This file is indexed.

/usr/share/pyshared/ase/io/wien2k.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from math import sin, cos, pi, sqrt

import numpy as np

from ase.atoms import Atoms, Atom
from ase.units import Bohr, Ry

def read_scf(filename):
    try:
        f = open(filename + '.scf', 'r')
        pip = f.readlines()
        ene = []
        for line in pip:
            if line[0:4] == ':ENE':
                ene.append(float(line[43:59]) * Ry)
        f.close()
        return ene
    except:
        return None

def read_struct(filename, ase = True):
    f = open(filename, 'r')
    pip = f.readlines()
    lattice = pip[1][0:3]
    nat = int(pip[1][27:30])
    cell = np.zeros(6)
    for i in range(6):
        cell[i] = float(pip[3][0 + i * 10:10 + i * 10])
    cell[0:3] = cell[0:3] * Bohr
    if lattice == 'P  ':
        lattice = 'P'
    elif lattice == 'H  ':
        lattice = 'P'
        cell[3:6] = [90.0, 90.0, 120.0]
    elif lattice == 'R  ':
        lattice = 'R'
    elif lattice == 'F  ':
        lattice = 'F'
    elif lattice == 'B  ':
        lattice = 'I'
    elif lattice == 'CXY':
        lattice = 'C'
    elif lattice == 'CXZ':
        lattice = 'B'
    elif lattice == 'CYZ':
        lattice = 'A'
    else:
        print 'TEST needed'
    pos = np.array([])
    atomtype = []
    rmt = []
    neq = np.zeros(nat)
    iline = 4
    indif = 0
    for iat in range(nat):
        indifini = indif
        if len(pos) == 0:
            pos = np.array([[float(pip[iline][12:22]),
                             float(pip[iline][25:35]),
                             float(pip[iline][38:48])]])
        else:
            pos = np.append(pos, np.array([[float(pip[iline][12:22]),
                                            float(pip[iline][25:35]),
                                            float(pip[iline][38:48])]]),
                            axis = 0)
        indif += 1
        iline += 1
        neq[iat] = int(pip[iline][15:17])
        iline += 1
        for ieq in range(1, int(neq[iat])):
            pos = np.append(pos, np.array([[float(pip[iline][12:22]),
                                            float(pip[iline][25:35]),
                                            float(pip[iline][38:48])]]),
                            axis = 0)
            indif += 1
            iline += 1
        for i in range(indif - indifini):
            atomtype.append(pip[iline][0:2].replace(' ', ''))
            rmt.append(float(pip[iline][43:48]))
        iline += 4
    if ase:
        cell2 = coorsys(cell)
        atoms = Atoms(atomtype, pos, pbc = True)
        atoms.set_cell(cell2, scale_atoms = True)
        cell2 = np.dot(c2p(lattice), cell2)
        if lattice == 'R':
            atoms.set_cell(cell2, scale_atoms = True)
        else:
            atoms.set_cell(cell2)
        return atoms
    else:
        return cell, lattice, pos, atomtype, rmt

def write_struct(filename, atoms2 = None, rmt = None, lattice = 'P'):
    atoms=atoms2.copy()
    atoms.set_scaled_positions(atoms.get_scaled_positions())
    f = file(filename, 'w')
    f.write('ASE generated\n')
    nat = len(atoms)
    if rmt == None:
        rmt = [2.0] * nat
    f.write(lattice+'   LATTICE,NONEQUIV.ATOMS:%3i\nMODE OF CALC=RELA\n'%nat)
    cell = atoms.get_cell()
    metT = np.dot(cell, np.transpose(cell))
    cell2 = cellconst(metT)
    cell2[0:3] = cell2[0:3] / Bohr
    f.write(('%10.6f' * 6) % tuple(cell2) + '\n')
    #print atoms.get_positions()[0]
    for ii in range(nat):
        f.write('ATOM %3i: ' % (ii + 1))
        pos = atoms.get_scaled_positions()[ii]
        f.write('X=%10.8f Y=%10.8f Z=%10.8f\n' % tuple(pos))
        f.write('          MULT= 1          ISPLIT= 1\n')
        zz = atoms.get_atomic_numbers()[ii]
        if zz > 71:
            ro = 0.000005 
        elif zz > 36:
            ro = 0.00001
        elif zz > 18:
            ro = 0.00005
        else:
            ro = 0.0001
        f.write('%-10s NPT=%5i  R0=%9.8f RMT=%10.4f   Z:%10.5f\n' %
                (atoms.get_chemical_symbols()[ii], 781, ro, rmt[ii], zz))
        f.write('LOCAL ROT MATRIX:    %9.7f %9.7f %9.7f\n' % (1.0, 0.0, 0.0))
        f.write('                     %9.7f %9.7f %9.7f\n' % (0.0, 1.0, 0.0))
        f.write('                     %9.7f %9.7f %9.7f\n' % (0.0, 0.0, 1.0))
    f.write('   0\n')

def cellconst(metT):
    aa = np.sqrt(metT[0, 0])
    bb = np.sqrt(metT[1, 1])
    cc = np.sqrt(metT[2, 2])
    gamma = np.arccos(metT[0, 1] / (aa * bb)) / np.pi * 180.0
    beta  = np.arccos(metT[0, 2] / (aa * cc)) / np.pi * 180.0
    alpha = np.arccos(metT[1, 2] / (bb * cc)) / np.pi * 180.0
    return np.array([aa, bb, cc, alpha, beta, gamma])

def coorsys(latconst):
    a = latconst[0]
    b = latconst[1]
    c = latconst[2]
    cal = np.cos(latconst[3] * np.pi / 180.0)
    cbe = np.cos(latconst[4] * np.pi / 180.0)
    cga = np.cos(latconst[5] * np.pi / 180.0)
    sal = np.sin(latconst[3] * np.pi / 180.0)
    sbe = np.sin(latconst[4] * np.pi / 180.0)
    sga = np.sin(latconst[5] * np.pi / 180.0)
    return np.array([[a, b * cga, c * cbe],
                     [0, b * sga, c * (cal - cbe * cga) / sga],
                     [0, 0, c * np.sqrt(1 - cal**2 - cbe**2 - cga**2 + 2 * cal * cbe * cga) / sga]]).transpose()

def c2p(lattice):
    # apply as eg. cell2 = np.dot(ct.c2p('F'), cell)
    if lattice == 'P':
        cell = np.eye(3)
    elif lattice == 'F':
        cell = np.array([[0.0, 0.5, 0.5], [0.5, 0.0, 0.5], [0.5, 0.5, 0.0]])
    elif lattice == 'I':
        cell = np.array([[-0.5, 0.5, 0.5], [0.5, -0.5, 0.5], [0.5, 0.5, -0.5]])
    elif lattice == 'C':
        cell = np.array([[0.5, 0.5, 0.0], [0.5, -0.5, 0.0], [0.0, 0.0, -1.0]])
    elif lattice == 'R':
        cell = np.array([[2.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0], [-1.0 / 3.0, 1.0 / 3.0, 1.0 / 3.0], [-1.0 / 3.0, -2.0/3.0, 1.0 / 3.0]])

    else:
        print 'lattice is ' + lattice + '!'
    return cell