toggle menu actions off/on
# without getting into an infinte loop
self.menu_change = 0
self.atoms_to_rotate = None
self.drawing_area = gtk.DrawingArea()
self.drawing_area.set_size_request(450, 450)
self.drawing_area.connect('button_press_event', self.press)
self.drawing_area.connect('button_release_event', self.release)
self.drawing_area.connect('motion-notify-event', self.move)
# Signals used to handle backing pixmap:
self.drawing_area.connect('expose_event', self.expose_event)
self.drawing_area.connect('configure_event', self.configure_event)
self.drawing_area.set_events(gtk.gdk.BUTTON_PRESS_MASK |
gtk.gdk.BUTTON_RELEASE_MASK |
gtk.gdk.BUTTON_MOTION_MASK |
gtk.gdk.POINTER_MOTION_HINT_MASK)
vbox.pack_start(self.drawing_area)
self.drawing_area.show()
self.configured = False
self.frame = None
def set_coordinates(self, frame=None, focus=None):
if frame is None:
frame = self.frame
self.make_box()
self.bind(frame)
n = self.images.natoms
self.X = np.empty((n + len(self.B1) + len(self.bonds), 3))
#self.X[n:] = np.dot(self.B1, self.images.A[frame])
#self.B = np.dot(self.B2, self.images.A[frame])
self.set_frame(frame, focus=focus, init=True)
def set_frame(self, frame=None, focus=False, init=False):
if frame is None:
frame = self.frame
n = self.images.natoms
if self.frame > self.images.nimages:
self.frame = self.images.nimages - 1
if init or frame != self.frame:
A = self.images.A
nc = len(self.B1)
nb = len(self.bonds)
if init or (A[frame] != A[self.frame]).any():
self.X[n:n + nc] = np.dot(self.B1, A[frame])
self.B = np.empty((nc + nb, 3))
self.B[:nc] = np.dot(self.B2, A[frame])
if nb > 0:
P = self.images.P[frame]
Af = self.images.repeat[:, np.newaxis] * A[frame]
a = P[self.bonds[:, 0]]
b = P[self.bonds[:, 1]] + np.dot(self.bonds[:, 2:], Af) - a
d = (b**2).sum(1)**0.5
r = 0.65 * self.images.r
x0 = (r[self.bonds[:, 0]] / d).reshape((-1, 1))
x1 = (r[self.bonds[:, 1]] / d).reshape((-1, 1))
self.X[n + nc:] = a + b * x0
b *= 1.0 - x0 - x1
b[self.bonds[:, 2:].any(1)] *= 0.5
self.B[nc:] = self.X[n + nc:] + b
filenames = self.images.filenames
filename = filenames[frame]
if self.frame is None or filename != filenames[self.frame] or filename is None:
if filename is None:
filename = 'ase.gui'
filename = basename(filename)
self.window.set_title(filename)
self.frame = frame
self.X[:n] = self.images.P[frame]
self.R = self.X[:n]
if focus:
self.focus()
else:
self.draw()
def set_colors(self):
self.colormode = 'jmol'
self.set_jmol_colors()
def set_jmol_colors(self):
self.colors = [None] * (len(jmol_colors) + 1)
self.colordata = []
new = self.drawing_area.window.new_gc
alloc = self.colormap.alloc_color
for z in self.images.Z:
if self.colors[z] is None:
c, p, k = jmol_colors[z]
self.colors[z] = new(alloc(int(65535 * c),
int(65535 * p),
int(65535 * k)))
hasfound = {}
for z in self.images.Z:
if z not in hasfound:
hasfound[z] = True
self.colordata.append([z, jmol_colors[z]])
def plot_cell(self):
V = self.images.A[0]
R1 = []
R2 = []
for c in range(3):
v = V[c]
d = sqrt(np.dot(v, v))
n = max(2, int(d / 0.3))
h = v / (2 * n - 1)
R = np.arange(n)[:, None] * (2 * h)
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]:
R1.append(R + i * V[(c + 1) % 3] + j * V[(c + 2) % 3])
R2.append(R1[-1] + h)
return np.concatenate(R1), np.concatenate(R2)
def make_box(self):
if not self.ui.get_widget('/MenuBar/ViewMenu/ShowUnitCell'
).get_active():
self.B1 = self.B2 = np.zeros((0, 3))
return
V = self.images.A[0]
nn = []
for c in range(3):
v = V[c]
d = sqrt(np.dot(v, v))
n = max(2, int(d / 0.3))
nn.append(n)
self.B1 = np.zeros((2, 2, sum(nn), 3))
self.B2 = np.zeros((2, 2, sum(nn), 3))
n1 = 0
for c, n in enumerate(nn):
n2 = n1 + n
h = 1.0 / (2 * n - 1)
R = np.arange(n) * (2 * h)
for i, j in [(0, 0), (0, 1), (1, 0), (1, 1)]:
self.B1[i, j, n1:n2, c] = R
self.B1[i, j, n1:n2, (c + 1) % 3] = i
self.B1[i, j, n1:n2, (c + 2) % 3] = j
self.B2[:, :, n1:n2] = self.B1[:, :, n1:n2]
self.B2[:, :, n1:n2, c] += h
n1 = n2
self.B1.shape = (-1, 3)
self.B2.shape = (-1, 3)
def bind(self, frame):
if not self.ui.get_widget('/MenuBar/ViewMenu/ShowBonds'
).get_active():
self.bonds = np.empty((0, 5), int)
return
from ase.atoms import Atoms
from ase.calculators.neighborlist import NeighborList
nl = NeighborList(self.images.r * 1.5, skin=0, self_interaction=False)
nl.update(Atoms(positions=self.images.P[frame],
cell=(self.images.repeat[:, np.newaxis] *
self.images.A[frame]),
pbc=self.images.pbc))
nb = nl.nneighbors + nl.npbcneighbors
self.bonds = np.empty((nb, 5), int)
if nb == 0:
return
n1 = 0
for a in range(self.images.natoms):
indices, offsets = nl.get_neighbors(a)
n2 = n1 + len(indices)
self.bonds[n1:n2, 0] = a
self.bonds[n1:n2, 1] = indices
self.bonds[n1:n2, 2:] = offsets
n1 = n2
i = self.bonds[:n2, 2:].any(1)
self.bonds[n2:, 0] = self.bonds[i, 1]
self.bonds[n2:, 1] = self.bonds[i, 0]
self.bonds[n2:, 2:] = -self.bonds[i, 2:]
def toggle_show_unit_cell(self, action):
self.set_coordinates()
def reset_tools_modes(self):
dummy = self.menu_change
self.menu_change = 1
self.atoms_to_rotate = None
for c_mode in ['Rotate', 'Orient', 'Move']:
self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % c_mode).set_active(False)
self.light_green_markings = 0
self.menu_change = 0
self.draw()
def toggle_mode(self, mode):
self.menu_change = 1
i_sum = 0
for c_mode in ['Rotate', 'Orient', 'Move']:
i_sum += self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % c_mode).get_active()
if i_sum == 0 or (i_sum == 1 and sum(self.images.selected) == 0):
self.reset_tools_modes()
return()
if i_sum == 2:
try:
self.images.selected = self.atoms_to_rotate_0.copy()
except:
self.atoms_to_rotate_0 = self.images.selected.copy()
if i_sum == 1:
self.atoms_to_rotate_0 = self.images.selected.copy()
for c_mode in ['Rotate', 'Orient', 'Move']:
if c_mode != mode:
self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % c_mode).set_active(False)
if self.ui.get_widget('/MenuBar/ToolsMenu/%sAtoms' % mode).get_active():
self.atoms_to_rotate_0 = self.images.selected.copy()
for i in range(len(self.images.selected)):
self.images.selected[i] = False
self.light_green_markings = 1
else:
try:
atr = self.atoms_to_rotate_0
for i in range(len(self.images.selected)):
self.images.selected[i] = atr[i]
except:
pass
self.menu_change = 0
self.draw()
def toggle_move_mode(self, action):
"""
Toggles the move mode, where the selected atoms can be moved with the arrow
keys and pg up/dn. If the shift key is pressed, the movement will be reduced.
The movement will be relative to the current rotation of the coordinate system.
The implementation of the move mode is found in the gui.scroll
"""
if not (self.menu_change):
self.toggle_mode('Move')
def toggle_rotate_mode(self, action):
"""
Toggles the rotate mode, where the selected atoms can be rotated with the arrow keys
and pg up/dn. If the shift key is pressed, the rotation angle will be reduced.
The atoms to be rotated will be marked with light green - and the COM of the selected
atoms will be used as the COM of the rotation. This can be changed while rotating the
selected atoms.
If only two atoms are seleceted, and the number of atoms to be rotated is different from
two, the selected atoms will define the axis of rotation.
The implementation of the rotate mode is found in the gui.scroll
"""
if not (self.menu_change):
self.toggle_mode('Rotate')
def toggle_orient_mode(self, action):
"""
Toggle the orientation mode - the orientation of the atoms will be changed
according to the arrow keys selected.
If nothing is selected, standard directions are x, y and z
if two atoms are selected, the standard directions are along their displacement vector
if three atoms are selected, the orientation is changed according to the normal of these
three vectors.
"""
if not (self.menu_change):
self.toggle_mode('Orient')
self.orient_normal = np.array([1.0, 0.0, 0.0])
sel_pos = []
for i, j in enumerate(self.atoms_to_rotate_0):
if j:
sel_pos.append(self.R[i])
if len(sel_pos) == 2:
self.orient_normal = sel_pos[0] - sel_pos[1]
if len(sel_pos) == 3:
v1 = sel_pos[1] - sel_pos[0]
v2 = sel_pos[1] - sel_pos[2]
self.orient_normal = np.cross(v1, v2)
self.orient_normal /= sum(self.orient_normal ** 2) ** 0.5
def toggle_show_axes(self, action):
self.draw()
def toggle_show_bonds(self, action):
self.set_coordinates()
def repeat_window(self, menuitem):
self.reset_tools_modes()
Repeat(self)
def rotate_window(self, menuitem):
Rotate(self)
def colors_window(self, menuitem):
ColorWindow(self)
def focus(self, x=None):
if (self.images.natoms == 0 and not
self.ui.get_widget('/MenuBar/ViewMenu/ShowUnitCell').get_active()):
self.scale = 1.0
self.center = np.zeros(3)
self.draw()
return
P = np.dot(self.X, self.axes)
n = self.images.natoms
P[:n] -= self.images.r[:, None]
P1 = P.min(0)
P[:n] += 2 * self.images.r[:, None]
P2 = P.max(0)
self.center = np.dot(self.axes, (P1 + P2) / 2)
S = 1.3 * (P2 - P1)
if S[0] * self.height < S[1] * self.width:
self.scale = self.height / S[1]
else:
self.scale = self.width / S[0]
self.draw()
def reset_view(self, menuitem):
self.axes = rotate('0.0x,0.0y,0.0z')
self.set_coordinates()
self.focus(self)
def get_colors(self, rgb = False):
Z = self.images.Z
if rgb:
# create a shape that is equivalent to self.colors,
# but contains rgb data instead gtk.gdk.GCX11 objects
colarray = [None] * max(len(jmol_colors)+1,len(self.colordata))
for z, c in self.colordata:
colarray[z] = c
else:
colarray = self.colors
if self.colormode == 'jmol' or self.colormode == 'atno':
colors = np.array(colarray)[Z]
elif self.colormode == 'tags':
colors = np.array(colarray)[self.images.T[self.frame]]
elif self.colormode == 'force':
F = self.images.F[self.frame]
F = np.sqrt(((F*self.images.dynamic[:,np.newaxis])**2).sum(axis=-1)) # The absolute force
nF = (F - self.colormode_force_data[0]) * self.colormode_force_data[1]
nF = np.clip(nF.astype(int), 0, len(self.colors)-1)
colors = np.array(colarray)[nF]
elif self.colormode == 'velocity':
V = self.images.V[self.frame]
V = np.sqrt((V*V).sum(axis=-1)) # The absolute velocity
nV = (V - self.colormode_velocity_data[0]) * self.colormode_velocity_data[1]
nV = np.clip(nV.astype(int), 0, len(self.colors)-1)
colors = np.array(colarray)[nV]
elif self.colormode == 'manual':
colors = colarray
elif self.colormode == 'same':
colors = [colarray[0]] * self.images.natoms
else:
raise RuntimeError('Unknown color mode: %s' % (self.colormode,))
return colors
def repeat_colors(self, repeat):
natoms = self.images.natoms
if self.colormode == 'manual':
a0 = 0
colors = self.colors
colordata = self.colordata
for i0 in range(repeat[0]):
for i1 in range(repeat[1]):
for i2 in range(repeat[2]):
a1 = a0 + natoms
colors[a0:a1] = self.colors[:natoms]
colordata[a0:a1] = self.colordata[:natoms]
a0 = a1
self.colors = colors
self.colordata = colordata
def my_arc(self, gc, fill, j, X, r, n, A):
if self.images.shapes is not None:
rx = (self.images.shapes[j, 0]).round().astype(int)
ry = (self.images.shapes[j, 1]).round().astype(int)
rz = (self.images.shapes[j, 2]).round().astype(int)
circle = rx == ry and ry == rz
else:
circle = True
if not circle:
Q = self.images.Q[j]
X2d = np.array([X[j][0], X[j][1]])
Ellipsoid = np.array([[1. / (rx*rx), 0, 0],
[0, 1. / (ry*ry), 0],
[0, 0, 1. / (rz*rz)]
])
# Ellipsoid rotatet by quaternion as Matrix X' = R X R_transpose
El_r = np.dot(Q.rotation_matrix(),
np.dot(Ellipsoid,
np.transpose(Q.rotation_matrix())))
# Ellipsoid rotated by quaternion and axes as
# Matrix X' = R_axes X' R_axes
El_v = np.dot(np.transpose(self.axes), np.dot(El_r, self.axes))
# Projection of rotatet ellipsoid on xy plane
El_p = Ell = np.array([
[El_v[0][0] - El_v[0][2] * El_v[0][2] / El_v[2][2],
El_v[0][1] - El_v[0][2] * El_v[1][2] / El_v[2][2]],
[El_v[0][1] - El_v[0][2] * El_v[1][2] / El_v[2][2],
El_v[1][1] - El_v[1][2] * El_v[1][2] / El_v[2][2]]
])
# diagonal matrix der Ellipse gibt halbachsen
El_p_diag = np.linalg.eig(El_p)
# Winkel mit dem Ellipse in xy gedreht ist aus
# eigenvektor der diagonal matrix
phi = atan(El_p_diag[1][0][1] / El_p_diag[1][0][0])
tupl = []
alpha = np.array(range(20)) *2* np.pi /20
El_xy = np.array([sqrt(1. / (El_p_diag[0][0])) *
np.cos(alpha)*np.cos(phi)
- sqrt(1./(El_p_diag[0][1])) *
np.sin(alpha) * np.sin(phi),
sqrt(1./(El_p_diag[0][0])) *
np.cos(alpha)*np.sin(phi)
+ sqrt(1./(El_p_diag[0][1])) *
np.sin(alpha) * np.cos(phi)])
tupl = (El_xy.transpose() * self.scale +
X[j][:2]).round().astype(int)
# XXX there must be a better way
tupl = [tuple(i) for i in tupl]
return self.pixmap.draw_polygon( gc, fill, tupl)
dx = dy = (2 * r).round().astype(int)
rj = dx[j]
return self.pixmap.draw_arc(gc, fill, A[j, 0], A[j, 1], rj, rj,
0, 23040)
def draw(self, status=True):
self.pixmap.draw_rectangle(self.white_gc, True, 0, 0,
self.width, self.height)
axes = self.scale * self.axes * (1, -1, 1)
offset = (np.dot(self.center, axes) -
(0.5 * self.width, 0.5 * self.height, 0))
X = np.dot(self.X, axes) - offset
n = self.images.natoms
self.indices = X[:, 2].argsort()
if self.ui.get_widget('/MenuBar/ViewMenu/ShowBonds').get_active():
r = self.images.r * (0.65 * self.scale)
else:
r = self.images.r * self.scale
P = self.P = X[:n, :2]
A = (P - r[:, None]).round().astype(int)
X1 = X[n:, :2].round().astype(int)
X2 = (np.dot(self.B, axes) - offset).round().astype(int)
d = (2 * r).round().astype(int)
selected_gc = self.selected_gc
colors = self.get_colors()
arc = self.pixmap.draw_arc
line = self.pixmap.draw_line
black_gc = self.black_gc
dynamic = self.images.dynamic
selected = self.images.selected
visible = self.images.visible
for a in self.indices:
if a < n:
ra = d[a]
if visible[a]:
self.my_arc(colors[a], True, a, X, r, n, A)
if self.light_green_markings and self.atoms_to_rotate_0[a]:
arc(self.green, False, A[a, 0] + 2, A[a, 1] + 2,
ra - 4, ra - 4, 0, 23040)
if not dynamic[a]:
R1 = int(0.14644 * ra)
R2 = int(0.85355 * ra)
line(black_gc,
A[a, 0] + R1, A[a, 1] + R1,
A[a, 0] + R2, A[a, 1] + R2)
line(black_gc,
A[a, 0] + R2, A[a, 1] + R1,
A[a, 0] + R1, A[a, 1] + R2)
if selected[a]:
self.my_arc(selected_gc, False, a, X, r, n, A)
elif visible[a]:
self.my_arc(black_gc, False, a, X, r, n, A)
else:
a -= n
line(black_gc, X1[a, 0], X1[a, 1], X2[a, 0], X2[a, 1])
if self.ui.get_widget('/MenuBar/ViewMenu/ShowAxes').get_active():
self.draw_axes()
if self.images.nimages > 1:
self.draw_frame_number()
self.drawing_area.window.draw_drawable(self.white_gc, self.pixmap,
0, 0, 0, 0,
self.width, self.height)
if status:
self.status()
def draw_axes(self):
from ase.quaternions import Quaternion
q = Quaternion().from_matrix(self.axes)
L = np.zeros((10, 2, 3))
L[:3, 1] = self.axes * 15
L[3:5] = self.axes[0] * 20
L[5:7] = self.axes[1] * 20
L[7:] = self.axes[2] * 20
L[3:, :, :2] += (((-4, -5), (4, 5)), ((-4, 5), ( 4, -5)),
((-4, 5), (0, 0)), ((-4, -5), ( 4, 5)),
((-4, 5), (4, 5)), (( 4, 5), (-4, -5)),
((-4, -5), (4, -5)))
L = L.round().astype(int)
L[:, :, 0] += 20
L[:, :, 1] = self.height - 20 - L[:, :, 1]
line = self.pixmap.draw_line
colors = ([self.black_gc] * 3 +
[self.red] * 2 + [self.green] * 2 + [self.blue] * 3)
for i in L[:, 1, 2].argsort():
(a, b), (c, d) = L[i, :, :2]
line(colors[i], a, b, c, d)
digits = np.array(((1, 1, 1, 1, 1, 1, 0),
(0, 1, 1, 0, 0, 0, 0),
(1, 0, 1, 1, 0, 1, 1),
(1, 1, 1, 1, 0, 0, 1),
(0, 1, 1, 0, 1, 0, 1),
(1, 1, 0, 1, 1, 0, 1),
(1, 1, 0, 1, 1, 1, 1),
(0, 1, 1, 1, 0, 0, 0),
(1, 1, 1, 1, 1, 1, 1),
(0, 1, 1, 1, 1, 0, 1)), bool)
bars = np.array(((0, 2, 1, 2),
(1, 2, 1, 1),
(1, 1, 1, 0),
(1, 0, 0, 0),
(0, 0, 0, 1),
(0, 1, 0, 2),
(0, 1, 1, 1))) * 5
def draw_frame_number(self):
n = str(self.frame)
x = self.width - 3 - 8 * len(n)
y = self.height - 27
color = self.black_gc
line = self.pixmap.draw_line
for c in n:
bars = View.bars[View.digits[int(c)]]
for a, b, c, d in bars:
line(color, a + x, b + y, c + x, d + y)
x += 8
def release(self, drawing_area, event):
if event.button != 1:
return
selected = self.images.selected
selected_ordered = self.images.selected_ordered
if event.time < self.t0 + 200: # 200 ms
d = self.P - self.xy
hit = np.less((d**2).sum(1), (self.scale * self.images.r)**2)
for a in self.indices[::-1]:
if a < self.images.natoms and hit[a]:
if event.state & gtk.gdk.CONTROL_MASK:
selected[a] = not selected[a]
if selected[a]:
selected_ordered += [a]
elif len(selected_ordered) > 0:
if selected_ordered[-1] == a:
selected_ordered = selected_ordered[:-1]
else:
selected_ordered = []
else:
selected[:] = False
selected[a] = True
selected_ordered = [a]
break
else:
selected[:] = False
selected_ordered = []
self.draw()
else:
A = (event.x, event.y)
C1 = np.minimum(A, self.xy)
C2 = np.maximum(A, self.xy)
hit = np.logical_and(self.P > C1, self.P < C2)
indices = np.compress(hit.prod(1), np.arange(len(hit)))
if not (event.state & gtk.gdk.CONTROL_MASK):
selected[:] = False
selected[indices] = True
if len(indices) == 1 and indices[0] not in self.images.selected_ordered:
selected_ordered += [indices[0]]
elif len(indices) > 1:
selected_ordered = []
self.draw()
indices = np.arange(self.images.natoms)[self.images.selected]
if len(indices) != len(selected_ordered):
selected_ordered = []
self.images.selected_ordered = selected_ordered
def press(self, drawing_area, event):
self.button = event.button
self.xy = (event.x, event.y)
self.t0 = event.time
self.axes0 = self.axes
self.center0 = self.center
def move(self, drawing_area, event):
x, y, state = event.window.get_pointer()
x0, y0 = self.xy
if self.button == 1:
window = self.drawing_area.window
window.draw_drawable(self.white_gc, self.pixmap,
0, 0, 0, 0,
self.width, self.height)
x0 = int(round(x0))
y0 = int(round(y0))
window.draw_rectangle(self.selected_gc, False,
min(x, x0), min(y, y0),
abs(x - x0), abs(y - y0))
return
if self.button == 2:
return
if state & gtk.gdk.SHIFT_MASK:
self.center = (self.center0 -
np.dot(self.axes, (x - x0, y0 - y, 0)) / self.scale)
else:
# Snap mode: the a-b angle and t should multipla of 15 degrees ???
a = x - x0
b = y0 - y
t = sqrt(a * a + b * b)
if t > 0:
a /= t
b /= t
else:
a = 1.0
b = 0.0
c = cos(0.01 * t)
s = -sin(0.01 * t)
rotation = np.array([(c * a * a + b * b, (c - 1) * b * a, s * a),
((c - 1) * a * b, c * b * b + a * a, s * b),
(-s * a, -s * b, c)])
self.axes = np.dot(self.axes0, rotation)
if self.images.natoms > 0:
com = self.X[:self.images.natoms].mean(0)
else:
com = self.images.A[self.frame].mean(0)
self.center = com - np.dot(com - self.center0,
np.dot(self.axes0, self.axes.T))
self.draw(status=False)
# Create a new backing pixmap of the appropriate size
def configure_event(self, drawing_area, event):
if self.configured:
w = self.width
h = self.height
else:
self.colormap = self.drawing_area.get_colormap()
self.black_gc = self.drawing_area.get_style().black_gc
self.white_gc = self.drawing_area.get_style().white_gc
self.red = self.drawing_area.window.new_gc(
self.colormap.alloc_color(62345, 0, 0), line_width=2)
self.green = self.drawing_area.window.new_gc(
self.colormap.alloc_color(0, 54456, 0), line_width=2)
self.blue = self.drawing_area.window.new_gc(
self.colormap.alloc_color(0, 0, 54456), line_width=2)
self.selected_gc = self.drawing_area.window.new_gc(
self.colormap.alloc_color(0, 16456, 0),
line_width=3)
x, y, self.width, self.height = drawing_area.get_allocation()
self.pixmap = gtk.gdk.Pixmap(drawing_area.window,
self.width, self.height)
if self.configured:
self.scale *= sqrt(1.0 * self.width * self.height / (w * h))
self.draw()
self.configured = True
# Redraw the screen from the backing pixmap
def expose_event(self, drawing_area, event):
x , y, width, height = event.area
gc = self.white_gc
drawing_area.window.draw_drawable(gc, self.pixmap,
x, y, x, y, width, height)
def external_viewer(self, action):
name = action.get_name()
command = {'Avogadro' : 'avogadro',
'XMakeMol': 'xmakemol -f',
'RasMol':'rasmol -xyz',
'VMD': 'vmd'}[name]
fd, filename = tempfile.mkstemp('.xyz', 'ase.gui-')
os.close(fd)
self.images.write(filename)
os.system('(%s %s &); (sleep 60; rm %s) &' %
(command, filename, filename))
def render_window(self, action):
Render(self)
|