This file is indexed.

/usr/share/pyshared/ase/optimize/lbfgs.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
# -*- coding: utf-8 -*-
import sys
import numpy as np
from ase.optimize.optimize import Optimizer
from ase.utils.linesearch import LineSearch

class LBFGS(Optimizer):
    """Limited memory BFGS optimizer.
    
    A limited memory version of the bfgs algorithm. Unlike the bfgs algorithm
    used in bfgs.py, the inverse of Hessian matrix is updated.  The inverse
    Hessian is represented only as a diagonal matrix to save memory

    """
    def __init__(self, atoms, restart=None, logfile='-', trajectory=None,
                 maxstep=None, memory=100, damping = 1.0, alpha = 10.0,
                 use_line_search=False):
        """
        Parameters:

        restart: string
            Pickle file used to store vectors for updating the inverse of Hessian
            matrix. If set, file with such a name will be searched and information
            stored will be used, if the file exists.

        logfile: string
            Where should output go. None for no output, '-' for stdout.

        trajectory: string
            Pickle file used to store trajectory of atomic movement.

        maxstep: float
            How far is a single atom allowed to move. This is useful for DFT
            calculations where wavefunctions can be reused if steps are small.
            Default is 0.04 Angstrom.

        memory: int
            Number of steps to be stored. Default value is 100. Three numpy
            arrays of this length containing floats are stored.

        damping: float
            The calculated step is multiplied with this number before added to
            the positions. 

        alpha: float
            Initial guess for the Hessian (curvature of energy surface). A
            conservative value of 70.0 is the default, but number of needed
            steps to converge might be less if a lower value is used. However,
            a lower value also means risk of instability.
            
        """
        Optimizer.__init__(self, atoms, restart, logfile, trajectory)

        if maxstep is not None:
            if maxstep > 1.0:
                raise ValueError('You are using a much too large value for ' +
                                 'the maximum step size: %.1f Angstrom' % maxstep)
            self.maxstep = maxstep
        else:
            self.maxstep = 0.04

        self.memory = memory
        self.H0 = 1. / alpha  # Initial approximation of inverse Hessian
                            # 1./70. is to emulate the behaviour of BFGS
                            # Note that this is never changed!
        self.damping = damping
        self.use_line_search = use_line_search
        self.p = None
        self.function_calls = 0
        self.force_calls = 0

    def initialize(self):
        """Initalize everything so no checks have to be done in step"""
        self.iteration = 0
        self.s = []
        self.y = []
        self.rho = [] # Store also rho, to avoid calculationg the dot product
                      # again and again

        self.r0 = None
        self.f0 = None
        self.e0 = None
        self.task = 'START'
        self.load_restart = False

    def read(self):
        """Load saved arrays to reconstruct the Hessian"""
        self.iteration, self.s, self.y, self.rho, \
        self.r0, self.f0, self.e0, self.task = self.load()
        self.load_restart = True

    def step(self, f):
        """Take a single step
        
        Use the given forces, update the history and calculate the next step --
        then take it"""
        r = self.atoms.get_positions()
        p0 = self.p
    
        self.update(r, f, self.r0, self.f0)
        
        s = self.s
        y = self.y
        rho = self.rho
        H0 = self.H0

        loopmax = np.min([self.memory, self.iteration])
        a = np.empty((loopmax,), dtype=np.float64)

        ### The algorithm itself:
        q = - f.reshape(-1) 
        for i in range(loopmax - 1, -1, -1):
            a[i] = rho[i] * np.dot(s[i], q)
            q -= a[i] * y[i]
        z = H0 * q
        
        for i in range(loopmax):
            b = rho[i] * np.dot(y[i], z)
            z += s[i] * (a[i] - b)

        self.p = - z.reshape((-1, 3))
        ###
 
        g = -f
        if self.use_line_search == True:
            e = self.func(r)
            self.line_search(r, g, e)
            dr = (self.alpha_k * self.p).reshape(len(self.atoms),-1)
        else:
            self.force_calls += 1
            self.function_calls += 1
            dr = self.determine_step(self.p) * self.damping
        self.atoms.set_positions(r+dr)
        
        self.iteration += 1
        self.r0 = r
        self.f0 = -g
        self.dump((self.iteration, self.s, self.y, 
                   self.rho, self.r0, self.f0, self.e0, self.task))

    def determine_step(self, dr):
        """Determine step to take according to maxstep
        
        Normalize all steps as the largest step. This way
        we still move along the eigendirection.
        """
        steplengths = (dr**2).sum(1)**0.5
        longest_step = np.max(steplengths)
        if longest_step >= self.maxstep:
            dr *= self.maxstep / longest_step
        
        return dr

    def update(self, r, f, r0, f0):
        """Update everything that is kept in memory

        This function is mostly here to allow for replay_trajectory.
        """
        if self.iteration > 0:
            s0 = r.reshape(-1) - r0.reshape(-1)
            self.s.append(s0)

            # We use the gradient which is minus the force!
            y0 = f0.reshape(-1) - f.reshape(-1)
            self.y.append(y0)
            
            rho0 = 1.0 / np.dot(y0, s0)
            self.rho.append(rho0)

        if self.iteration > self.memory:
            self.s.pop(0)
            self.y.pop(0)
            self.rho.pop(0)


    def replay_trajectory(self, traj):
        """Initialize history from old trajectory."""
        if isinstance(traj, str):
            from ase.io.trajectory import PickleTrajectory
            traj = PickleTrajectory(traj, 'r')
        r0 = None
        f0 = None
        # The last element is not added, as we get that for free when taking
        # the first qn-step after the replay
        for i in range(0, len(traj) - 1):
            r = traj[i].get_positions()
            f = traj[i].get_forces()
            self.update(r, f, r0, f0)
            r0 = r.copy()
            f0 = f.copy()
            self.iteration += 1
        self.r0 = r0
        self.f0 = f0

    def func(self, x):
        """Objective function for use of the optimizers"""
        self.atoms.set_positions(x.reshape(-1, 3))
        self.function_calls += 1
        return self.atoms.get_potential_energy()

    def fprime(self, x):
        """Gradient of the objective function for use of the optimizers"""
        self.atoms.set_positions(x.reshape(-1, 3))
        self.force_calls += 1
        # Remember that forces are minus the gradient!
        return - self.atoms.get_forces().reshape(-1)

    def line_search(self, r, g, e):
        self.p = self.p.ravel()
        p_size = np.sqrt((self.p **2).sum())
        if p_size <= np.sqrt(len(self.atoms) * 1e-10):
            self.p /= (p_size / np.sqrt(len(self.atoms)*1e-10))
        g = g.ravel()
        r = r.ravel()
        ls = LineSearch()
        self.alpha_k, e, self.e0, self.no_update = \
           ls._line_search(self.func, self.fprime, r, self.p, g, e, self.e0,
                           maxstep=self.maxstep, c1=.23,
                           c2=.46, stpmax=50.)
        if self.alpha_k is None:
            raise RuntimeError("LineSearch failed!")

class LBFGSLineSearch(LBFGS):
    """This optimizer uses the LBFGS algorithm, but does a line search that fulfills
    the Wolff conditions.
    """

    def __init__(self, *args, **kwargs):
        kwargs['use_line_search'] = True
        LBFGS.__init__(self, *args, **kwargs)

#    """Modified version of LBFGS.
#
#    This optimizer uses the LBFGS algorithm, but does a line search for the
#    minimum along the search direction. This is done by issuing an additional
#    force call for each step, thus doubling the number of calculations.
#
#    Additionally the Hessian is reset if the new guess is not sufficiently
#    better than the old one.
#    """
#    def __init__(self, *args, **kwargs):
#        self.dR = kwargs.pop('dR', 0.1)         
#        LBFGS.__init__(self, *args, **kwargs)
#
#    def update(self, r, f, r0, f0):
#        """Update everything that is kept in memory
#
#        This function is mostly here to allow for replay_trajectory.
#        """
#        if self.iteration > 0:
#            a1 = abs(np.dot(f.reshape(-1), f0.reshape(-1)))
#            a2 = np.dot(f0.reshape(-1), f0.reshape(-1))
#            if not (a1 <= 0.5 * a2 and a2 != 0):
#                # Reset optimization
#                self.initialize()
#
#        # Note that the reset above will set self.iteration to 0 again
#        # which is why we should check again
#        if self.iteration > 0:
#            s0 = r.reshape(-1) - r0.reshape(-1)
#            self.s.append(s0)
#
#            # We use the gradient which is minus the force!
#            y0 = f0.reshape(-1) - f.reshape(-1)
#            self.y.append(y0)
#            
#            rho0 = 1.0 / np.dot(y0, s0)
#            self.rho.append(rho0)
#
#        if self.iteration > self.memory:
#            self.s.pop(0)
#            self.y.pop(0)
#            self.rho.pop(0)
#
#    def determine_step(self, dr):
#        f = self.atoms.get_forces()
#        
#        # Unit-vector along the search direction
#        du = dr / np.sqrt(np.dot(dr.reshape(-1), dr.reshape(-1)))
#
#        # We keep the old step determination before we figure 
#        # out what is the best to do.
#        maxstep = self.maxstep * np.sqrt(3 * len(self.atoms))
#
#        # Finite difference step using temporary point
#        self.atoms.positions += (du * self.dR)
#        # Decide how much to move along the line du
#        Fp1 = np.dot(f.reshape(-1), du.reshape(-1))
#        Fp2 = np.dot(self.atoms.get_forces().reshape(-1), du.reshape(-1))
#        CR = (Fp1 - Fp2) / self.dR
#        #RdR = Fp1*0.1
#        if CR < 0.0:
#            #print "negcurve"
#            RdR = maxstep
#            #if(abs(RdR) > maxstep):
#            #    RdR = self.sign(RdR) * maxstep
#        else:
#            Fp = (Fp1 + Fp2) * 0.5
#            RdR = Fp / CR 
#            if abs(RdR) > maxstep:
#                RdR = np.sign(RdR) * maxstep
#            else:
#                RdR += self.dR * 0.5
#        return du * RdR

class HessLBFGS(LBFGS):
    """Backwards compatibiliyt class"""
    def __init__(self, *args, **kwargs):
        if 'method' in kwargs:
            del kwargs['method']
        sys.stderr.write('Please use LBFGS instead of HessLBFGS!')
        LBFGS.__init__(self, *args, **kwargs)

class LineLBFGS(LBFGSLineSearch):
    """Backwards compatibiliyt class"""
    def __init__(self, *args, **kwargs):
        if 'method' in kwargs:
            del kwargs['method']
        sys.stderr.write('Please use LBFGSLineSearch instead of LineLBFGS!')
        LBFGSLineSearch.__init__(self, *args, **kwargs)