/usr/share/pyshared/ase/optimize/oldqn.py is in python-ase 3.6.0.2515-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | # Copyright (C) 2003 CAMP
# Please see the accompanying LICENSE file for further information.
"""
Quasi-Newton algorithm
"""
__docformat__ = 'reStructuredText'
import numpy as np
import weakref,time,sys
def f(lamda,Gbar,b,radius):
b1 = b - lamda
g = radius**2 - np.dot(Gbar/b1, Gbar/b1)
return g
def scale_radius_energy(f,r):
scale = 1.0
# if(r<=0.01):
# return scale
if f<0.01: scale*=1.4
if f<0.05: scale*=1.4
if f<0.10: scale*=1.4
if f<0.40: scale*=1.4
if f>0.5: scale *= 1./1.4
if f>0.7: scale *= 1./1.4
if f>1.0: scale *= 1./1.4
return scale
def scale_radius_force(f,r):
scale = 1.0
# if(r<=0.01):
# return scale
g = abs(f -1)
if g<0.01: scale*=1.4
if g<0.05: scale*=1.4
if g<0.10: scale*=1.4
if g<0.40: scale*=1.4
if g>0.5: scale *= 1./1.4
if g>0.7: scale *= 1./1.4
if g>1.0: scale *= 1./1.4
return scale
def find_lamda(upperlimit,Gbar,b,radius):
lowerlimit = upperlimit
eps = 1e-12
step = 0.1
while f(lowerlimit,Gbar,b,radius) < 0:
lowerlimit -= step
converged = False
while not converged:
midt = (upperlimit+lowerlimit)/2.
lamda = midt
fmidt = f(midt,Gbar,b,radius)
fupper = f(upperlimit,Gbar,b,radius)
flower = f(lowerlimit,Gbar,b,radius)
if fupper*fmidt<0:
lowerlimit = midt
else:
upperlimit = midt
if abs(upperlimit-lowerlimit)<1e-6:
converged = True
return lamda
def get_hessian_inertia(eigenvalues):
# return number of negative modes
n = 0
print 'eigenvalues ',eigenvalues[0],eigenvalues[1],eigenvalues[2]
while eigenvalues[n]<0:
n+=1
return n
from numpy.linalg import eigh, solve
from ase.optimize.optimize import Optimizer
class GoodOldQuasiNewton(Optimizer):
def __init__(self, atoms, restart=None, logfile='-', trajectory=None,
fmax=None, converged=None,
hessianupdate='BFGS',hessian=None,forcemin=True,
verbosity=None,maxradius=None,
diagonal=20.,radius=None,
transitionstate = False):
Optimizer.__init__(self, atoms, restart, logfile, trajectory)
self.eps = 1e-12
self.hessianupdate = hessianupdate
self.forcemin = forcemin
self.verbosity = verbosity
self.diagonal = diagonal
self.atoms = atoms
n = len(self.atoms) * 3
if radius is None:
self.radius = 0.05*np.sqrt(n)/10.0
else:
self.radius = radius
if maxradius is None:
self.maxradius = 0.5*np.sqrt(n)
else:
self.maxradius = maxradius
# 0.01 < radius < maxradius
self.radius = max(min( self.radius, self.maxradius ), 0.0001)
self.transitionstate = transitionstate
# check if this is a nudged elastic band calculation
if hasattr(atoms,'springconstant'):
self.forcemin=False
self.t0 = time.time()
def initialize(self):pass
def write_log(self,text):
if self.logfile is not None:
self.logfile.write(text + '\n')
self.logfile.flush()
def set_max_radius(self, maxradius):
self.maxradius = maxradius
self.radius = min(self.maxradius, self.radius)
def set_hessian(self,hessian):
self.hessian = hessian
def get_hessian(self):
if not hasattr(self,'hessian'):
self.set_default_hessian()
return self.hessian
def set_default_hessian(self):
# set unit matrix
n = len(self.atoms) * 3
hessian = np.zeros((n,n))
for i in range(n):
hessian[i][i] = self.diagonal
self.set_hessian(hessian)
def read_hessian(self,filename):
import cPickle
f = open(filename,'r')
self.set_hessian(cPickle.load(f))
f.close()
def write_hessian(self,filename):
import cPickle
f = paropen(filename,'w')
cPickle.dump(self.get_hessian(),f)
f.close()
def write_to_restartfile(self):
import cPickle
f = paropen(self.restartfile,'w')
cPickle.dump((self.oldpos,
self.oldG,
self.oldenergy,
self.radius,
self.hessian,
self.energy_estimate),f)
f.close()
def update_hessian(self,pos,G):
import copy
if hasattr(self,'oldG'):
if self.hessianupdate=='BFGS':
self.update_hessian_bfgs(pos,G)
elif self.hessianupdate== 'Powell':
self.update_hessian_powell(pos,G)
else:
self.update_hessian_bofill(pos,G)
else:
if not hasattr(self,'hessian'):
self.set_default_hessian()
self.oldpos = copy.copy(pos)
self.oldG = copy.copy(G)
if self.verbosity:
print 'hessian ',self.hessian
def update_hessian_bfgs(self,pos,G):
n = len(self.hessian)
dgrad = G - self.oldG
dpos = pos - self.oldpos
absdpos = np.sqrt(np.dot(dpos, dpos))
dotg = np.dot(dgrad,dpos)
tvec = np.dot(dpos,self.hessian)
dott = np.dot(dpos,tvec)
if (abs(dott)>self.eps) and (abs(dotg)>self.eps):
for i in range(n):
for j in range(n):
h = dgrad[i]*dgrad[j]/dotg - tvec[i]*tvec[j]/dott
self.hessian[i][j] += h
def update_hessian_powell(self,pos,G):
n = len(self.hessian)
dgrad = G - self.oldG
dpos = pos - self.oldpos
absdpos = np.dot(dpos, dpos)
if absdpos<self.eps:
return
dotg = np.dot(dgrad,dpos)
tvec = dgrad-np.dot(dpos,self.hessian)
tvecdot = np.dot(tvec,tvec)
tvecdpos = np.dot(tvec,dpos)
ddot = tvecdpos/absdpos
dott = np.dot(dpos,tvec)
if (abs(dott)>self.eps) and (abs(dotg)>self.eps):
for i in range(n):
for j in range(n):
h = tvec[i]*dpos[j] + dpos[i]*tvec[j]-ddot*dpos[i]*dpos[j]
h *= 1./absdpos
self.hessian[i][j] += h
def update_hessian_bofill(self,pos,G):
print 'update Bofill'
n = len(self.hessian)
dgrad = G - self.oldG
dpos = pos - self.oldpos
absdpos = np.dot(dpos, dpos)
if absdpos<self.eps:
return
dotg = np.dot(dgrad,dpos)
tvec = dgrad-np.dot(dpos,self.hessian)
tvecdot = np.dot(tvec,tvec)
tvecdpos = np.dot(tvec,dpos)
ddot = tvecdpos/absdpos
coef1 = 1. - tvecdpos*tvecdpos/(absdpos*tvecdot)
coef2 = (1. - coef1)*absdpos/tvecdpos
coef3 = coef1*tvecdpos/absdpos
dott = np.dot(dpos,tvec)
if (abs(dott)>self.eps) and (abs(dotg)>self.eps):
for i in range(n):
for j in range(n):
h = coef1*(tvec[i]*dpos[j] + dpos[i]*tvec[j])-dpos[i]*dpos[j]*coef3 + coef2*tvec[i]*tvec[j]
h *= 1./absdpos
self.hessian[i][j] += h
def step(self, f):
""" Do one QN step
"""
pos = self.atoms.get_positions().ravel()
G = -self.atoms.get_forces().ravel()
energy = self.atoms.get_potential_energy()
self.write_iteration(energy,G)
if hasattr(self,'oldenergy'):
self.write_log('energies ' + str(energy) + ' ' + str(self.oldenergy))
if self.forcemin:
de = 1e-4
else:
de = 1e-2
if self.transitionstate:
de = 0.2
if (energy-self.oldenergy)>de:
self.write_log('reject step')
self.atoms.set_positions(self.oldpos.reshape((-1, 3)))
G = self.oldG
energy = self.oldenergy
self.radius *= 0.5
else:
self.update_hessian(pos,G)
de = energy - self.oldenergy
f = 1.0
if self.forcemin:
self.write_log("energy change; actual: %f estimated: %f "%(de,self.energy_estimate))
if abs(self.energy_estimate)>self.eps:
f = abs((de/self.energy_estimate)-1)
self.write_log('Energy prediction factor ' + str(f))
# fg = self.get_force_prediction(G)
self.radius *= scale_radius_energy(f,self.radius)
else:
self.write_log("energy change; actual: %f "%(de))
self.radius*=1.5
fg = self.get_force_prediction(G)
self.write_log("Scale factors %f %f "%(scale_radius_energy(f,self.radius),
scale_radius_force(fg,self.radius)))
self.radius = max(min(self.radius,self.maxradius), 0.0001)
else:
self.update_hessian(pos,G)
self.write_log("new radius %f "%(self.radius))
self.oldenergy = energy
b,V = eigh(self.hessian)
V=V.T.copy()
self.V = V
# calculate projection of G onto eigenvectors V
Gbar = np.dot(G,np.transpose(V))
lamdas = self.get_lambdas(b,Gbar)
D = -Gbar/(b-lamdas)
n = len(D)
step = np.zeros((n))
for i in range(n):
step += D[i]*V[i]
pos = self.atoms.get_positions().ravel()
pos += step
energy_estimate = self.get_energy_estimate(D,Gbar,b)
self.energy_estimate = energy_estimate
self.gbar_estimate = self.get_gbar_estimate(D,Gbar,b)
self.old_gbar = Gbar
self.atoms.set_positions(pos.reshape((-1, 3)))
def get_energy_estimate(self,D,Gbar,b):
de = 0.0
for n in range(len(D)):
de += D[n]*Gbar[n] + 0.5*D[n]*b[n]*D[n]
return de
def get_gbar_estimate(self,D,Gbar,b):
gbar_est = (D*b) + Gbar
self.write_log('Abs Gbar estimate ' + str(np.dot(gbar_est,gbar_est)))
return gbar_est
def get_lambdas(self,b,Gbar):
lamdas = np.zeros((len(b)))
D = -Gbar/b
#absD = np.sqrt(np.sum(D**2))
absD = np.sqrt(np.dot(D, D))
eps = 1e-12
nminus = self.get_hessian_inertia(b)
if absD < self.radius:
if not self.transitionstate:
self.write_log('Newton step')
return lamdas
else:
if nminus==1:
self.write_log('Newton step')
return lamdas
else:
self.write_log("Wrong inertia of Hessian matrix: %2.2f %2.2f "%(b[0],b[1]))
else:
self.write_log("Corrected Newton step: abs(D) = %2.2f "%(absD))
if not self.transitionstate:
# upper limit
upperlimit = min(0,b[0])-eps
lowerlimit = upperlimit
lamda = find_lamda(upperlimit,Gbar,b,self.radius)
lamdas += lamda
else:
# upperlimit
upperlimit = min(-b[0],b[1],0)-eps
lamda = find_lamda(upperlimit,Gbar,b,self.radius)
lamdas += lamda
lamdas[0] -= 2*lamda
return lamdas
def print_hessian(self):
hessian = self.get_hessian()
n = len(hessian)
for i in range(n):
for j in range(n):
print "%2.4f " %(hessian[i][j]),
print " "
def get_hessian_inertia(self,eigenvalues):
# return number of negative modes
self.write_log("eigenvalues %2.2f %2.2f %2.2f "%(eigenvalues[0],
eigenvalues[1],
eigenvalues[2]))
n = 0
while eigenvalues[n]<0:
n+=1
return n
def get_force_prediction(self,G):
# return measure of how well the forces are predicted
Gbar = np.dot(G,np.transpose(self.V))
dGbar_actual = Gbar-self.old_gbar
dGbar_predicted = Gbar-self.gbar_estimate
f = np.dot(dGbar_actual,dGbar_predicted)/np.dot(dGbar_actual,dGbar_actual)
self.write_log('Force prediction factor ' + str(f))
return f
def write_iteration(self,energy,G):pass
|