/usr/share/pyshared/ase/md/npt.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 | '''Constant pressure/stress and temperature dynamics.
Combined Nose-Hoover and Parrinello-Rahman dynamics, creating an NPT
(or N,stress,T) ensemble.
The method is the one proposed by Melchionna et al. [1] and later
modified by Melchionna [2]. The differential equations are integrated
using a centered difference method [3].
1. S. Melchionna, G. Ciccotti and B. L. Holian, "Hoover NPT dynamics
for systems varying in shape and size", Molecular Physics 78, p. 533
(1993).
2. S. Melchionna, "Constrained systems and statistical distribution",
Physical Review E, 61, p. 6165 (2000).
3. B. L. Holian, A. J. De Groot, W. G. Hoover, and C. G. Hoover,
"Time-reversible equilibrium and nonequilibrium isothermal-isobaric
simulations with centered-difference Stoermer algorithms.", Physical
Review A, 41, p. 4552 (1990).
'''
__docformat__ = 'reStructuredText'
from numpy import *
import sys
import weakref
from ase.md.md import MolecularDynamics
#from ASE.Trajectories.NetCDFTrajectory import NetCDFTrajectory
# Delayed imports: If the trajectory object is reading a special ASAP version
# of HooverNPT, that class is imported from Asap.Dynamics.NPTDynamics.
class NPT(MolecularDynamics):
'''Constant pressure/stress and temperature dynamics.
Combined Nose-Hoover and Parrinello-Rahman dynamics, creating an
NPT (or N,stress,T) ensemble.
The method is the one proposed by Melchionna et al. [1] and later
modified by Melchionna [2]. The differential equations are integrated
using a centered difference method [3]. See also NPTdynamics.tex
The dynamics object is called with the following parameters:
atoms
The list of atoms.
dt
The timestep in units matching eV, A, u.
temperature
The desired temperature in eV.
externalstress
The external stress in eV/A^3. Either a symmetric
3x3 tensor, a 6-vector representing the same, or a
scalar representing the pressure. Note that the
stress is positive in tension whereas the pressure is
positive in compression: giving a scalar p is
equivalent to giving the tensor (-p, -p, -p, 0, 0, 0).
ttime
Characteristic timescale of the thermostat.
Set to None to disable the thermostat.
pfactor
A constant in the barostat differential equation. If
a characteristic barostat timescale of ptime is
desired, set pfactor to ptime^2 * B (where B is the
Bulk Modulus). Set to None to disable the barostat.
Typical metallic bulk moduli are of the order of
100 GPa or 0.6 eV/A^3.
mask=None
Optional argument. A tuple of three integers (0 or 1),
indicating if the system can change size along the
three Cartesian axes. Set to (1,1,1) or None to allow
a fully flexible computational box. Set to (1,1,0)
to disallow elongations along the z-axis etc.
Useful parameter values:
* The same timestep can be used as in Verlet dynamics, i.e. 5 fs is fine
for bulk copper.
* The ttime and pfactor are quite critical[4], too small values may
cause instabilites and/or wrong fluctuations in T / p. Too
large values cause an oscillation which is slow to die. Good
values for the characteristic times seem to be 25 fs for ttime,
and 75 fs for ptime (used to calculate pfactor), at least for
bulk copper with 15000-200000 atoms. But this is not well
tested, it is IMPORTANT to monitor the temperature and
stress/pressure fluctuations.
It has the following methods:
__call__(n)
Perform n timesteps.
initialize()
Estimates the dynamic variables for time=-1 to start
the algorithm. This is automatically called before
the first timestep.
set_stress()
Set the external stress. Use with care. It is
preferable to set the right value when creating the
object.
set_mask()
Change the mask. Use with care, as you may "freeze"
a fluctuation in the strain rate.
get_gibbs_free_energy()
Gibbs free energy is supposed to be preserved by this
dynamics. This is mainly intended as a diagnostic
tool.
References:
1) S. Melchionna, G. Ciccotti and B. L. Holian, Molecular
Physics 78, p. 533 (1993).
2) S. Melchionna, Physical
Review E 61, p. 6165 (2000).
3) B. L. Holian, A. J. De Groot, W. G. Hoover, and C. G. Hoover,
Physical Review A 41, p. 4552 (1990).
4) F. D. Di Tolla and M. Ronchetti, Physical
Review E 48, p. 1726 (1993).
'''
classname = "NPT" # Used by the trajectory.
def __init__(self, atoms,
timestep, temperature, externalstress, ttime, pfactor,
mask=None, trajectory=None, logfile=None, loginterval=1):
MolecularDynamics.__init__(self, atoms, timestep, trajectory,
logfile, loginterval)
#self.atoms = atoms
#self.timestep = timestep
self.zero_center_of_mass_momentum(verbose=1)
self.temperature = temperature
self.set_stress(externalstress)
self.set_mask(mask)
self.eta = zeros((3,3), float)
self.zeta = 0.0
self.zeta_integrated = 0.0
self.initialized = 0
self.ttime = ttime
self.pfactor_given = pfactor
self._calculateconstants()
self.timeelapsed = 0.0
self.frac_traceless = 1
def set_temperature(self, temperature):
self.temperature = temperature
self._calculateconstants()
def set_stress(self, stress):
"""Set the applied stress.
Must be a symmetric 3x3 tensor, a 6-vector representing a symmetric
3x3 tensor, or a number representing the pressure.
"""
if type(stress) == type(1.0) or type(stress) == type(1):
stress = array((-stress, -stress, -stress, 0.0, 0.0, 0.0))
elif stress.shape == (3,3):
if not self._issymmetric(stress):
raise ValueError, "The external stress must be a symmetric tensor."
stress = array((stress[0,0], stress[1,1], stress[2,2], stress[1,2],
stress[0,2], stress[0,1]))
elif stress.shape != (6,):
raise ValueError, "The external stress has the wrong shape."
self.externalstress = stress
def set_mask(self, mask):
"""Set the mask indicating dynamic elements of the computational box.
If set to None, all elements may change. If set to a 3-vector
of ones and zeros, elements which are zero specify directions
along which the size of the computational box cannot change.
For example, if mask = {1,1,0} the length of the system along
the z-axis cannot change, although xz and yz shear is still
possible. To disable shear globally, set the mode to diagonal
(not yet implemented).
"""
if mask is None:
mask = ones((3,))
if not hasattr(mask, "shape"):
mask = array(mask)
if mask.shape != (3,) and mask.shape != (3,3):
raise "The mask has the wrong shape (must be a 3-vector or 3x3 matrix)"
else:
mask = not_equal(mask, 0) # Make sure it is 0/1
if mask.shape == (3,):
self.mask = outer(mask, mask)
else:
self.mask = mask
def set_fraction_traceless(self, fracTraceless):
"""set what fraction of the traceless part of the force
on eta is kept.
By setting this to zero, the volume may change but the shape may not.
"""
self.frac_traceless = fracTraceless
def get_strain_rate(self):
"Get the strain rate as an upper-triangular 3x3 matrix"
return array(self.eta, copy=1)
def set_strain_rate(self, rate):
"Set the strain rate. Must be an upper triangular 3x3 matrix."
if not (rate.shape == (3,3) and self._isuppertriangular(rate)):
raise ValueError, "Strain rate must be an upper triangular matrix."
self.eta = rate
if self.initialized:
# Recalculate h_past and eta_past so they match the current value.
self._initialize_eta_h()
def get_time(self):
"Get the elapsed time."
return self.timeelapsed
def run(self, steps):
"""Perform a number of time steps."""
if not self.initialized:
self.initialize()
else:
if self.have_the_atoms_been_changed():
raise NotImplementedError, "You have modified the atoms since the last timestep."
for i in xrange(steps):
self.step()
self.nsteps += 1
self.call_observers()
def have_the_atoms_been_changed(self):
"Checks if the user has modified the positions or momenta of the atoms"
limit = 1e-10
h = self._getbox()
if max(abs((h - self.h).ravel())) > limit:
self._warning("The computational box has been modified.")
return 1
expected_r = dot(self.q + 0.5, h)
err = max(abs((expected_r - self.atoms.get_positions()).ravel()))
if err > limit:
self._warning("The atomic positions have been modified: "+ str(err))
return 1
return 0
def step(self):
"""Perform a single time step.
Assumes that the forces and stresses are up to date, and that
the positions and momenta have not been changed since last
timestep.
"""
## Assumes the following variables are OK
# q_past, q, q_future, p, eta, eta_past, zeta, zeta_past, h, h_past
#
# q corresponds to the current positions
# p must be equal to self.atoms.GetCartesianMomenta()
# h must be equal to self.atoms.GetUnitCell()
#
#print "Making a timestep"
dt = self.dt
h_future = self.h_past + 2*dt * dot(self.h, self.eta)
if self.pfactor_given is None:
deltaeta = zeros(6, float)
else:
stress = self.stresscalculator()
deltaeta = -2*dt * (self.pfact * linalg.det(self.h)
* (stress - self.externalstress))
if self.frac_traceless == 1:
eta_future = self.eta_past + self.mask * self._makeuppertriangular(deltaeta)
else:
trace_part, traceless_part = self._separatetrace(self._makeuppertriangular(deltaeta))
eta_future = self.eta_past + trace_part + self.frac_traceless * traceless_part
deltazeta = 2*dt*self.tfact * (self.atoms.get_kinetic_energy()
- self.desiredEkin)
zeta_future = self.zeta_past + deltazeta
# Advance time
#print "Max change in scaled positions:", max(abs(self.q_future.flat - self.q.flat))
#print "Max change in basis set", max(abs((h_future - self.h).flat))
self.timeelapsed += dt
self.h_past = self.h
self.h = h_future
self.inv_h = linalg.inv(self.h)
# Do not throw away the q arrays, they are "magical" on parallel
# simulations (the contents migrate along with the atoms).
(self.q_past, self.q, self.q_future) = (self.q, self.q_future,
self.q_past)
self._setbox_and_positions(self.h,self.q)
self.eta_past = self.eta
self.eta = eta_future
self.zeta_past = self.zeta
self.zeta = zeta_future
self._synchronize() # for parallel simulations.
self.zeta_integrated += dt * self.zeta
force = self.forcecalculator()
# The periodic boundary conditions may have moved the atoms.
self.post_pbc_fix(fixfuture=0)
self._calculate_q_future(force)
self.atoms.set_momenta(dot(self.q_future-self.q_past, self.h/(2*dt)) *
self._getmasses())
#self.stresscalculator()
def forcecalculator(self):
return self.atoms.get_forces()
def stresscalculator(self):
return self.atoms.get_stress()
def initialize(self):
"""Initialize the dynamics.
The dynamics requires positions etc for the two last times to
do a timestep, so the algorithm is not self-starting. This
method performs a 'backwards' timestep to generate a
configuration before the current.
"""
#print "Initializing the NPT dynamics."
dt = self.dt
atoms = self.atoms
self.h = self._getbox()
if not self._isuppertriangular(self.h):
print "I am", self
print "self.h:"
print self.h
print "Min:", min((self.h[1,0], self.h[2,0], self.h[2,1]))
print "Max:", max((self.h[1,0], self.h[2,0], self.h[2,1]))
raise NotImplementedError, "Can (so far) only operate on lists of atoms where the computational box is an upper triangular matrix."
self.inv_h = linalg.inv(self.h)
# The contents of the q arrays should migrate in parallel simulations.
self._make_special_q_arrays()
self.q[:] = dot(self.atoms.get_positions(),
self.inv_h) - 0.5
# zeta and eta were set in __init__
self._initialize_eta_h()
deltazeta = dt * self.tfact * (atoms.get_kinetic_energy() -
self.desiredEkin)
self.zeta_past = self.zeta - deltazeta
self._calculate_q_past_and_future()
self.initialized = 1
def get_gibbs_free_energy(self):
"""Return the Gibb's free energy, which is supposed to be conserved.
Requires that the energies of the atoms are up to date.
This is mainly intended as a diagnostic tool. If called before the
first timestep, Initialize will be called.
"""
if not self.initialized:
self.initialize()
n = self._getnatoms()
#tretaTeta = sum(diagonal(matrixmultiply(transpose(self.eta),
# self.eta)))
contractedeta = sum((self.eta*self.eta).ravel())
gibbs = (self.atoms.get_potential_energy() +
self.atoms.get_kinetic_energy()
- sum(self.externalstress[0:3]) * linalg.det(self.h) / 3.0)
if self.ttime is not None:
gibbs += (1.5 * n * self.temperature * (self.ttime * self.zeta)**2
+ 3 * self.temperature * (n-1) * self.zeta_integrated)
else:
assert self.zeta == 0.0
if self.pfactor_given is not None:
gibbs += 0.5 / self.pfact * contractedeta
else:
assert contractedeta == 0.0
return gibbs
def get_center_of_mass_momentum(self):
"Get the center of mass momentum."
return self.atoms.get_momenta().sum(0)
def zero_center_of_mass_momentum(self, verbose=0):
"Set the center of mass momentum to zero."
cm = self.get_center_of_mass_momentum()
abscm = sqrt(sum(cm*cm))
if verbose and abscm > 1e-4:
self._warning(self.classname+": Setting the center-of-mass momentum to zero (was %.6g %.6g %.6g)" % tuple(cm))
self.atoms.set_momenta(self.atoms.get_momenta()
- cm / self._getnatoms())
def post_pbc_fix(self, fixfuture=1):
"""Correct for atoms moved by the boundary conditions.
If the fixfuture argument is 1 (the default), q_future is also
corrected. This is not necessary when post_pbc_fix() is called from
within Timestep(), but must be done when the user calls post_pbc_fix
(for example if a CNA calculation may have triggered a migration).
"""
q = dot(self.atoms.get_positions(),
self.inv_h) - 0.5
delta_q = floor(0.5 + (q - self.q))
self.q += delta_q
self.q_past += delta_q
if fixfuture:
self.q_future += delta_q
def attach_atoms(self, atoms):
"""Assign atoms to a restored dynamics object.
This function must be called to set the atoms immediately after the
dynamics object has been read from a trajectory.
"""
try:
self.atoms
except AttributeError:
pass
else:
raise RuntimeError, "Cannot call attach_atoms on a dynamics which already has atoms."
MolecularDynamics.__init__(self, atoms, self.dt)
####self.atoms = atoms
limit = 1e-6
h = self._getbox()
if max(abs((h - self.h).ravel())) > limit:
raise RuntimeError, "The unit cell of the atoms does not match the unit cell stored in the file."
self.inv_h = linalg.inv(self.h)
self._make_special_q_arrays()
self.q[:] = dot(self.atoms.get_positions(),
self.inv_h) - 0.5
self._calculate_q_past_and_future()
self.initialized = 1
def attach(self, function, interval=1, *args, **kwargs):
"""Attach callback function or trajectory.
At every *interval* steps, call *function* with arguments
*args* and keyword arguments *kwargs*.
If *function* is a trajectory object, its write() method is
attached, but if *function* is a BundleTrajectory (or another
trajectory supporting set_extra_data(), said method is first
used to instruct the trajectory to also save internal
data from the NPT dynamics object.
"""
if hasattr(function, "set_extra_data"):
# We are attaching a BundleTrajectory or similar
function.set_extra_data("npt_init",
WeakMethodWrapper(self, "get_init_data"),
once=True)
function.set_extra_data("npt_dynamics",
WeakMethodWrapper(self, "get_data"))
MolecularDynamics.attach(self, function, interval, *args, **kwargs)
def get_init_data(self):
"Return the data needed to initialize a new NPT dynamics."
return {'dt': self.dt,
'temperature': self.temperature,
'desiredEkin': self.desiredEkin,
'externalstress': self.externalstress,
'mask': self.mask,
'ttime': self.ttime,
'tfact': self.tfact,
'pfactor_given': self.pfactor_given,
'pfact': self.pfact,
'frac_traceless': self.frac_traceless}
def get_data(self):
"Return data needed to restore the state."
return {'eta': self.eta,
'eta_past': self.eta_past,
'zeta': self.zeta,
'zeta_past': self.zeta_past,
'zeta_integrated': self.zeta_integrated,
'h': self.h,
'h_past': self.h_past,
'timeelapsed': self.timeelapsed}
@classmethod
def read_from_trajectory(cls, trajectory, frame=-1, atoms=None):
"""Read dynamics and atoms from trajectory (Class method).
Simultaneously reads the atoms and the dynamics from a BundleTrajectory,
including the internal data of the NPT dynamics object (automatically
saved when attaching a BundleTrajectory to an NPT object).
Arguments::
trajectory
The filename or an open BundleTrajectory object.
frame (optional)
Which frame to read. Default: the last.
atoms (optional, internal use only)
Pre-read atoms. Do not use.
"""
if isinstance(trajectory, str):
if trajectory.endswith('/'):
trajectory = trajectory[:-1]
if trajectory.endswith('.bundle'):
from ase.io.bundletrajectory import BundleTrajectory
trajectory = BundleTrajectory(trajectory)
else:
raise ValueError("Cannot open '%': unsupported file format" % trajectory)
# trajectory is now a BundleTrajectory object (or compatible)
if atoms is None:
atoms = trajectory[frame]
init_data = trajectory.read_extra_data('npt_init', 0)
frame_data = trajectory.read_extra_data('npt_dynamics', frame)
dyn = cls(atoms, timestep=init_data['dt'],
temperature=init_data['temperature'],
externalstress=init_data['externalstress'],
ttime=init_data['ttime'],
pfactor=init_data['pfactor_given'],
mask=init_data['mask'])
dyn.desiredEkin = init_data['desiredEkin']
dyn.tfact = init_data['tfact']
dyn.pfact = init_data['pfact']
dyn.frac_traceless = init_data['frac_traceless']
for k, v in frame_data.items():
setattr(dyn, k, v)
return (dyn, atoms)
def _getbox(self):
"Get the computational box."
return self.atoms.get_cell()
def _getmasses(self):
"Get the masses as an Nx1 array."
return reshape(self.atoms.get_masses(), (-1,1))
# def _getcartesianpositions(self):
# "Get the cartesian positions of the atoms"
# return self.atoms.get_positions()
# def _getmomenta(self):
# "Get the (cartesian) momenta of the atoms"
# return self.atoms.GetCartesianMomenta()
# def _getforces(self):
# "Get the (cartesian) forces of the atoms"
# return self.atoms.GetCartesianForces()
# def _setmomenta(self, momenta):
# "Set the (cartesian) momenta of the atoms"
# self.atoms.SetCartesianMomenta(momenta)
def _separatetrace(self, mat):
"""return two matrices, one proportional to the identity
the other traceless, which sum to the given matrix
"""
tracePart = ((mat[0][0] + mat[1][1] + mat[2][2]) / 3.) * identity(3)
return tracePart, mat - tracePart
# A number of convenient helper methods
def _warning(self, text):
"Emit a warning."
sys.stderr.write("WARNING: "+text+"\n")
sys.stderr.flush()
def _calculate_q_future(self, force):
"Calculate future q. Needed in Timestep and Initialization."
dt = self.dt
id3 = identity(3)
alpha = (dt * dt) * dot(force / self._getmasses(),
self.inv_h)
beta = dt * dot(self.h, dot(self.eta + 0.5 * self.zeta * id3,
self.inv_h))
inv_b = linalg.inv(beta + id3)
self.q_future[:] = dot(2*self.q + dot(self.q_past, beta - id3) + alpha,
inv_b)
def _calculate_q_past_and_future(self):
def ekin(p, m = self.atoms.get_masses()):
p2 = sum(p*p, -1)
return 0.5 * sum(p2 / m) / len(m)
p0 = self.atoms.get_momenta()
m = self._getmasses()
e0 = ekin(p0)
p = array(p0, copy=1)
dt = self.dt
for i in range(2):
self.q_past[:] = self.q - dt * dot(p / m, self.inv_h)
self._calculate_q_future(self.atoms.get_forces())
p = dot(self.q_future - self.q_past, self.h/(2*dt)) * m
e = ekin(p)
if e < 1e-5:
# The kinetic energy and momenta are virtually zero
return
p = (p0 - p) + p0
def _initialize_eta_h(self):
self.h_past = self.h - self.dt * dot(self.h, self.eta)
if self.pfactor_given is None:
deltaeta = zeros(6, float)
else:
deltaeta = (-self.dt * self.pfact * linalg.det(self.h)
* (self.atoms.get_stress() - self.externalstress))
if self.frac_traceless == 1:
self.eta_past = self.eta - self.mask * self._makeuppertriangular(deltaeta)
else:
trace_part, traceless_part = self._separatetrace(self._makeuppertriangular(deltaeta))
self.eta_past = self.eta - trace_part - self.frac_traceless * traceless_part
def _makeuppertriangular(self, sixvector):
"Make an upper triangular matrix from a 6-vector."
return array(((sixvector[0], sixvector[5], sixvector[4]),
(0, sixvector[1], sixvector[3]),
(0, 0, sixvector[2])))
def _isuppertriangular(self, m):
"Check that a matrix is on upper triangular form."
return m[1,0] == m[2,0] == m[2,1] == 0.0
def _calculateconstants(self):
"(Re)calculate some constants when pfactor, ttime or temperature have been changed."
n = self._getnatoms()
if self.ttime is None:
self.tfact = 0.0
else:
self.tfact = 2.0 / (3 * n * self.temperature *
self.ttime * self.ttime)
if self.pfactor_given is None:
self.pfact = 0.0
else:
self.pfact = 1.0 / (self.pfactor_given
* linalg.det(self._getbox()))
#self.pfact = 1.0/(n * self.temperature * self.ptime * self.ptime)
self.desiredEkin = 1.5 * (n - 1) * self.temperature
def _setbox_and_positions(self, h, q):
"""Set the computational box and the positions."""
self.atoms.set_cell(h, scale_atoms=True)
r = dot(q + 0.5, h)
self.atoms.set_positions(r)
# A few helper methods, which have been placed in separate methods
# so they can be replaced in the parallel version.
def _synchronize(self):
"""Synchronizes eta, h and zeta on all processors in a parallel simulation.
In a parallel simulation, eta, h and zeta are communicated
from the master to all slaves, to prevent numerical noise from
causing them to diverge.
In a serial simulation, do nothing.
"""
pass # This is a serial simulation object. Do nothing.
def _getnatoms(self):
"""Get the number of atoms.
In a parallel simulation, this is the total number of atoms on all
processors.
"""
return len(self.atoms)
def _make_special_q_arrays(self):
"""Make the arrays used to store data about the atoms.
In a parallel simulation, these are migrating arrays. In a
serial simulation they are ordinary Numeric arrays.
"""
natoms = len(self.atoms)
self.q = zeros((natoms,3), float)
self.q_past = zeros((natoms,3), float)
self.q_future = zeros((natoms,3), float)
class WeakMethodWrapper:
"""A weak reference to a method.
Create an object storing a weak reference to an instance and
the name of the method to call. When called, calls the method.
Just storing a weak reference to a bound method would not work,
as the bound method object would go away immediately.
"""
def __init__(self, obj, method):
self.obj = weakref.proxy(obj)
self.method = method
def __call__(self, *args, **kwargs):
m = getattr(self.obj, self.method)
return m(*args, **kwargs)
# class _HooverNPTTrajectory:
# """A Trajectory-like object storing data in a HooverNPT object."""
# def InitForWrite(self):
# """Does initialization related to write mode."""
# self.CreateDimension('unlim', None)
# self.nc.history = 'ASE NPT trajectory'
# self.nc.version = '0.1'
# self.nc.classname = self.atoms.classname
# self.unlim = 0
# self.nc.lengthunit = units.GetLengthUnit()
# self.nc.energyunit = units.GetEnergyUnit()
# self.conversion = (1, 1)
# def InitForWriteOrAppend(self):
# """Does initialization related to write and append mode.
# Either InitForWrite or InitForReadOrAppend will have been
# called before calling this method.
# """
# names = copy.copy(self.known_names)
# if self.atoms.ttime is None:
# del names['ttime']
# if self.atoms.pfactor_given is None:
# del names['pfactor_given']
# for d in names.keys():
# def getdata(atoms=self.atoms, name=d):
# return getattr(atoms, name)
# self.Add(d, data = getdata)
# known_names = {
# # name shape typecode once units
# # ----------------------------------------------------------------
# 'dt': ((), Float, True, (1, -0.5)),
# 'temperature': ((), Float, True, (0, 1)),
# 'desiredEkin': ((), Float, True, (0, 1)),
# 'externalstress': ((6,), Float, True, (-3, 1)),
# 'mask': ((3, 3), Float, True, (0, 0)),
# 'ttime': ((), Float, True, (1, -0.5)),
# 'tfact': ((), Float, True, (-2, 0)),
# 'pfactor_given': ((), Float, True, (-1, 0)),
# 'pfact': ((), Float, True, (-2, 0)),
# 'frac_traceless': ((), Float, True, (0, 0)),
# 'eta': ((3, 3), Float, False, (-1, 0.5)),
# 'eta_past': ((3, 3), Float, False, (-1, 0.5)),
# 'zeta': ((), Float, False, (-1, 0.5)),
# 'zeta_past': ((), Float, False, (-1, 0.5)),
# 'zeta_integrated': ((), Float, False, (0, 0)),
# 'h': ((3, 3), Float, False, (1, 0)),
# 'h_past': ((3, 3), Float, False, (1, 0)),
# 'timeelapsed': ((), Float, False, (1, -0.5))
# }
# # This trajectory does not store a list of atoms
# def GetListOfAtoms(self, frame=None):
# raise AttributeError, "GetListOfAtoms makes no sense in a HooverNPTTrajectory"
# # Instead, we store a dynamics
# def GetDynamics(self, frame=None):
# """Get a HooverNPT Dynamics object.
# If a frame number is not given, the current frame is used.
# The variant of the object (ASE HooverNPT, ASAP Serial/Parallel NPT)
# will be the same as the stored object.
# After getting the dynamics, the atoms should be attached with the
# dynamics.attach_atoms(atoms) method.
# """
# # Bypass calling the normal constructor
# class Dummy:
# pass
# dyn = Dummy()
# dyn.__class__ = self.getClass(self.nc.classname)
# vars = self.nc.variables
# for q in self.known_names.keys():
# if vars.has_key(q):
# once = self.known_names[q][2]
# if once:
# setattr(dyn, q, vars[q].getValue())
# else:
# setattr(dyn, q, vars[q][frame])
# return dyn
# def getClass(self, classname):
# "Internal function: turns a class name into a class object."
# if self.nc.classname == "HooverNPT":
# return HooverNPT
# else:
# raise RuntimeError, ("Cannot create a dynamics of type "
# + self.nc.classname)
# class HooverNPTTrajectory(_HooverNPTTrajectory,NetCDFTrajectory):
# """A Trajectory-like object storing data in a HooverNPT object."""
# def __init__(self, filename, dynamics=None, mode=None, interval=1):
# """Open the NetCDF file.
# If there is no ``dynamics`` argument, then the file is opened
# in read mode - otherwise, write or append mode is used. The
# ``interval`` argument determines how often the configurations
# are written to file."""
# # Call the original constructor, but passing the dynamics instead of
# # the atoms.
# if dynamics is not None:
# # Prevents a circular reference when the trajectory is attached
# # to the dynamics it observes.
# dynamics = weakref.proxy(dynamics)
# NetCDFTrajectory.__init__(self, filename,
# atoms=dynamics,
# mode=mode, interval=interval)
|