This file is indexed.

/usr/share/pyshared/ase/vibrations.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# -*- coding: utf-8 -*-

"""Vibrational modes."""

import pickle
from math import sin, pi, sqrt
from os import remove
from os.path import isfile
import sys

import numpy as np

import ase.units as units
from ase.io.trajectory import PickleTrajectory
from ase.parallel import rank, paropen
from ase.utils import opencew


class Vibrations:
    """Class for calculating vibrational modes using finite difference.

    The vibrational modes are calculated from a finite difference
    approximation of the Hessian matrix.

    The *summary()*, *get_energies()* and *get_frequencies()* methods all take
    an optional *method* keyword.  Use method='Frederiksen' to use the method
    described in:

      T. Frederiksen, M. Paulsson, M. Brandbyge, A. P. Jauho:
      "Inelastic transport theory from first-principles: methodology and
      applications for nanoscale devices", Phys. Rev. B 75, 205413 (2007)

    atoms: Atoms object
        The atoms to work on.
    indices: list of int
        List of indices of atoms to vibrate.  Default behavior is
        to vibrate all atoms.
    name: str
        Name to use for files.
    delta: float
        Magnitude of displacements.
    nfree: int
        Number of displacements per atom and cartesian coordinate, 2 and 4 are
        supported. Default is 2 which will displace each atom +delta and
        -delta for each cartesian coordinate.

    Example:

    >>> from ase import Atoms
    >>> from ase.calculators import EMT
    >>> from ase.optimize import BFGS
    >>> from ase.vibrations import Vibrations
    >>> n2 = Atoms('N2', [(0, 0, 0), (0, 0, 1.1)],
    ...            calculator=EMT())
    >>> BFGS(n2).run(fmax=0.01)
    BFGS:   0  16:01:21        0.440339       3.2518
    BFGS:   1  16:01:21        0.271928       0.8211
    BFGS:   2  16:01:21        0.263278       0.1994
    BFGS:   3  16:01:21        0.262777       0.0088
    >>> vib = Vibrations(n2)
    >>> vib.run()
    Writing vib.eq.pckl
    Writing vib.0x-.pckl
    Writing vib.0x+.pckl
    Writing vib.0y-.pckl
    Writing vib.0y+.pckl
    Writing vib.0z-.pckl
    Writing vib.0z+.pckl
    Writing vib.1x-.pckl
    Writing vib.1x+.pckl
    Writing vib.1y-.pckl
    Writing vib.1y+.pckl
    Writing vib.1z-.pckl
    Writing vib.1z+.pckl
    >>> vib.summary()
    ---------------------
    #    meV     cm^-1
    ---------------------
    0    0.0       0.0
    1    0.0       0.0
    2    0.0       0.0
    3    2.5      20.4
    4    2.5      20.4
    5  152.6    1230.8
    ---------------------
    Zero-point energy: 0.079 eV
    >>> vib.write_mode(-1)  # write last mode to trajectory file

    """

    def __init__(self, atoms, indices=None, name='vib', delta=0.01, nfree=2):
        assert nfree in [2, 4]
        self.atoms = atoms
        if indices is None:
            indices = range(len(atoms))
        self.indices = np.asarray(indices)
        self.name = name
        self.delta = delta
        self.nfree = nfree
        self.H = None
        self.ir = None

    def run(self):
        """Run the vibration calculations.

        This will calculate the forces for 6 displacements per atom +/-x,
        +/-y, +/-z. Only those calculations that are not already done will be
        started. Be aware that an interrupted calculation may produce an empty
        file (ending with .pckl), which must be deleted before restarting the
        job. Otherwise the forces will not be calculated for that
        displacement.

        Note that the calculations for the different displacements can be done
        simultaneously by several independent processes. This feature relies
        on the existence of files and the subsequent creation of the file in
        case it is not found.
        """

        filename = self.name + '.eq.pckl'
        fd = opencew(filename)
        if fd is not None:
            self.calculate(filename, fd)

        p = self.atoms.positions.copy()
        for a in self.indices:
            for i in range(3):
                for sign in [-1, 1]:
                    for ndis in range(1, self.nfree // 2 + 1):
                        filename = ('%s.%d%s%s.pckl' %
                                    (self.name, a, 'xyz'[i],
                                     ndis * ' +-'[sign]))
                        fd = opencew(filename)
                        if fd is not None:
                            disp = ndis * sign * self.delta
                            self.atoms.positions[a, i] = p[a, i] + disp
                            self.calculate(filename, fd)
                            self.atoms.positions[a, i] = p[a, i]

    def calculate(self, filename, fd):
        forces = self.atoms.get_forces()
        if self.ir:
            dipole = self.calc.get_dipole_moment(self.atoms)
        if rank == 0:
            if self.ir:
                pickle.dump([forces, dipole], fd)
                sys.stdout.write(
                    'Writing %s, dipole moment = (%.6f %.6f %.6f)\n' %
                    (filename, dipole[0], dipole[1], dipole[2]))
            else:
                pickle.dump(forces, fd)
                sys.stdout.write('Writing %s\n' % filename)
            fd.close()
        sys.stdout.flush()

    def clean(self):
        if isfile(self.name + '.eq.pckl'):
            remove(self.name + '.eq.pckl')

        for a in self.indices:
            for i in 'xyz':
                for sign in '-+':
                    for ndis in range(1, self.nfree // 2 + 1):
                        name = '%s.%d%s%s.pckl' % (self.name, a, i,
                                                   ndis * sign)
                        if isfile(name):
                            remove(name)

    def read(self, method='standard', direction='central'):
        self.method = method.lower()
        self.direction = direction.lower()
        assert self.method in ['standard', 'frederiksen']
        assert self.direction in ['central', 'forward', 'backward']

        n = 3 * len(self.indices)
        H = np.empty((n, n))
        r = 0
        if direction != 'central':
            feq = pickle.load(open(self.name + '.eq.pckl'))
        for a in self.indices:
            for i in 'xyz':
                name = '%s.%d%s' % (self.name, a, i)
                fminus = pickle.load(open(name + '-.pckl'))
                fplus = pickle.load(open(name + '+.pckl'))
                if self.method == 'frederiksen':
                    fminus[a] -= fminus.sum(0)
                    fplus[a] -= fplus.sum(0)
                if self.nfree == 4:
                    fminusminus = pickle.load(open(name + '--.pckl'))
                    fplusplus = pickle.load(open(name + '++.pckl'))
                    if self.method == 'frederiksen':
                        fminusminus[a] -= fminusminus.sum(0)
                        fplusplus[a] -= fplusplus.sum(0)
                if self.direction == 'central':
                    if self.nfree == 2:
                        H[r] = .5 * (fminus - fplus)[self.indices].ravel()
                    else:
                        H[r] = H[r] = (-fminusminus +
                                       8 * fminus -
                                       8 * fplus +
                                       fplusplus)[self.indices].ravel() / 12.0
                elif self.direction == 'forward':
                    H[r] = (feq - fplus)[self.indices].ravel()
                else:
                    assert self.direction == 'backward'
                    H[r] = (fminus - feq)[self.indices].ravel()
                H[r] /= 2 * self.delta
                r += 1
        H += H.copy().T
        self.H = H
        m = self.atoms.get_masses()
        if 0 in [m[index] for index in self.indices]:
            raise RuntimeError('Zero mass encountered in one or more of '
                               'the vibrated atoms. Use Atoms.set_masses()'
                               ' to set all masses to non-zero values.')

        self.im = np.repeat(m[self.indices] ** -0.5, 3)
        omega2, modes = np.linalg.eigh(self.im[:, None] * H * self.im)
        self.modes = modes.T.copy()

        # Conversion factor:
        s = units._hbar * 1e10 / sqrt(units._e * units._amu)
        self.hnu = s * omega2.astype(complex) ** 0.5

    def get_energies(self, method='standard', direction='central'):
        """Get vibration energies in eV."""

        if (self.H is None or method.lower() != self.method or
            direction.lower() != self.direction):
            self.read(method, direction)
        return self.hnu

    def get_frequencies(self, method='standard', direction='central'):
        """Get vibration frequencies in cm^-1."""

        s = 0.01 * units._e / units._c / units._hplanck
        return s * self.get_energies(method, direction)

    def summary(self, method='standard', direction='central', freq=None,
                log=sys.stdout):
        """Print a summary of the vibrational frequencies.

        Parameters:

        method : string
            Can be 'standard'(default) or 'Frederiksen'.
        direction: string
            Direction for finite differences. Can be one of 'central'
            (default), 'forward', 'backward'.
        freq : numpy array
            Optional. Can be used to create a summary on a set of known
            frequencies.
        log : if specified, write output to a different location than
            stdout. Can be an object with a write() method or the name of a
            file to create.
        """

        if isinstance(log, str):
            log = paropen(log, 'a')
        write = log.write

        s = 0.01 * units._e / units._c / units._hplanck
        if freq != None:
            hnu = freq / s
        else:
            hnu = self.get_energies(method, direction)
        write('---------------------\n')
        write('  #    meV     cm^-1\n')
        write('---------------------\n')
        for n, e in enumerate(hnu):
            if e.imag != 0:
                c = 'i'
                e = e.imag
            else:
                c = ' '
                e = e.real
            write('%3d %6.1f%s  %7.1f%s\n' % (n, 1000 * e, c, s * e, c))
        write('---------------------\n')
        write('Zero-point energy: %.3f eV\n' %
              self.get_zero_point_energy(freq=freq))

    def get_zero_point_energy(self, freq=None):
        if freq is None:
            return 0.5 * self.hnu.real.sum()
        else:
            s = 0.01 * units._e / units._c / units._hplanck
            return 0.5 * freq.real.sum() / s

    def get_mode(self, n):
        mode = np.zeros((len(self.atoms), 3))
        mode[self.indices] = (self.modes[n] * self.im).reshape((-1, 3))
        return mode

    def write_mode(self, n, kT=units.kB * 300, nimages=30):
        """Write mode to trajectory file."""
        mode = self.get_mode(n) * sqrt(kT / abs(self.hnu[n]))
        p = self.atoms.positions.copy()
        n %= 3 * len(self.indices)
        traj = PickleTrajectory('%s.%d.traj' % (self.name, n), 'w')
        calc = self.atoms.get_calculator()
        self.atoms.set_calculator()
        for x in np.linspace(0, 2 * pi, nimages, endpoint=False):
            self.atoms.set_positions(p + sin(x) * mode)
            traj.write(self.atoms)
        self.atoms.set_positions(p)
        self.atoms.set_calculator(calc)
        traj.close()

    def write_jmol(self):
        """Writes file for viewing of the modes with jmol."""

        fd = open(self.name + '.xyz', 'w')
        symbols = self.atoms.get_chemical_symbols()
        f = self.get_frequencies()
        for n in range(3 * len(self.indices)):
            fd.write('%6d\n' % len(self.atoms))
            if f[n].imag != 0:
                c = 'i'
                f[n] = f[n].imag
            else:
                c = ' '
            fd.write('Mode #%d, f = %.1f%s cm^-1' % (n, f[n], c))
            if self.ir:
                fd.write(', I = %.4f (D/Å)^2 amu^-1.\n' % self.intensities[n])
            else:
                fd.write('.\n')
            mode = self.get_mode(n)
            for i, pos in enumerate(self.atoms.positions):
                fd.write('%2s %12.5f %12.5f %12.5f %12.5f %12.5f %12.5f \n' %
                         (symbols[i], pos[0], pos[1], pos[2],
                          mode[i, 0], mode[i, 1], mode[i, 2]))
        fd.close()