This file is indexed.

/usr/share/pyshared/brian/connections/construction.py is in python-brian 1.3.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from base import *
from sparsematrix import *

__all__ = ['random_row_func', 'random_matrix',
           'random_matrix_fixed_column', 'eye_lil_matrix',
           ]

def random_row_func(N, p, weight=1., initseed=None):
    '''
    Returns a random connectivity ``row_func`` for use with :class:`UserComputedConnectionMatrix`
    
    Gives equivalent output to the :meth:`Connection.connect_random` method.
    
    Arguments:
    
    ``N``
        The number of target neurons.
    ``p``
        The probability of a synapse.
    ``weight``
        The connection weight (must be a single value).
    ``initseed``
        The initial seed value (for reproducible results).
    '''
    if initseed is None:
        initseed = pyrandom.randint(100000, 1000000) # replace this
    cur_row = numpy.zeros(N)
    myrange = numpy.arange(N, dtype=int)

    def row_func(i):
        pyrandom.seed(initseed + int(i))
        scirandom.seed(initseed + int(i))
        k = scirandom.binomial(N, p, 1)[0]
        cur_row[:] = 0.0
        cur_row[pyrandom.sample(myrange, k)] = weight
        return cur_row

    return row_func


# Generation of matrices
def random_matrix(n, m, p, value=1.):
    '''
    Generates a sparse random matrix with size (n,m).
    Entries are 1 (or optionnally value) with probability p.
    If value is a function, then that function is called for each
    non zero element as value() or value(i,j).
    '''
    # TODO:
    # Simplify (by using valuef)
    W = sparse.lil_matrix((n, m))
    if callable(value) and callable(p):
        if value.func_code.co_argcount == 0:
            valuef = lambda i, j:[value() for _ in j] # value function
        elif value.func_code.co_argcount == 2:
            try:
                failed = (array(value(0, arange(m))).size != m)
            except:
                failed = True
            if failed: # vector-based not possible
                log_debug('connections', 'Cannot build the connection matrix by rows')
                valuef = lambda i, j:[value(i, k) for k in j]
            else:
                valuef = value
        else:
            raise AttributeError, "Bad number of arguments in value function (should be 0 or 2)"

        if p.func_code.co_argcount == 2:
            # Check if p(i,j) is vectorisable
            try:
                failed = (array(p(0, arange(m))).size != m)
            except:
                failed = True
            if failed: # vector-based not possible
                log_debug('connections', 'Cannot build the connection matrix by rows')
                for i in xrange(n):
                    W.rows[i] = [j for j in range(m) if rand() < p(i, j)]
                    W.data[i] = list(valuef(i, array(W.rows[i])))
            else: # vector-based possible
                for i in xrange(n):
                    W.rows[i] = list((rand(m) < p(i, arange(m))).nonzero()[0])
                    W.data[i] = list(valuef(i, array(W.rows[i])))
        elif p.func_code.co_argcount == 0:
            for i in xrange(n):
                W.rows[i] = [j for j in range(m) if rand() < p()]
                W.data[i] = list(valuef(i, array(W.rows[i])))
        else:
            raise AttributeError, "Bad number of arguments in p function (should be 2)"
    elif callable(value):
        if value.func_code.co_argcount == 0: # TODO: should work with partial objects
            for i in xrange(n):
                k = random.binomial(m, p, 1)[0]
                W.rows[i] = sample(xrange(m), k)
                W.rows[i].sort()
                W.data[i] = [value() for _ in xrange(k)]
        elif value.func_code.co_argcount == 2:
            try:
                failed = (array(value(0, arange(m))).size != m)
            except:
                failed = True
            if failed: # vector-based not possible
                log_debug('connections', 'Cannot build the connection matrix by rows')
                for i in xrange(n):
                    k = random.binomial(m, p, 1)[0]
                    W.rows[i] = sample(xrange(m), k)
                    W.rows[i].sort()
                    W.data[i] = [value(i, j) for j in W.rows[i]]
            else:
                for i in xrange(n):
                    k = random.binomial(m, p, 1)[0]
                    W.rows[i] = sample(xrange(m), k)
                    W.rows[i].sort()
                    W.data[i] = list(value(i, array(W.rows[i])))
        else:
            raise AttributeError, "Bad number of arguments in value function (should be 0 or 2)"
    elif callable(p):
        if p.func_code.co_argcount == 2:
            # Check if p(i,j) is vectorisable
            try:
                failed = (array(p(0, arange(m))).size != m)
            except:
                failed = True
            if failed: # vector-based not possible
                log_debug('connections', 'Cannot build the connection matrix by rows')
                for i in xrange(n):
                    W.rows[i] = [j for j in range(m) if rand() < p(i, j)]
                    W.data[i] = [value] * len(W.rows[i])
            else: # vector-based possible
                for i in xrange(n):
                    W.rows[i] = list((rand(m) < p(i, arange(m))).nonzero()[0])
                    W.data[i] = [value] * len(W.rows[i])
        elif p.func_code.co_argcount == 0:
            for i in xrange(n):
                W.rows[i] = [j for j in range(m) if rand() < p()]
                W.data[i] = [value] * len(W.rows[i])
        else:
            raise AttributeError, "Bad number of arguments in p function (should be 2)"
    else:
        for i in xrange(n):
            k = random.binomial(m, p, 1)[0]
            # Not significantly faster to generate all random numbers in one pass
            # N.B.: the sample method is implemented in Python and it is not in Scipy
            W.rows[i] = sample(xrange(m), k)
            W.rows[i].sort()
            W.data[i] = [value] * k

    return W

def random_matrix_fixed_column(n, m, p, value=1.):
    '''
    Generates a sparse random matrix with size (n,m).
    Entries are 1 (or optionnally value) with probability p.
    The number of non-zero entries by per column is fixed: (int)(p*n)
    If value is a function, then that function is called for each
    non zero element as value() or value(i,j).
    '''
    W = sparse.lil_matrix((n, m))
    k = (int)(p * n)
    for j in xrange(m):
        # N.B.: the sample method is implemented in Python and it is not in Scipy
        for i in sample(xrange(n), k):
            W.rows[i].append(j)

    if callable(value):
        if value.func_code.co_argcount == 0:
            for i in xrange(n):
                W.data[i] = [value() for _ in xrange(len(W.rows[i]))]
        elif value.func_code.co_argcount == 2:
            for i in xrange(n):
                W.data[i] = [value(i, j) for j in W.rows[i]]
        else:
            raise AttributeError, "Bad number of arguments in value function (should be 0 or 2)"
    else:
        for i in xrange(n):
            W.data[i] = [value] * len(W.rows[i])

    return W

def eye_lil_matrix(n):
    '''
    Returns the identity matrix of size n as a lil_matrix
    (sparse matrix).
    '''
    M = sparse.lil_matrix((n, n))
    M.setdiag([1.] * n)
    return M