This file is indexed.

/usr/share/pyshared/ase/neb.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from math import sqrt

import numpy as np

import ase.parallel as mpi
from ase.calculators.singlepoint import SinglePointCalculator
from ase.io import read


class NEB:
    def __init__(self, images, k=0.1, climb=False, parallel=False,
                 world=None):
        self.images = images
        self.k = k
        self.climb = climb
        self.parallel = parallel
        self.natoms = len(images[0])
        self.nimages = len(images)
        self.emax = np.nan

        if world is None:
            world = mpi.world
        self.world = world

        assert not parallel or world.size % (self.nimages - 2) == 0

    def interpolate(self):
        pos1 = self.images[0].get_positions()
        pos2 = self.images[-1].get_positions()
        d = (pos2 - pos1) / (self.nimages - 1.0)
        for i in range(1, self.nimages - 1):
            self.images[i].set_positions(pos1 + i * d)
            # Parallel NEB with Jacapo needs this:
            try:
                self.images[i].get_calculator().set_atoms(self.images[i])
            except AttributeError:
                pass
            
    def get_positions(self):
        positions = np.empty(((self.nimages - 2) * self.natoms, 3))
        n1 = 0
        for image in self.images[1:-1]:
            n2 = n1 + self.natoms
            positions[n1:n2] = image.get_positions()
            n1 = n2
        return positions

    def set_positions(self, positions):
        n1 = 0
        for image in self.images[1:-1]:
            n2 = n1 + self.natoms
            image.set_positions(positions[n1:n2])
            n1 = n2

            # Parallel NEB with Jacapo needs this:
            try:
                image.get_calculator().set_atoms(image)
            except AttributeError:
                pass
        
    def get_forces(self):
        """Evaluate and return the forces."""
        images = self.images
        forces = np.empty(((self.nimages - 2), self.natoms, 3))
        energies = np.empty(self.nimages - 2)

        if not self.parallel:
            # Do all images - one at a time:
            for i in range(1, self.nimages - 1):
                energies[i - 1] = images[i].get_potential_energy()
                forces[i - 1] = images[i].get_forces()
        else:
            # Parallelize over images:
            i = self.world.rank * (self.nimages - 2) // self.world.size + 1
            try:
                energies[i - 1] = images[i].get_potential_energy()
                forces[i - 1] = images[i].get_forces()
            except:
                # Make sure other images also fail:
                error = self.world.sum(1.0)
                raise
            else:
                error = self.world.sum(0.0)
                if error:
                    raise RuntimeError('Parallel NEB failed!')
                
            for i in range(1, self.nimages - 1):
                root = (i - 1) * self.world.size // (self.nimages - 2)
                self.world.broadcast(energies[i - 1:i], root)
                self.world.broadcast(forces[i - 1], root)

        imax = 1 + np.argsort(energies)[-1]
        self.emax = energies[imax - 1]
        
        tangent1 = images[1].get_positions() - images[0].get_positions()
        for i in range(1, self.nimages - 1):
            tangent2 = (images[i + 1].get_positions() -
                        images[i].get_positions())
            if i < imax:
                tangent = tangent2
            elif i > imax:
                tangent = tangent1
            else:
                tangent = tangent1 + tangent2
                
            tt = np.vdot(tangent, tangent)
            f = forces[i - 1]
            ft = np.vdot(f, tangent)
            if i == imax and self.climb:
                f -= 2 * ft / tt * tangent
            else:
                f -= ft / tt * tangent
                f -= (np.vdot(tangent1 - tangent2, tangent) *
                      self.k / tt * tangent)
                
            tangent1 = tangent2

        return forces.reshape((-1, 3))

    def get_potential_energy(self):
        return self.emax

    def __len__(self):
        return (self.nimages - 2) * self.natoms


class SingleCalculatorNEB(NEB):
    def __init__(self, images, k=0.1, climb=False):
        if isinstance(images, str):
            # this is a filename
            traj = read(images, '0:')
            images = []
            for atoms in traj:
                images.append(atoms)

        NEB.__init__(self, images, k, climb, False)
        self.calculators = [None] * self.nimages
        self.energies_ok = False
 
    def interpolate(self, initial=0, final=-1):
        """Interpolate linearly between initial and final images."""
        if final < 0:
            final = self.nimages + final
        n = final - initial
        pos1 = self.images[initial].get_positions()
        pos2 = self.images[final].get_positions()
        d = (pos2 - pos1) / n
        for i in range(1, n):
            self.images[initial + i].set_positions(pos1 + i * d)

    def refine(self, steps=1, begin=0, end=-1):
        """Refine the NEB trajectory."""
        if end < 0:
            end = self.nimages + end
        j = begin
        n = end - begin
        for i in range(n):
            for k in range(steps):
                self.images.insert(j + 1, self.images[j].copy())
                self.calculators.insert(j + 1, None)
            self.nimages = len(self.images)
            self.interpolate(j, j + steps + 1)
            j += steps + 1

    def set_positions(self, positions):
        # new positions -> new forces
        if self.energies_ok:
            # restore calculators
            self.set_calculators(self.calculators[1:-1])
        NEB.set_positions(self, positions)

    def get_calculators(self):
        """Return the original calculators."""
        calculators = []
        for i, image in enumerate(self.images):
            if self.calculators[i] is None:
                calculators.append(image.get_calculator())
            else:
                calculators.append(self.calculators[i])
        return calculators
    
    def set_calculators(self, calculators):
        """Set new calculators to the images."""
        self.energies_ok = False

        if not isinstance(calculators, list):
            calculators = [calculators] * self.nimages

        n = len(calculators)
        if n == self.nimages:
            for i in range(self.nimages):
                self.images[i].set_calculator(calculators[i])   
        elif n == self.nimages - 2:
            for i in range(1, self.nimages -1):
                self.images[i].set_calculator(calculators[i-1])   
        else:
            raise RuntimeError(
                'len(calculators)=%d does not fit to len(images)=%d'
                % (n, self.nimages))

    def get_energies_and_forces(self, all=False):
        """Evaluate energies and forces and hide the calculators"""
        if self.energies_ok:
            return

        images = self.images
        forces = np.zeros(((self.nimages - 2), self.natoms, 3))
        energies = np.zeros(self.nimages - 2)
        self.emax = -1.e32

        def calculate_and_hide(i):
            image = self.images[i]
            calc = image.get_calculator()
            if self.calculators[i] is None:
                self.calculators[i] = calc
            if calc is not None:
                if not isinstance(calc, SinglePointCalculator):
                    self.images[i].set_calculator(
                        SinglePointCalculator(image.get_potential_energy(),
                                              image.get_forces(),
                                              None,
                                              None,
                                              image))
                self.emax = min(self.emax, image.get_potential_energy())

        if all and self.calculators[0] is None:
            calculate_and_hide(0)

        # Do all images - one at a time:
        for i in range(1, self.nimages - 1):
            calculate_and_hide(i)

        if all and self.calculators[-1] is None:
            calculate_and_hide(-1)

        self.energies_ok = True
       
    def get_forces(self):
        self.get_energies_and_forces()
        return NEB.get_forces(self)

    def n(self):
        return self.nimages

    def write(self, filename):
        from ase.io.trajectory import PickleTrajectory
        traj = PickleTrajectory(filename, 'w', self)
        traj.write()
        traj.close()

    def __add__(self, other):
        for image in other:
            self.images.append(image)
        return self


def fit(images):
    E = [i.get_potential_energy() for i in images]
    F = [i.get_forces() for i in images]
    R = [i.get_positions() for i in images]
    return fit0(E, F, R)


def fit0(E, F, R):
    E = np.array(E) - E[0]
    n = len(E)
    Efit = np.empty((n - 1) * 20 + 1)
    Sfit = np.empty((n - 1) * 20 + 1)

    s = [0]
    for i in range(n - 1):
        s.append(s[-1] + sqrt(((R[i + 1] - R[i])**2).sum()))

    lines = []
    for i in range(n):
        if i == 0:
            d = R[1] - R[0]
            ds = 0.5 * s[1]
        elif i == n - 1:
            d = R[-1] - R[-2]
            ds = 0.5 * (s[-1] - s[-2])
        else:
            d = R[i + 1] - R[i - 1]
            ds = 0.25 * (s[i + 1] - s[i - 1])

        d = d / sqrt((d**2).sum())
        dEds = -(F[i] * d).sum()
        x = np.linspace(s[i] - ds, s[i] + ds, 3)
        y = E[i] + dEds * (x - s[i])
        lines.append((x, y))

        if i > 0:
            s0 = s[i - 1]
            s1 = s[i]
            x = np.linspace(s0, s1, 20, endpoint=False)
            c = np.linalg.solve(np.array([(1, s0,   s0**2,     s0**3),
                                          (1, s1,   s1**2,     s1**3),
                                          (0,  1,  2 * s0, 3 * s0**2),
                                          (0,  1,  2 * s1, 3 * s1**2)]),
                                np.array([E[i - 1], E[i], dEds0, dEds]))
            y = c[0] + x * (c[1] + x * (c[2] + x * c[3]))
            Sfit[(i - 1) * 20:i * 20] = x
            Efit[(i - 1) * 20:i * 20] = y
        
        dEds0 = dEds

    Sfit[-1] = s[-1]
    Efit[-1] = E[-1]
    return s, E, Sfit, Efit, lines