/usr/share/pyshared/beaker/crypto/pbkdf2.py is in python-beaker 1.6.3-1.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 | #!/usr/bin/python
# -*- coding: ascii -*-
###########################################################################
# PBKDF2.py - PKCS#5 v2.0 Password-Based Key Derivation
#
# Copyright (C) 2007 Dwayne C. Litzenberger <dlitz@dlitz.net>
# All rights reserved.
#
# Permission to use, copy, modify, and distribute this software and its
# documentation for any purpose and without fee is hereby granted,
# provided that the above copyright notice appear in all copies and that
# both that copyright notice and this permission notice appear in
# supporting documentation.
#
# THE AUTHOR PROVIDES THIS SOFTWARE ``AS IS'' AND ANY EXPRESSED OR
# IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
# OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
# IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
# NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Country of origin: Canada
#
###########################################################################
# Sample PBKDF2 usage:
# from Crypto.Cipher import AES
# from PBKDF2 import PBKDF2
# import os
#
# salt = os.urandom(8) # 64-bit salt
# key = PBKDF2("This passphrase is a secret.", salt).read(32) # 256-bit key
# iv = os.urandom(16) # 128-bit IV
# cipher = AES.new(key, AES.MODE_CBC, iv)
# ...
#
# Sample crypt() usage:
# from PBKDF2 import crypt
# pwhash = crypt("secret")
# alleged_pw = raw_input("Enter password: ")
# if pwhash == crypt(alleged_pw, pwhash):
# print "Password good"
# else:
# print "Invalid password"
#
###########################################################################
# History:
#
# 2007-07-27 Dwayne C. Litzenberger <dlitz@dlitz.net>
# - Initial Release (v1.0)
#
# 2007-07-31 Dwayne C. Litzenberger <dlitz@dlitz.net>
# - Bugfix release (v1.1)
# - SECURITY: The PyCrypto XOR cipher (used, if available, in the _strxor
# function in the previous release) silently truncates all keys to 64
# bytes. The way it was used in the previous release, this would only be
# problem if the pseudorandom function that returned values larger than
# 64 bytes (so SHA1, SHA256 and SHA512 are fine), but I don't like
# anything that silently reduces the security margin from what is
# expected.
#
###########################################################################
__version__ = "1.1"
from struct import pack
from binascii import b2a_hex
from random import randint
from base64 import b64encode
from beaker.crypto.util import hmac as HMAC, hmac_sha1 as SHA1
def strxor(a, b):
return "".join([chr(ord(x) ^ ord(y)) for (x, y) in zip(a, b)])
class PBKDF2(object):
"""PBKDF2.py : PKCS#5 v2.0 Password-Based Key Derivation
This implementation takes a passphrase and a salt (and optionally an
iteration count, a digest module, and a MAC module) and provides a
file-like object from which an arbitrarily-sized key can be read.
If the passphrase and/or salt are unicode objects, they are encoded as
UTF-8 before they are processed.
The idea behind PBKDF2 is to derive a cryptographic key from a
passphrase and a salt.
PBKDF2 may also be used as a strong salted password hash. The
'crypt' function is provided for that purpose.
Remember: Keys generated using PBKDF2 are only as strong as the
passphrases they are derived from.
"""
def __init__(self, passphrase, salt, iterations=1000,
digestmodule=SHA1, macmodule=HMAC):
if not callable(macmodule):
macmodule = macmodule.new
self.__macmodule = macmodule
self.__digestmodule = digestmodule
self._setup(passphrase, salt, iterations, self._pseudorandom)
def _pseudorandom(self, key, msg):
"""Pseudorandom function. e.g. HMAC-SHA1"""
return self.__macmodule(key=key, msg=msg,
digestmod=self.__digestmodule).digest()
def read(self, bytes):
"""Read the specified number of key bytes."""
if self.closed:
raise ValueError("file-like object is closed")
size = len(self.__buf)
blocks = [self.__buf]
i = self.__blockNum
while size < bytes:
i += 1
if i > 0xffffffff:
# We could return "" here, but
raise OverflowError("derived key too long")
block = self.__f(i)
blocks.append(block)
size += len(block)
buf = "".join(blocks)
retval = buf[:bytes]
self.__buf = buf[bytes:]
self.__blockNum = i
return retval
def __f(self, i):
# i must fit within 32 bits
assert (1 <= i and i <= 0xffffffff)
U = self.__prf(self.__passphrase, self.__salt + pack("!L", i))
result = U
for j in xrange(2, 1+self.__iterations):
U = self.__prf(self.__passphrase, U)
result = strxor(result, U)
return result
def hexread(self, octets):
"""Read the specified number of octets. Return them as hexadecimal.
Note that len(obj.hexread(n)) == 2*n.
"""
return b2a_hex(self.read(octets))
def _setup(self, passphrase, salt, iterations, prf):
# Sanity checks:
# passphrase and salt must be str or unicode (in the latter
# case, we convert to UTF-8)
if isinstance(passphrase, unicode):
passphrase = passphrase.encode("UTF-8")
if not isinstance(passphrase, str):
raise TypeError("passphrase must be str or unicode")
if isinstance(salt, unicode):
salt = salt.encode("UTF-8")
if not isinstance(salt, str):
raise TypeError("salt must be str or unicode")
# iterations must be an integer >= 1
if not isinstance(iterations, (int, long)):
raise TypeError("iterations must be an integer")
if iterations < 1:
raise ValueError("iterations must be at least 1")
# prf must be callable
if not callable(prf):
raise TypeError("prf must be callable")
self.__passphrase = passphrase
self.__salt = salt
self.__iterations = iterations
self.__prf = prf
self.__blockNum = 0
self.__buf = ""
self.closed = False
def close(self):
"""Close the stream."""
if not self.closed:
del self.__passphrase
del self.__salt
del self.__iterations
del self.__prf
del self.__blockNum
del self.__buf
self.closed = True
def crypt(word, salt=None, iterations=None):
"""PBKDF2-based unix crypt(3) replacement.
The number of iterations specified in the salt overrides the 'iterations'
parameter.
The effective hash length is 192 bits.
"""
# Generate a (pseudo-)random salt if the user hasn't provided one.
if salt is None:
salt = _makesalt()
# salt must be a string or the us-ascii subset of unicode
if isinstance(salt, unicode):
salt = salt.encode("us-ascii")
if not isinstance(salt, str):
raise TypeError("salt must be a string")
# word must be a string or unicode (in the latter case, we convert to UTF-8)
if isinstance(word, unicode):
word = word.encode("UTF-8")
if not isinstance(word, str):
raise TypeError("word must be a string or unicode")
# Try to extract the real salt and iteration count from the salt
if salt.startswith("$p5k2$"):
(iterations, salt, dummy) = salt.split("$")[2:5]
if iterations == "":
iterations = 400
else:
converted = int(iterations, 16)
if iterations != "%x" % converted: # lowercase hex, minimum digits
raise ValueError("Invalid salt")
iterations = converted
if not (iterations >= 1):
raise ValueError("Invalid salt")
# Make sure the salt matches the allowed character set
allowed = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./"
for ch in salt:
if ch not in allowed:
raise ValueError("Illegal character %r in salt" % (ch,))
if iterations is None or iterations == 400:
iterations = 400
salt = "$p5k2$$" + salt
else:
salt = "$p5k2$%x$%s" % (iterations, salt)
rawhash = PBKDF2(word, salt, iterations).read(24)
return salt + "$" + b64encode(rawhash, "./")
# Add crypt as a static method of the PBKDF2 class
# This makes it easier to do "from PBKDF2 import PBKDF2" and still use
# crypt.
PBKDF2.crypt = staticmethod(crypt)
def _makesalt():
"""Return a 48-bit pseudorandom salt for crypt().
This function is not suitable for generating cryptographic secrets.
"""
binarysalt = "".join([pack("@H", randint(0, 0xffff)) for i in range(3)])
return b64encode(binarysalt, "./")
def test_pbkdf2():
"""Module self-test"""
from binascii import a2b_hex
#
# Test vectors from RFC 3962
#
# Test 1
result = PBKDF2("password", "ATHENA.MIT.EDUraeburn", 1).read(16)
expected = a2b_hex("cdedb5281bb2f801565a1122b2563515")
if result != expected:
raise RuntimeError("self-test failed")
# Test 2
result = PBKDF2("password", "ATHENA.MIT.EDUraeburn", 1200).hexread(32)
expected = ("5c08eb61fdf71e4e4ec3cf6ba1f5512b"
"a7e52ddbc5e5142f708a31e2e62b1e13")
if result != expected:
raise RuntimeError("self-test failed")
# Test 3
result = PBKDF2("X"*64, "pass phrase equals block size", 1200).hexread(32)
expected = ("139c30c0966bc32ba55fdbf212530ac9"
"c5ec59f1a452f5cc9ad940fea0598ed1")
if result != expected:
raise RuntimeError("self-test failed")
# Test 4
result = PBKDF2("X"*65, "pass phrase exceeds block size", 1200).hexread(32)
expected = ("9ccad6d468770cd51b10e6a68721be61"
"1a8b4d282601db3b36be9246915ec82a")
if result != expected:
raise RuntimeError("self-test failed")
#
# Other test vectors
#
# Chunked read
f = PBKDF2("kickstart", "workbench", 256)
result = f.read(17)
result += f.read(17)
result += f.read(1)
result += f.read(2)
result += f.read(3)
expected = PBKDF2("kickstart", "workbench", 256).read(40)
if result != expected:
raise RuntimeError("self-test failed")
#
# crypt() test vectors
#
# crypt 1
result = crypt("cloadm", "exec")
expected = '$p5k2$$exec$r1EWMCMk7Rlv3L/RNcFXviDefYa0hlql'
if result != expected:
raise RuntimeError("self-test failed")
# crypt 2
result = crypt("gnu", '$p5k2$c$u9HvcT4d$.....')
expected = '$p5k2$c$u9HvcT4d$Sd1gwSVCLZYAuqZ25piRnbBEoAesaa/g'
if result != expected:
raise RuntimeError("self-test failed")
# crypt 3
result = crypt("dcl", "tUsch7fU", iterations=13)
expected = "$p5k2$d$tUsch7fU$nqDkaxMDOFBeJsTSfABsyn.PYUXilHwL"
if result != expected:
raise RuntimeError("self-test failed")
# crypt 4 (unicode)
result = crypt(u'\u0399\u03c9\u03b1\u03bd\u03bd\u03b7\u03c2',
'$p5k2$$KosHgqNo$9mjN8gqjt02hDoP0c2J0ABtLIwtot8cQ')
expected = '$p5k2$$KosHgqNo$9mjN8gqjt02hDoP0c2J0ABtLIwtot8cQ'
if result != expected:
raise RuntimeError("self-test failed")
if __name__ == '__main__':
test_pbkdf2()
# vim:set ts=4 sw=4 sts=4 expandtab:
|