/usr/share/pyshared/ase/io/pupynere.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 | """
NetCDF reader/writer module.
This module implements the Scientific.IO.NetCDF API to read and create
NetCDF files. The same API is also used in the PyNIO and pynetcdf
modules, allowing these modules to be used interchangebly when working
with NetCDF files. The major advantage of ``scipy.io.netcdf`` over other
modules is that it doesn't require the code to be linked to the NetCDF
libraries as the other modules do.
The code is based on the NetCDF file format specification
(http://www.unidata.ucar.edu/software/netcdf/guide_15.html). A NetCDF
file is a self-describing binary format, with a header followed by
data. The header contains metadata describing dimensions, variables
and the position of the data in the file, so access can be done in an
efficient manner without loading unnecessary data into memory. We use
the ``mmap`` module to create Numpy arrays mapped to the data on disk,
for the same purpose.
The structure of a NetCDF file is as follows:
C D F <VERSION BYTE> <NUMBER OF RECORDS>
<DIMENSIONS> <GLOBAL ATTRIBUTES> <VARIABLES METADATA>
<NON-RECORD DATA> <RECORD DATA>
Record data refers to data where the first axis can be expanded at
will. All record variables share a same dimension at the first axis,
and they are stored at the end of the file per record, ie
A[0], B[0], ..., A[1], B[1], ..., etc,
so that new data can be appended to the file without changing its original
structure. Non-record data are padded to a 4n bytes boundary. Record data
are also padded, unless there is exactly one record variable in the file,
in which case the padding is dropped. All data is stored in big endian
byte order.
The Scientific.IO.NetCDF API allows attributes to be added directly to
instances of ``netcdf_file`` and ``netcdf_variable``. To differentiate
between user-set attributes and instance attributes, user-set attributes
are automatically stored in the ``_attributes`` attribute by overloading
``__setattr__``. This is the reason why the code sometimes uses
``obj.__dict__['key'] = value``, instead of simply ``obj.key = value``;
otherwise the key would be inserted into userspace attributes.
To create a NetCDF file::
>>> import time
>>> f = netcdf_file('simple.nc', 'w')
>>> f.history = 'Created for a test'
>>> f.createDimension('time', 10)
>>> time = f.createVariable('time', 'i', ('time',))
>>> time[:] = range(10)
>>> time.units = 'days since 2008-01-01'
>>> f.close()
To read the NetCDF file we just created::
>>> f = netcdf_file('simple.nc', 'r')
>>> print f.history
Created for a test
>>> time = f.variables['time']
>>> print time.units
days since 2008-01-01
>>> print time.shape
(10,)
>>> print time[-1]
9
>>> f.close()
TODO: properly implement ``_FillValue``.
"""
__all__ = ['netcdf_file', 'netcdf_variable']
from operator import mul
from mmap import mmap, ACCESS_READ
from numpy import fromstring, ndarray, dtype, empty, array, asarray
from numpy import little_endian as LITTLE_ENDIAN
ABSENT = '\x00\x00\x00\x00\x00\x00\x00\x00'
ZERO = '\x00\x00\x00\x00'
NC_BYTE = '\x00\x00\x00\x01'
NC_CHAR = '\x00\x00\x00\x02'
NC_SHORT = '\x00\x00\x00\x03'
NC_INT = '\x00\x00\x00\x04'
NC_FLOAT = '\x00\x00\x00\x05'
NC_DOUBLE = '\x00\x00\x00\x06'
NC_DIMENSION = '\x00\x00\x00\n'
NC_VARIABLE = '\x00\x00\x00\x0b'
NC_ATTRIBUTE = '\x00\x00\x00\x0c'
TYPEMAP = { NC_BYTE: ('b', 1),
NC_CHAR: ('c', 1),
NC_SHORT: ('h', 2),
NC_INT: ('i', 4),
NC_FLOAT: ('f', 4),
NC_DOUBLE: ('d', 8) }
REVERSE = { 'b': NC_BYTE,
'c': NC_CHAR,
'h': NC_SHORT,
'i': NC_INT,
'f': NC_FLOAT,
'd': NC_DOUBLE,
# these come from asarray(1).dtype.char and asarray('foo').dtype.char,
# used when getting the types from generic attributes.
'l': NC_INT,
'S': NC_CHAR }
class netcdf_file(object):
"""
A ``netcdf_file`` object has two standard attributes: ``dimensions`` and
``variables``. The values of both are dictionaries, mapping dimension
names to their associated lengths and variable names to variables,
respectively. Application programs should never modify these
dictionaries.
All other attributes correspond to global attributes defined in the
NetCDF file. Global file attributes are created by assigning to an
attribute of the ``netcdf_file`` object.
"""
def __init__(self, filename, mode='r', mmap=True):
if not __debug__:
raise RuntimeError('Current version of pupynere does not ' +
'work with -O option. We need to update ' +
'to version 1.0.7!')
self.filename = filename
self.use_mmap = mmap
assert mode in 'rw', "Mode must be either 'r' or 'w'."
self.mode = mode
self.dimensions = {}
self.variables = {}
self._dims = []
self._recs = 0
self._recsize = 0
self.fp = open(self.filename, '%sb' % mode)
self._attributes = {}
if mode is 'r':
self._read()
def __setattr__(self, attr, value):
# Store user defined attributes in a separate dict,
# so we can save them to file later.
try:
self._attributes[attr] = value
except AttributeError:
pass
self.__dict__[attr] = value
def close(self):
if not self.fp.closed:
try:
self.flush()
finally:
self.fp.close()
__del__ = close
def createDimension(self, name, length):
self.dimensions[name] = length
self._dims.append(name)
def createVariable(self, name, type, dimensions):
shape = tuple([self.dimensions[dim] for dim in dimensions])
shape_ = tuple([dim or 0 for dim in shape]) # replace None with 0 for numpy
if isinstance(type, basestring): type = dtype(type)
typecode, size = type.char, type.itemsize
dtype_ = '>%s' % typecode
if size > 1: dtype_ += str(size)
data = empty(shape_, dtype=dtype_)
self.variables[name] = netcdf_variable(data, typecode, shape, dimensions)
return self.variables[name]
def flush(self):
if self.mode is 'w':
self._write()
sync = flush
def _write(self):
self.fp.write('CDF')
self.__dict__['version_byte'] = 1
self.fp.write(array(1, '>b').tostring())
# Write headers and data.
self._write_numrecs()
self._write_dim_array()
self._write_gatt_array()
self._write_var_array()
def _write_numrecs(self):
# Get highest record count from all record variables.
for var in self.variables.values():
if var.isrec and len(var.data) > self._recs:
self.__dict__['_recs'] = len(var.data)
self._pack_int(self._recs)
def _write_dim_array(self):
if self.dimensions:
self.fp.write(NC_DIMENSION)
self._pack_int(len(self.dimensions))
for name in self._dims:
self._pack_string(name)
length = self.dimensions[name]
self._pack_int(length or 0) # replace None with 0 for record dimension
else:
self.fp.write(ABSENT)
def _write_gatt_array(self):
self._write_att_array(self._attributes)
def _write_att_array(self, attributes):
if attributes:
self.fp.write(NC_ATTRIBUTE)
self._pack_int(len(attributes))
for name, values in attributes.items():
self._pack_string(name)
self._write_values(values)
else:
self.fp.write(ABSENT)
def _write_var_array(self):
if self.variables:
self.fp.write(NC_VARIABLE)
self._pack_int(len(self.variables))
# Sort variables non-recs first, then recs.
variables = self.variables.items()
if True: # Backwards compatible with Python versions < 2.4
keys = [(v._shape and not v.isrec, k) for k, v in variables]
keys.sort()
keys.reverse()
variables = [k for isrec, k in keys]
else: # Python version must be >= 2.4
variables.sort(key=lambda (k, v): v._shape and not v.isrec)
variables.reverse()
variables = [k for (k, v) in variables]
# Set the metadata for all variables.
for name in variables:
self._write_var_metadata(name)
# Now that we have the metadata, we know the vsize of
# each record variable, so we can calculate recsize.
self.__dict__['_recsize'] = sum([
var._vsize for var in self.variables.values()
if var.isrec])
# Set the data for all variables.
for name in variables:
self._write_var_data(name)
else:
self.fp.write(ABSENT)
def _write_var_metadata(self, name):
var = self.variables[name]
self._pack_string(name)
self._pack_int(len(var.dimensions))
for dimname in var.dimensions:
dimid = self._dims.index(dimname)
self._pack_int(dimid)
self._write_att_array(var._attributes)
nc_type = REVERSE[var.typecode()]
self.fp.write(nc_type)
if not var.isrec:
vsize = var.data.size * var.data.itemsize
vsize += -vsize % 4
else: # record variable
try:
vsize = var.data[0].size * var.data.itemsize
except IndexError:
vsize = 0
rec_vars = len([var for var in self.variables.values()
if var.isrec])
if rec_vars > 1:
vsize += -vsize % 4
self.variables[name].__dict__['_vsize'] = vsize
self._pack_int(vsize)
# Pack a bogus begin, and set the real value later.
self.variables[name].__dict__['_begin'] = self.fp.tell()
self._pack_begin(0)
def _write_var_data(self, name):
var = self.variables[name]
# Set begin in file header.
the_beguine = self.fp.tell()
self.fp.seek(var._begin)
self._pack_begin(the_beguine)
self.fp.seek(the_beguine)
# Write data.
if not var.isrec:
self.fp.write(var.data.tostring())
count = var.data.size * var.data.itemsize
self.fp.write('0' * (var._vsize - count))
else: # record variable
# Handle rec vars with shape[0] < nrecs.
if self._recs > len(var.data):
shape = (self._recs,) + var.data.shape[1:]
var.data.resize(shape)
pos0 = pos = self.fp.tell()
for rec in var.data:
# Apparently scalars cannot be converted to big endian. If we
# try to convert a ``=i4`` scalar to, say, '>i4' the dtype
# will remain as ``=i4``.
if not rec.shape and (rec.dtype.byteorder == '<' or
(rec.dtype.byteorder == '=' and LITTLE_ENDIAN)):
rec = rec.byteswap()
self.fp.write(rec.tostring())
# Padding
count = rec.size * rec.itemsize
self.fp.write('0' * (var._vsize - count))
pos += self._recsize
self.fp.seek(pos)
self.fp.seek(pos0 + var._vsize)
def _write_values(self, values):
values = asarray(values)
values = values.astype(values.dtype.newbyteorder('>'))
nc_type = REVERSE[values.dtype.char]
self.fp.write(nc_type)
if values.dtype.char == 'S':
nelems = values.itemsize
else:
nelems = values.size
self._pack_int(nelems)
if not values.shape and (values.dtype.byteorder == '<' or
(values.dtype.byteorder == '=' and LITTLE_ENDIAN)):
values = values.byteswap()
self.fp.write(values.tostring())
count = values.size * values.itemsize
self.fp.write('0' * (-count % 4)) # pad
def _read(self):
# Check magic bytes and version
assert self.fp.read(3) == 'CDF', "Error: %s is not a valid NetCDF 3 file" % self.filename
self.__dict__['version_byte'] = fromstring(self.fp.read(1), '>b')[0]
# Read file headers and set data.
self._read_numrecs()
self._read_dim_array()
self._read_gatt_array()
self._read_var_array()
def _read_numrecs(self):
self.__dict__['_recs'] = self._unpack_int()
def _read_dim_array(self):
assert self.fp.read(4) in [ZERO, NC_DIMENSION]
count = self._unpack_int()
for dim in range(count):
name = self._unpack_string()
length = self._unpack_int() or None # None for record dimension
self.dimensions[name] = length
self._dims.append(name) # preserve order
def _read_gatt_array(self):
for k, v in self._read_att_array().items():
self.__setattr__(k, v)
def _read_att_array(self):
assert self.fp.read(4) in [ZERO, NC_ATTRIBUTE]
count = self._unpack_int()
attributes = {}
for attr in range(count):
name = self._unpack_string()
attributes[name] = self._read_values()
return attributes
def _read_var_array(self):
assert self.fp.read(4) in [ZERO, NC_VARIABLE]
begin = 0
dtypes = {'names': [], 'formats': []}
rec_vars = []
count = self._unpack_int()
for var in range(count):
name, dimensions, shape, attributes, typecode, size, dtype_, begin_, vsize = self._read_var()
if shape and shape[0] is None:
rec_vars.append(name)
self.__dict__['_recsize'] += vsize
if begin == 0: begin = begin_
dtypes['names'].append(name)
dtypes['formats'].append(str(shape[1:]) + dtype_)
# Handle padding with a virtual variable.
if typecode in 'bch':
actual_size = reduce(mul, (1,) + shape[1:]) * size
padding = -actual_size % 4
if padding:
dtypes['names'].append('_padding_%d' % var)
dtypes['formats'].append('(%d,)>b' % padding)
# Data will be set later.
data = None
else:
if self.use_mmap:
mm = mmap(self.fp.fileno(), begin_+vsize, access=ACCESS_READ)
data = ndarray.__new__(ndarray, shape, dtype=dtype_,
buffer=mm, offset=begin_, order=0)
else:
pos = self.fp.tell()
self.fp.seek(begin_)
data = fromstring(self.fp.read(vsize), dtype=dtype_)
data.shape = shape
self.fp.seek(pos)
# Add variable.
self.variables[name] = netcdf_variable(
data, typecode, shape, dimensions, attributes)
if rec_vars:
# Remove padding when only one record variable.
if len(rec_vars) == 1:
dtypes['names'] = dtypes['names'][:1]
dtypes['formats'] = dtypes['formats'][:1]
# Build rec array.
if self.use_mmap:
mm = mmap(self.fp.fileno(), begin+self._recs*self._recsize, access=ACCESS_READ)
rec_array = ndarray.__new__(ndarray, (self._recs,), dtype=dtypes,
buffer=mm, offset=begin, order=0)
else:
pos = self.fp.tell()
self.fp.seek(begin)
rec_array = fromstring(self.fp.read(self._recs*self._recsize), dtype=dtypes)
rec_array.shape = (self._recs,)
self.fp.seek(pos)
for var in rec_vars:
self.variables[var].__dict__['data'] = rec_array[var]
def _read_var(self):
name = self._unpack_string()
dimensions = []
shape = []
dims = self._unpack_int()
for i in range(dims):
dimid = self._unpack_int()
dimname = self._dims[dimid]
dimensions.append(dimname)
dim = self.dimensions[dimname]
shape.append(dim)
dimensions = tuple(dimensions)
shape = tuple(shape)
attributes = self._read_att_array()
nc_type = self.fp.read(4)
vsize = self._unpack_int()
begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]()
typecode, size = TYPEMAP[nc_type]
if typecode is 'c':
dtype_ = '>c'
else:
dtype_ = '>%s' % typecode
if size > 1: dtype_ += str(size)
return name, dimensions, shape, attributes, typecode, size, dtype_, begin, vsize
def _read_values(self):
nc_type = self.fp.read(4)
n = self._unpack_int()
typecode, size = TYPEMAP[nc_type]
count = n*size
values = self.fp.read(count)
self.fp.read(-count % 4) # read padding
if typecode is not 'c':
values = fromstring(values, dtype='>%s%d' % (typecode, size))
if values.shape == (1,): values = values[0]
else:
values = values.rstrip('\x00')
return values
def _pack_begin(self, begin):
if self.version_byte == 1:
self._pack_int(begin)
elif self.version_byte == 2:
self._pack_int64(begin)
def _pack_int(self, value):
self.fp.write(array(value, '>i').tostring())
_pack_int32 = _pack_int
def _unpack_int(self):
return int(fromstring(self.fp.read(4), '>i')[0])
_unpack_int32 = _unpack_int
def _pack_int64(self, value):
self.fp.write(array(value, '>q').tostring())
def _unpack_int64(self):
return int(fromstring(self.fp.read(8), '>q')[0])
def _pack_string(self, s):
count = len(s)
self._pack_int(count)
self.fp.write(s)
self.fp.write('0' * (-count % 4)) # pad
def _unpack_string(self):
count = self._unpack_int()
s = self.fp.read(count).rstrip('\x00')
self.fp.read(-count % 4) # read padding
return s
class netcdf_variable(object):
"""
``netcdf_variable`` objects are constructed by calling the method
``createVariable`` on the netcdf_file object.
``netcdf_variable`` objects behave much like array objects defined in
Numpy, except that their data resides in a file. Data is read by
indexing and written by assigning to an indexed subset; the entire
array can be accessed by the index ``[:]`` or using the methods
``getValue`` and ``assignValue``. ``netcdf_variable`` objects also
have attribute ``shape`` with the same meaning as for arrays, but
the shape cannot be modified. There is another read-only attribute
``dimensions``, whose value is the tuple of dimension names.
All other attributes correspond to variable attributes defined in
the NetCDF file. Variable attributes are created by assigning to an
attribute of the ``netcdf_variable`` object.
"""
def __init__(self, data, typecode, shape, dimensions, attributes=None):
self.data = data
self._typecode = typecode
self._shape = shape
self.dimensions = dimensions
self._attributes = attributes or {}
for k, v in self._attributes.items():
self.__dict__[k] = v
def __setattr__(self, attr, value):
# Store user defined attributes in a separate dict,
# so we can save them to file later.
try:
self._attributes[attr] = value
except AttributeError:
pass
self.__dict__[attr] = value
def isrec(self):
return self.data.shape and not self._shape[0]
isrec = property(isrec)
def shape(self):
return self.data.shape
shape = property(shape)
def getValue(self):
return self.data.item()
def assignValue(self, value):
self.data.itemset(value)
def typecode(self):
return self._typecode
def __getitem__(self, index):
return self.data[index]
def __setitem__(self, index, data):
# Expand data for record vars?
if self.isrec:
if isinstance(index, tuple):
rec_index = index[0]
else:
rec_index = index
if isinstance(rec_index, slice):
recs = (rec_index.start or 0) + len(data)
else:
recs = rec_index + 1
if recs > len(self.data):
shape = (recs,) + self._shape[1:]
self.data.resize(shape)
self.data[index] = data
NetCDFFile = netcdf_file
NetCDFVariable = netcdf_variable
|