This file is indexed.

/usr/share/pyshared/ase/io/pov.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
"""
Module for povray file format support.

See http://www.povray.org/ for details on the format.
"""
import os

import numpy as np

from ase.io.eps import EPS
from ase.data import chemical_symbols
from ase.constraints import FixAtoms

def pa(array):
    """Povray array syntax"""
    return '<% 6.2f, % 6.2f, % 6.2f>' % tuple(array)


def pc(array):
    """Povray color syntax"""
    if type(array) == str:
        return 'color ' + array
    if type(array) == float:
        return 'rgb <%.2f>*3' % array
    if len(array) == 3:
        return 'rgb <%.2f, %.2f, %.2f>' % tuple(array)
    if len(array) == 4: # filter
        return 'rgbf <%.2f, %.2f, %.2f, %.2f>' % tuple(array)
    if len(array) == 5: # filter and transmit
        return 'rgbft <%.2f, %.2f, %.2f, %.2f, %.2f>' % tuple(array)


def get_bondpairs(atoms, radius=1.1):
    """Get all pairs of bonding atoms

    Return all pairs of atoms which are closer than radius times the
    sum of their respective covalent radii.  The pairs are returned as
    tuples::

      (a, b, (i1, i2, i3))

    so that atoms a bonds to atom b displaced by the vector::

        _     _     _
      i c + i c + i c ,
       1 1   2 2   3 3

    where c1, c2 and c3 are the unit cell vectors and i1, i2, i3 are
    integers."""
    
    from ase.data import covalent_radii
    from ase.calculators.neighborlist import NeighborList
    cutoffs = radius * covalent_radii[atoms.numbers]
    nl = NeighborList(cutoffs=cutoffs, self_interaction=False)
    nl.update(atoms)
    bondpairs = []
    for a in range(len(atoms)):
        indices, offsets = nl.get_neighbors(a)
        bondpairs.extend([(a, a2, offset)
                          for a2, offset in zip(indices, offsets)])
    return bondpairs


class POVRAY(EPS):
    default_settings = {
        # x, y is the image plane, z is *out* of the screen
        'display'        : True, # Display while rendering
        'pause'          : True, # Pause when done rendering (only if display)
        'transparent'    : True, # Transparent background
        'canvas_width'   : None, # Width of canvas in pixels
        'canvas_height'  : None, # Height of canvas in pixels 
        'camera_dist'    : 50.,  # Distance from camera to front atom
        'image_plane'    : None, # Distance from front atom to image plane
        'camera_type'    : 'orthographic', # perspective, ultra_wide_angle
        'point_lights'   : [],             # [[loc1, color1], [loc2, color2],...]
        'area_light'     : [(2., 3., 40.), # location
                            'White',       # color
                            .7, .7, 3, 3], # width, height, Nlamps_x, Nlamps_y
        'background'     : 'White',        # color
        'textures'       : None, # Length of atoms list of texture names
        'celllinewidth'  : 0.05, # Radius of the cylinders representing the cell
        'bondlinewidth'  : 0.10, # Radius of the cylinders representing the bonds
        'bondatoms'      : [],   # [[atom1, atom2], ... ] pairs of bonding atoms
        'exportconstraints' : False}  # honour FixAtom requests and mark relevant atoms?

    def __init__(self, atoms, scale=1.0, **parameters):
        for k, v in self.default_settings.items():
            setattr(self, k, parameters.pop(k, v))
        EPS.__init__(self, atoms, scale=scale, **parameters)
        constr = atoms.constraints
        self.constrainatoms = []
        for c in constr:
            if isinstance(c,FixAtoms):
                for n,i in enumerate(c.index):
                    if i: self.constrainatoms += [n]

    def cell_to_lines(self, A):
        return np.empty((0, 3)), None, None

    def write(self, filename, **settings):
        # Determine canvas width and height
        ratio = float(self.w) / self.h
        if self.canvas_width is None:
            if self.canvas_height is None:
                self.canvas_width = min(self.w * 15, 640)
            else:
                self.canvas_width = self.canvas_height * ratio
        elif self.canvas_height is not None:
            raise RuntimeError, "Can't set *both* width and height!"

        # Distance to image plane from camera
        if self.image_plane is None:
            if self.camera_type == 'orthographic':
                self.image_plane = 1 - self.camera_dist
            else:
                self.image_plane = 0
        self.image_plane += self.camera_dist

        # Produce the .ini file
        if filename.endswith('.pov'):
            ini = open(filename[:-4] + '.ini', 'w').write
        else:
            ini = open(filename + '.ini', 'w').write
        ini('Input_File_Name=%s\n' % filename)
        ini('Output_to_File=True\n')
        ini('Output_File_Type=N\n')
        ini('Output_Alpha=%s\n' % self.transparent)
        ini('; if you adjust Height, and width, you must preserve the ratio\n')
        ini('; Width / Height = %s\n' % repr(ratio))
        ini('Width=%s\n' % self.canvas_width)
        ini('Height=%s\n' % (self.canvas_width / ratio))
        ini('Antialias=True\n')
        ini('Antialias_Threshold=0.1\n')
        ini('Display=%s\n' % self.display)
        ini('Pause_When_Done=%s\n' % self.pause)
        ini('Verbose=False\n')
        del ini

        # Produce the .pov file
        w = open(filename, 'w').write
        w('#include "colors.inc"\n')
        w('#include "finish.inc"\n')
        w('\n')
        w('global_settings {assumed_gamma 1 max_trace_level 6}\n')
        w('background {%s}\n' % pc(self.background))
        w('camera {%s\n' % self.camera_type)
        w('  right -%.2f*x up %.2f*y\n' % (self.w, self.h))
        w('  direction %.2f*z\n' % self.image_plane)
        w('  location <0,0,%.2f> look_at <0,0,0>}\n' % self.camera_dist)
        for loc, rgb in self.point_lights:
            w('light_source {%s %s}\n' % (pa(loc), pc(rgb)))

        if self.area_light is not None:
            loc, color, width, height, nx, ny = self.area_light
            w('light_source {%s %s\n' % (pa(loc), pc(color)))
            w('  area_light <%.2f, 0, 0>, <0, %.2f, 0>, %i, %i\n' % (
                width, height, nx, ny))
            w('  adaptive 1 jitter}\n')

        w('\n')
        w('#declare simple = finish {phong 0.7}\n')
        w('#declare pale = finish {'
          'ambient .5 '
          'diffuse .85 '   
          'roughness .001 '
          'specular 0.200 }\n')
        w('#declare intermediate = finish {'
          'ambient 0.3 '
          'diffuse 0.6 '
          'specular 0.10 '
          'roughness 0.04 }\n')
        w('#declare vmd = finish {'
          'ambient .0 '
          'diffuse .65 '
          'phong 0.1 '
          'phong_size 40. '
          'specular 0.500 }\n')
        w('#declare jmol = finish {'
          'ambient .2 '
          'diffuse .6 '
          'specular 1 '
          'roughness .001 '
          'metallic}\n')
        w('#declare ase2 = finish {'
          'ambient 0.05 '
          'brilliance 3 '
          'diffuse 0.6 '
          'metallic '
          'specular 0.70 '
          'roughness 0.04 '
          'reflection 0.15}\n')
        w('#declare ase3 = finish {'
          'ambient .15 '
          'brilliance 2 '
          'diffuse .6 '
          'metallic '
          'specular 1. '
          'roughness .001 '
          'reflection .0}\n')
        w('#declare glass = finish {'
          'ambient .05 '
          'diffuse .3 '
          'specular 1. '
          'roughness .001}\n')
        w('#declare Rcell = %.3f;\n' % self.celllinewidth)
        w('#declare Rbond = %.3f;\n' % self.bondlinewidth)
        w('\n')
        w('#macro atom(LOC, R, COL, FIN)\n')
        w('  sphere{LOC, R texture{pigment{COL} finish{FIN}}}\n')
        w('#end\n')
        w('#macro constrain(LOC, R, COL, FIN)\n')
        w('union{torus{R, Rcell rotate 45*z texture{pigment{COL} finish{FIN}}}\n')
        w('      torus{R, Rcell rotate -45*z texture{pigment{COL} finish{FIN}}}\n')
        w('      translate LOC}\n')
        w('#end\n')
        w('\n')
        
        z0 = self.X[:, 2].max()
        self.X -= (self.w / 2, self.h / 2, z0)

        # Draw unit cell
        if self.C is not None:
            self.C -= (self.w / 2, self.h / 2, z0)
            self.C.shape = (2, 2, 2, 3)
            for c in range(3):
                for j in ([0, 0], [1, 0], [1, 1], [0, 1]):
                    w('cylinder {')
                    for i in range(2):
                        j.insert(c, i)
                        w(pa(self.C[tuple(j)]) + ', ')
                        del j[c]
                    w('Rcell pigment {Black}}\n')

        # Draw atoms
        a = 0
        for loc, dia, color in zip(self.X, self.d, self.colors):
            tex = 'ase3'
            if self.textures is not None:
                tex = self.textures[a]
            w('atom(%s, %.2f, %s, %s) // #%i \n' % (
                pa(loc), dia / 2., pc(color), tex, a))
            a += 1

        # Draw atom bonds
        for pair in self.bondatoms:
            if len(pair) == 2:
                a, b = pair
                offset = (0, 0, 0)
            else:
                a, b, offset = pair
            R = np.dot(offset, self.A)
            mida = 0.5 * (self.X[a] + self.X[b] + R)
            midb = 0.5 * (self.X[a] + self.X[b] - R)
            if self.textures is not None:
                texa = self.textures[a]
                texb = self.textures[b]
            else:
                texa = texb = 'ase3'
            w('cylinder {%s, %s, Rbond texture{pigment {%s} finish{%s}}}\n' % (
                pa(self.X[a]), pa(mida), pc(self.colors[a]), texa))
            w('cylinder {%s, %s, Rbond texture{pigment {%s} finish{%s}}}\n' % (
                pa(self.X[b]), pa(midb), pc(self.colors[b]), texb))
            
        # Draw constraints if requested
        if self.exportconstraints:
            for a in self.constrainatoms:
                dia    = self.d[a]
                loc    = self.X[a]
                w('constrain(%s, %.2f, Black, %s) // #%i \n' % (
                    pa(loc), dia / 2., tex, a))

def write_pov(filename, atoms, run_povray=False, **parameters):
    if isinstance(atoms, list):
        assert len(atoms) == 1
        atoms = atoms[0]
    assert 'scale' not in parameters
    POVRAY(atoms, **parameters).write(filename)
    if run_povray:
        errcode = os.system('povray %s.ini 2> /dev/null' % filename[:-4])
        if errcode != 0:
            raise OSError('Povray failed with error code %d' % errcode)