/usr/share/pyshared/ase/optimize/lbfgs.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | # -*- coding: utf-8 -*-
import sys
import numpy as np
from ase.optimize.optimize import Optimizer
from ase.utils.linesearch import LineSearch
class LBFGS(Optimizer):
"""Limited memory BFGS optimizer.
A limited memory version of the bfgs algorithm. Unlike the bfgs algorithm
used in bfgs.py, the inverse of Hessian matrix is updated. The inverse
Hessian is represented only as a diagonal matrix to save memory
"""
def __init__(self, atoms, restart=None, logfile='-', trajectory=None,
maxstep=None, memory=100, damping = 1.0, alpha = 10.0,
use_line_search=False):
"""
Parameters:
restart: string
Pickle file used to store vectors for updating the inverse of Hessian
matrix. If set, file with such a name will be searched and information
stored will be used, if the file exists.
logfile: string
Where should output go. None for no output, '-' for stdout.
trajectory: string
Pickle file used to store trajectory of atomic movement.
maxstep: float
How far is a single atom allowed to move. This is useful for DFT
calculations where wavefunctions can be reused if steps are small.
Default is 0.04 Angstrom.
memory: int
Number of steps to be stored. Default value is 100. Three numpy
arrays of this length containing floats are stored.
damping: float
The calculated step is multiplied with this number before added to
the positions.
alpha: float
Initial guess for the Hessian (curvature of energy surface). A
conservative value of 70.0 is the default, but number of needed
steps to converge might be less if a lower value is used. However,
a lower value also means risk of instability.
"""
Optimizer.__init__(self, atoms, restart, logfile, trajectory)
if maxstep is not None:
if maxstep > 1.0:
raise ValueError('You are using a much too large value for ' +
'the maximum step size: %.1f Angstrom' % maxstep)
self.maxstep = maxstep
else:
self.maxstep = 0.04
self.memory = memory
self.H0 = 1. / alpha # Initial approximation of inverse Hessian
# 1./70. is to emulate the behaviour of BFGS
# Note that this is never changed!
self.damping = damping
self.use_line_search = use_line_search
self.p = None
self.function_calls = 0
self.force_calls = 0
def initialize(self):
"""Initalize everything so no checks have to be done in step"""
self.iteration = 0
self.s = []
self.y = []
self.rho = [] # Store also rho, to avoid calculationg the dot product
# again and again
self.r0 = None
self.f0 = None
self.e0 = None
self.task = 'START'
self.load_restart = False
def read(self):
"""Load saved arrays to reconstruct the Hessian"""
self.iteration, self.s, self.y, self.rho, \
self.r0, self.f0, self.e0, self.task = self.load()
self.load_restart = True
def step(self, f):
"""Take a single step
Use the given forces, update the history and calculate the next step --
then take it"""
r = self.atoms.get_positions()
p0 = self.p
self.update(r, f, self.r0, self.f0)
s = self.s
y = self.y
rho = self.rho
H0 = self.H0
loopmax = np.min([self.memory, self.iteration])
a = np.empty((loopmax,), dtype=np.float64)
### The algorithm itself:
q = - f.reshape(-1)
for i in range(loopmax - 1, -1, -1):
a[i] = rho[i] * np.dot(s[i], q)
q -= a[i] * y[i]
z = H0 * q
for i in range(loopmax):
b = rho[i] * np.dot(y[i], z)
z += s[i] * (a[i] - b)
self.p = - z.reshape((-1, 3))
###
g = -f
if self.use_line_search == True:
e = self.func(r)
self.line_search(r, g, e)
dr = (self.alpha_k * self.p).reshape(len(self.atoms),-1)
else:
self.force_calls += 1
self.function_calls += 1
dr = self.determine_step(self.p) * self.damping
self.atoms.set_positions(r+dr)
self.iteration += 1
self.r0 = r
self.f0 = -g
self.dump((self.iteration, self.s, self.y,
self.rho, self.r0, self.f0, self.e0, self.task))
def determine_step(self, dr):
"""Determine step to take according to maxstep
Normalize all steps as the largest step. This way
we still move along the eigendirection.
"""
steplengths = (dr**2).sum(1)**0.5
longest_step = np.max(steplengths)
if longest_step >= self.maxstep:
dr *= self.maxstep / longest_step
return dr
def update(self, r, f, r0, f0):
"""Update everything that is kept in memory
This function is mostly here to allow for replay_trajectory.
"""
if self.iteration > 0:
s0 = r.reshape(-1) - r0.reshape(-1)
self.s.append(s0)
# We use the gradient which is minus the force!
y0 = f0.reshape(-1) - f.reshape(-1)
self.y.append(y0)
rho0 = 1.0 / np.dot(y0, s0)
self.rho.append(rho0)
if self.iteration > self.memory:
self.s.pop(0)
self.y.pop(0)
self.rho.pop(0)
def replay_trajectory(self, traj):
"""Initialize history from old trajectory."""
if isinstance(traj, str):
from ase.io.trajectory import PickleTrajectory
traj = PickleTrajectory(traj, 'r')
r0 = None
f0 = None
# The last element is not added, as we get that for free when taking
# the first qn-step after the replay
for i in range(0, len(traj) - 1):
r = traj[i].get_positions()
f = traj[i].get_forces()
self.update(r, f, r0, f0)
r0 = r.copy()
f0 = f.copy()
self.iteration += 1
self.r0 = r0
self.f0 = f0
def func(self, x):
"""Objective function for use of the optimizers"""
self.atoms.set_positions(x.reshape(-1, 3))
self.function_calls += 1
return self.atoms.get_potential_energy()
def fprime(self, x):
"""Gradient of the objective function for use of the optimizers"""
self.atoms.set_positions(x.reshape(-1, 3))
self.force_calls += 1
# Remember that forces are minus the gradient!
return - self.atoms.get_forces().reshape(-1)
def line_search(self, r, g, e):
self.p = self.p.ravel()
p_size = np.sqrt((self.p **2).sum())
if p_size <= np.sqrt(len(self.atoms) * 1e-10):
self.p /= (p_size / np.sqrt(len(self.atoms)*1e-10))
g = g.ravel()
r = r.ravel()
ls = LineSearch()
self.alpha_k, e, self.e0, self.no_update = \
ls._line_search(self.func, self.fprime, r, self.p, g, e, self.e0,
maxstep=self.maxstep, c1=.23,
c2=.46, stpmax=50.)
if self.alpha_k is None:
raise RuntimeError("LineSearch failed!")
class LBFGSLineSearch(LBFGS):
"""This optimizer uses the LBFGS algorithm, but does a line search that fulfills
the Wolff conditions.
"""
def __init__(self, *args, **kwargs):
kwargs['use_line_search'] = True
LBFGS.__init__(self, *args, **kwargs)
# """Modified version of LBFGS.
#
# This optimizer uses the LBFGS algorithm, but does a line search for the
# minimum along the search direction. This is done by issuing an additional
# force call for each step, thus doubling the number of calculations.
#
# Additionally the Hessian is reset if the new guess is not sufficiently
# better than the old one.
# """
# def __init__(self, *args, **kwargs):
# self.dR = kwargs.pop('dR', 0.1)
# LBFGS.__init__(self, *args, **kwargs)
#
# def update(self, r, f, r0, f0):
# """Update everything that is kept in memory
#
# This function is mostly here to allow for replay_trajectory.
# """
# if self.iteration > 0:
# a1 = abs(np.dot(f.reshape(-1), f0.reshape(-1)))
# a2 = np.dot(f0.reshape(-1), f0.reshape(-1))
# if not (a1 <= 0.5 * a2 and a2 != 0):
# # Reset optimization
# self.initialize()
#
# # Note that the reset above will set self.iteration to 0 again
# # which is why we should check again
# if self.iteration > 0:
# s0 = r.reshape(-1) - r0.reshape(-1)
# self.s.append(s0)
#
# # We use the gradient which is minus the force!
# y0 = f0.reshape(-1) - f.reshape(-1)
# self.y.append(y0)
#
# rho0 = 1.0 / np.dot(y0, s0)
# self.rho.append(rho0)
#
# if self.iteration > self.memory:
# self.s.pop(0)
# self.y.pop(0)
# self.rho.pop(0)
#
# def determine_step(self, dr):
# f = self.atoms.get_forces()
#
# # Unit-vector along the search direction
# du = dr / np.sqrt(np.dot(dr.reshape(-1), dr.reshape(-1)))
#
# # We keep the old step determination before we figure
# # out what is the best to do.
# maxstep = self.maxstep * np.sqrt(3 * len(self.atoms))
#
# # Finite difference step using temporary point
# self.atoms.positions += (du * self.dR)
# # Decide how much to move along the line du
# Fp1 = np.dot(f.reshape(-1), du.reshape(-1))
# Fp2 = np.dot(self.atoms.get_forces().reshape(-1), du.reshape(-1))
# CR = (Fp1 - Fp2) / self.dR
# #RdR = Fp1*0.1
# if CR < 0.0:
# #print "negcurve"
# RdR = maxstep
# #if(abs(RdR) > maxstep):
# # RdR = self.sign(RdR) * maxstep
# else:
# Fp = (Fp1 + Fp2) * 0.5
# RdR = Fp / CR
# if abs(RdR) > maxstep:
# RdR = np.sign(RdR) * maxstep
# else:
# RdR += self.dR * 0.5
# return du * RdR
class HessLBFGS(LBFGS):
"""Backwards compatibiliyt class"""
def __init__(self, *args, **kwargs):
if 'method' in kwargs:
del kwargs['method']
sys.stderr.write('Please use LBFGS instead of HessLBFGS!')
LBFGS.__init__(self, *args, **kwargs)
class LineLBFGS(LBFGSLineSearch):
"""Backwards compatibiliyt class"""
def __init__(self, *args, **kwargs):
if 'method' in kwargs:
del kwargs['method']
sys.stderr.write('Please use LBFGSLineSearch instead of LineLBFGS!')
LBFGSLineSearch.__init__(self, *args, **kwargs)
|