This file is indexed.

/usr/share/pyshared/ase/visualize/fieldplotter.py is in python-ase 3.6.0.2515-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
"""plotting fields defined on atoms during a simulation."""

from ase.visualize.primiplotter import PostScriptFile, PnmFile, GifFile, JpegFile, X11Window
from ase.visualize.primiplotter import PrimiPlotter as _PrimiPlotter
import numpy
import time

class FieldPlotter(_PrimiPlotter):
    def __init__(self, atoms, datasource=None, verbose=0, timing=0,
                 interval=1, initframe=0):
        _PrimiPlotter.__init__(self, atoms, verbose=verbose, timing=timing,
                               interval=interval, initframe=initframe)
        self.datasource = datasource
        self.dims = (100,100)
        self.set_plot_plane("xy")
        self.set_data_range("plot")
        self.set_background(0.0)
        self.set_red_yellow_colors()
        
    def set_plot_plane(self, plane):
        """Set the plotting plane to xy, xz or yz (default: xy)"""
        if plane in ("xy", "xz", "yz"):
            self.plane = plane
        else:
            raise ValueError, "The argument to plotPlane must be 'xy', 'xz' or 'yz'."

    def set_data_range(self, range1, range2=None):
        """Set the range of the data used when coloring.

        This function sets the range of data values mapped unto colors
        in the final plot.
        
        Three possibilities:

        'data':        Autoscale using the data on visible atoms.
                       The range goes from the lowest to the highest
                       value present on the atoms.  If only a few atoms
                       have extreme values, the entire color range may not
                       be used on the plot, as many values may be averaged
                       on each point in the plot.

        'plot':        Autoscale using the data on the plot.  Unlike 'data'
                       this guarantees that the entire color range is used.

        min, max:      Use the range [min, max]
                       
        """
        if (range1 == "data" or range1 == "plot") and range2 == None:
            self.autorange = range1
        elif range2 != None:
            self.autorange = None
            self.range = (range1, range2)
        else:
            raise ValueError, "Illegal argument(s) to set_data_range"

    def set_background(self, value):
        """Set the data value of the background.  See also set_background_color

        Set the value of the background (parts of the plot without atoms) to
        a specific value, or to 'min' or 'max' representing the minimal or
        maximal data values on the atoms.

        Calling set_background cancels previous calls to set_background_color.
        """
        self.background = value
        self.backgroundcolor = None

    def set_background_color(self, color):
        """Set the background color.  See also set_background.

        Set the background color.  Use a single value in the range [0, 1[
        for gray values, or a tuple of three such values as an RGB color.

        Calling set_background_color cancels previous calls to set_background.
        """
        self.background = None
        self.backgroundcolor = color

    def set_red_yellow_colors(self, reverse=False):
        """Set colors to Black-Red-Yellow-White (a.k.a. STM colors)"""
        self.set_colors([(0.0, 0, 0, 0),
                        (0.33, 1, 0, 0),
                        (0.66, 1, 1, 0),
                        (1.0, 1, 1, 1)],
                       reverse)
        
    def set_black_white_colors(self, reverse=False):
        """Set the color to Black-White (greyscale)"""
        self.set_colors([(0.0, 0),  (1.0, 1)], reverse)

    def set_colors(self, colors, reverse=False):
        colors = numpy.array(colors, numpy.float)
        if len(colors.shape) != 2:
            raise ValueError, "Colors must be a 2D array."
        if reverse:
            colors[:,0] = 1 - colors[:,0]
            colors = numpy.array(colors[::-1,:])
            #print colors
        if colors[0,0] != 0.0 or colors[-1,0] != 1.0:
            raise ValueError, "First row must define the value 0 and last row must define the value 1"
        if colors.shape[1] == 2:
            self.colormode = 1
        elif colors.shape[1] == 4:
            self.colormode = 3
        else:
            raise ValueError, "Color specification must be Nx2 (grey) or Nx4 (rgb) matrix."
        self.colorfunction = InterpolatingFunction(colors[:,0], colors[:,1:])
        
    def plot(self, data=None):
        """Create a plot now.  Does not respect the interval timer.

        This method makes a plot unconditionally.  It does not look at
        the interval variable, nor is this plot taken into account in
        the counting done by the update() method if an interval
        variable was specified.

        If data is specified, it must be an array of numbers with the
        same length as the atoms.  That data will then be plotted.  If
        no data is given, the data source specified when creating the
        plotter is used.
        
        """
        if self.timing:
            self._starttimer()
        self.log("FieldPlotter: Starting plot at "
                 + time.strftime("%a, %d %b %Y %H:%M:%S"))
        if data is None:
            data = self.datasource()
        if len(data) != len(self.atoms):
            raise ValueError, ("Data has wrong length: %d instead of %d."
                               % (len(data), len(self.atoms)))
        
        invisible = self._getinvisible()
        coords = self._rotate(self._getpositions())
        radii = self._getradii()
        if self.autoscale:
            self._autoscale(coords,radii)
        scale = self.scale * self.relativescale
        coords = scale * coords
        center = self._getcenter(coords)
        offset = numpy.array(self.dims + (0.0,))/2.0 - center
        coords = coords + offset
        radii = radii * scale
        self.log("Scale is %f and size is (%d, %d)"
                 % (scale, self.dims[0], self.dims[1]))
        self.log("Physical size of plot is %f Angstrom times %f Angstrom"
                 % (self.dims[0] / scale, self.dims[1] / scale))

        # Remove invisible atoms
        selector = numpy.logical_not(invisible)
        coords = numpy.compress(selector, coords, 0)
        radii = numpy.compress(selector, radii)
        data = numpy.compress(selector, data)

        self.log("plotting data in the range [%f,%f]" %
                   (data.min(), data.max()))
        # Now create the output array
        sumarray = numpy.zeros(self.dims, numpy.float)
        weight = numpy.zeros(self.dims)

        # Loop over all atoms, and plot them
        nmiss = 0
        if self.plane == "xy":
            xy = coords[:,:2]
        elif self.plane == "xz":
            xy = coords[:,::2]
        elif self.plane == "yz":
            xy = coords[:,1:]
        else:
            raise RuntimeError, "self.plane is bogus: "+str(self.plane)
        assert xy.shape[1] == 2

        self.log("plotting %d atoms on %d * %d (= %d) grid" %
                   (len(xy), sumarray.shape[0], sumarray.shape[1],
                    len(sumarray.flat)))
                                                            
        xy = xy.astype(numpy.int)
        for i in xrange(len(xy)):
            (x, y) = xy[i]
            d = data[i]
            if (x >= 0 and x < self.dims[0] and y >= 0 and y < self.dims[1]):
                sumarray[x,y] += d
                weight[x,y] += 1
            else:
                nmiss += 1
        print "... %d atoms fell outside plot." % (nmiss,)

        datamap = self._makedatamap(sumarray, weight, data.min(), data.max())
        self.log("Range of data map: [%f, %f]" %
                   (datamap.min(), datamap.max()))
        plot = self._makeplotmap(datamap, weight)
        #self.log("Range of plot: [%f, %f]" %
        #           (min(plot.flat), max(plot.flat)))
        examinplot = plot[:]
        examinplot.shape = (plot.shape[0] * plot.shape[1],) + plot.shape[2:]
        self.log("Range of plot: %s -> %s" %
                 (str(examinplot.min(0)), str(examinplot.max(0))))
        del examinplot
        for device in self.outputdevice:
            device.inform_about_scale(scale)
            device.plotArray(self.n, numpy.swapaxes(plot,0,1))
        self.n = self.n + 1
        self.log("FieldPlotter: Finished plotting at "
                 + time.strftime("%a, %d %b %Y %H:%M:%S"))
        self.log("\n\n")

        
    def _makedatamap(self, sumarray, weight, minimum, maximum):
        background = numpy.equal(weight, 0)
        print "Number of background points:", sum(background.flat)
        datamap = sumarray / numpy.where(background, 1, weight)
        
        if self.background is not None:
            if self.background == "min":
                bg = minimum
            elif self.background == "max":
                bg = maximum
            else:
                bg = self.background
            datamap = numpy.where(background, bg, datamap)
            
        if self.autorange == "data":
            datamap = (datamap - minimum) / (maximum - minimum)
            self.log("Autorange using data.  Data range is [%f, %f]"
                     % (minimum, maximum))
        elif self.autorange == "plot":
            ma = numpy.where(background, minimum, datamap).max()
            mi = numpy.where(background, maximum, datamap).min()
            datamap = (datamap - mi) / (ma - mi)
            self.log("Autorange using plot.  Data range is [%f, %f]"
                     % (mi, ma))
        else:
            assert self.autorange == None
            datamap = (datamap - self.range[0]) / (self.range[1]
                                                   - self.range[0])
            datamap = numpy.clip(datamap, 0.0, 1.0)
            self.log("Data range specified by user: [%f, %f]" % self.range)
        datamap = numpy.where(background, bg, datamap)
        assert datamap.min() >= 0 and datamap.max() <= 1.0
        
        return datamap

    def _makeplotmap(self, datamap, weight):
        plot = numpy.zeros(self.dims + (self.colormode,), numpy.float)
        for i in range(self.dims[0]):
            for j in range(self.dims[1]):
                if self.backgroundcolor is not None and weight[i,j] == 0:
                    plot[i,j,:] = self.backgroundcolor
                else:
                    x = datamap[i,j]
                    plot[i,j,:] = self.colorfunction(x)
        return plot
    
class InterpolatingFunction:
    def __init__(self, xpoints, ypoints):
        if len(xpoints) != len(ypoints):
            raise ValueError, "Length of x and y arrays should be the same."
        idx = xpoints.argsort()
        self.xpoints = xpoints[idx]
        self.ypoints = ypoints[idx]
    def __call__(self, x):
        n = self.xpoints.searchsorted(x)
        if n == 0:
            return self.ypoints[0]
        if n == len(self.xpoints):
            return self.xpoints[-1]
        x0 = self.xpoints[n-1]
        x1 = self.xpoints[n]
        y0 = self.ypoints[n-1]
        y1 = self.ypoints[n]
        return y0 + (y1 - y0) / (x1 - x0) * (x - x0)