This file is indexed.

/usr/share/pyshared/brian/stateupdater.py is in python-brian 1.3.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
# 
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
# 
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software.  You can  use, 
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info". 
# 
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability. 
# 
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or 
# data to be ensured and,  more generally, to use and operate it in the 
# same conditions as regards security. 
# 
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
# 
'''
Neuron StateUpdaters
'''

__all__ = ['StateUpdater', 'LinearStateUpdater', 'NonlinearStateUpdater',
           'SynapticNoise', 'LazyStateUpdater', 'magic_state_updater',
           'FunStateUpdater', 'get_linear_equations']

#from scipy.weave import blitz
from numpy import *
from scipy import linalg
from scipy.linalg import LinAlgError
from scipy import weave
from scipy.optimize import fsolve
import copy
from operator import isSequenceType
from inspection import *
from units import second, mvolt
from clock import guess_clock
import magic
from equations import *
from itertools import count
from units import Quantity
import warnings
from log import *
from globalprefs import *
from experimental.codegen import *
CStateUpdater = PythonStateUpdater = None

def magic_state_updater(model, clock=None, order=1, implicit=False, compile=False, freeze=False, \
                        method=None, check_units=True):
    '''
    Examines the set of differential equations in 'model' (Equations object) and 
    returns a StateUpdater object and the list of dynamic variables.
    For example, the magic_state_updater function can determine if it
    is linear or nonlinear.
    
    Available methods:
    * None: the method is automatically selected
    * linear
    * Euler
    * RK (Runge-Kutta, second order)
    * exponential_Euler
    * nonlinear: automatic selection, but not linear
    '''
    global CStateUpdater, PythonStateUpdater
    if method == 'exponential_Euler':
        implicit = True
        order = 1
    elif method == 'Euler':
        implicit = False
        order = 1
    elif method == 'RK':
        implicit = False
        order = 2
    elif method == 'linear' or method is None:
        pass
    else:
        raise AttributeError, "Unknown integration method!"

    # All the first below should go in Equations
    if not(isinstance(model, Equations)): # a set of equations?
        raise TypeError, "An Equations object must be passed."

    model.prepare(check_units=check_units) # check units and other things
    dynamicvars = model._diffeq_names # Dynamic variables

    # Identify stochastic equations
    noiselist = []
    for statevar in model._diffeq_names:
        f = model._function[statevar]
        x0 = [model._units[var] for var in f.func_code.co_varnames] # init variables
        if depends_on(f, 'xi', x0):
            noiselist.append((statevar, get_global_term(f, 'xi', x0))) # s.d. of noise
            f.func_globals['xi'] = 0 * second ** -.5
        # better: remove in string

    use_codegen = get_global_preference('usecodegen') and get_global_preference('usecodegenstateupdate')
    use_weave = get_global_preference('useweave') and get_global_preference('usecodegenweave')
    if CStateUpdater is None:
        from experimental.codegen.stateupdaters import CStateUpdater, PythonStateUpdater

    # Linearity test
    # insert this in equations
    allow_linear = (method is None) or (method == 'linear')
    if allow_linear and model.is_linear():
        log_info('brian.stateupdater', "Linear model: using exact updates")
        stateupdaterobj = LinearStateUpdater(model, clock=clock)
    else:
        # Nonlinear model - check order of the method
        if implicit: # implicit integration schemes
            if model.is_conditionally_linear():
                log_info('brian.stateupdater', "Using exponential Euler")
                if not use_codegen:
                    stateupdaterobj = ExponentialEulerStateUpdater(model, clock=clock, compile=compile, freeze=freeze)
                elif use_weave:
                    stateupdaterobj = CStateUpdater(model, exp_euler_scheme, clock=clock, freeze=freeze)
                    log_warn('brian.stateupdater', 'Using codegen CStateUpdater')
                else:
                    stateupdaterobj = PythonStateUpdater(model, exp_euler_scheme, clock=clock, freeze=freeze)
                    log_warn('brian.stateupdater', 'Using codegen PythonStateUpdater')
            else:
                raise TypeError, "General implicit methods are not implemented yet."
        else: # explicit method
            if order == 1:
                if not use_codegen:
                    stateupdaterobj = NonlinearStateUpdater(model, clock=clock, compile=compile, freeze=freeze)
                elif use_weave:
                    stateupdaterobj = CStateUpdater(model, euler_scheme, clock=clock, freeze=freeze)
                    log_warn('brian.stateupdater', 'Using codegen CStateUpdater')
                else:
                    stateupdaterobj = PythonStateUpdater(model, euler_scheme, clock=clock, freeze=freeze)
                    log_warn('brian.stateupdater', 'Using codegen PythonStateUpdater')
            elif order == 2:
                if not use_codegen:
                    stateupdaterobj = RK2StateUpdater(model, clock=clock, compile=compile, freeze=freeze)
                elif use_weave:
                    stateupdaterobj = CStateUpdater(model, rk2_scheme, clock=clock, freeze=freeze)
                    log_warn('brian.stateupdater', 'Using codegen CStateUpdater')
                else:
                    stateupdaterobj = PythonStateUpdater(model, rk2_scheme, clock=clock, freeze=freeze)
                    log_warn('brian.stateupdater', 'Using codegen PythonStateUpdater')
            else:
                raise TypeError, "Methods with order greater than 2 are not implemented yet."

    # Insert noise
    for var, sigma in noiselist:
        # TODO: noise with mu = 0
        i = dynamicvars.index(var)
        stateupdaterobj = SynapticNoise(stateupdaterobj, i, 0 * model._units[var] / second, sigma, clock)

    return stateupdaterobj, dynamicvars

# TODO: StateUpdater should be lazy by default
class StateUpdater(object):
    '''
    A callable state update mechanism.
    By default, a leaky integrate-and-fire model with zero resting potential
    and unit time constant.
    Warning: to update the state matrix, use the slice operation, e.g.
    S[:]=0 (not S=0)
    otherwise operations are not done in place (a new object is created),
    so that all views are compromised (the reference to the data changes).
    '''
    def __init__(self, clock=None):
        '''
        Default model: dv/dt=-v
        '''
        if clock == None:
            self.update_factor = exp(-clock.dt) # The update matrix
        else:
            raise TypeError, "A time reference must be passed."

    def rest(self, P):
        '''
        Sets the variables at rest.
        P is the neuron group.
        '''
        warnings.warn('Rest is not implemented for this model')

    def __call__(self, P):
        '''
        Updates the state variables.
        Careful here: always use the slice operation for affectations.
        P is the neuron group.
        '''
        P._S[:] *= self.update_factor

    def __repr__(self):
        return 'Leaky integrate-and-fire StateUpdater'

    def __len__(self):
        '''
        Number of state variables
        '''
        return 1

#def get_linear_equations(eqs):
#    '''
#    Returns the matrices M and B for the linear model dX/dt = M(X-B),
#    where eqs is an Equations object. 
#    '''
#    # Otherwise assumes it is given in functional form
#    n=len(eqs._diffeq_names) # number of state variables
#    dynamicvars=eqs._diffeq_names
#    # Calculate B
#    AB=zeros((n,1))
#    d=dict.fromkeys(dynamicvars)
#    for j in range(n):
#        d[dynamicvars[j]]=0.*eqs._units[dynamicvars[j]]
#    for var,i in zip(dynamicvars,count()):
#        AB[i]=-eqs.apply(var,d)
#    # Calculate A
#    M=zeros((n,n))
#    for i in range(n):
#        for j in range(n):
#            d[dynamicvars[j]]=0.*eqs._units[dynamicvars[j]]
#        if isinstance(eqs._units[dynamicvars[i]],Quantity):
#            d[dynamicvars[i]]=Quantity.with_dimensions(1.,eqs._units[dynamicvars[i]].get_dimensions())
#        else:
#            d[dynamicvars[i]]=1.
#        for var,j in zip(dynamicvars,count()):
#            M[j,i]=eqs.apply(var,d)+AB[j]
#    M-=eye(n)*1e-10 # quick dirty fix for problem of constant derivatives; dimension = Hz
#    B=linalg.lstsq(M,AB)[0] # We use this instead of solve in case M is degenerate
#    return M,B

def get_linear_equations(eqs):
    '''
    Returns the matrices M and B for the linear model dX/dt = M(X-B),
    where eqs is an Equations object. 
    '''
    # Otherwise assumes it is given in functional form
    n = len(eqs._diffeq_names) # number of state variables
    dynamicvars = eqs._diffeq_names
    # Calculate B
    AB = zeros((n, 1))
    d = dict.fromkeys(dynamicvars)
    for j in range(n):
        d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
    for var, i in zip(dynamicvars, count()):
        AB[i] = -eqs.apply(var, d)
    # Calculate A
    M = zeros((n, n))
    for i in range(n):
        for j in range(n):
            d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
        if isinstance(eqs._units[dynamicvars[i]], Quantity):
            d[dynamicvars[i]] = Quantity.with_dimensions(1., eqs._units[dynamicvars[i]].get_dimensions())
        else:
            d[dynamicvars[i]] = 1.
        for var, j in zip(dynamicvars, count()):
            M[j, i] = eqs.apply(var, d) + AB[j]
    #M-=eye(n)*1e-10 # quick dirty fix for problem of constant derivatives; dimension = Hz
    #B=linalg.lstsq(M,AB)[0] # We use this instead of solve in case M is degenerate
    B = linalg.solve(M, AB) # We use this instead of solve in case M is degenerate
    return M, B

def get_linear_equations_solution_numerically(eqs, dt):
    # Otherwise assumes it is given in functional form
    n = len(eqs._diffeq_names) # number of state variables
    dynamicvars = eqs._diffeq_names
    # Calculate B
    AB = zeros((n, 1))
    d = dict.fromkeys(dynamicvars)
    for j in range(n):
        d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
    for var, i in zip(dynamicvars, count()):
        AB[i] = -eqs.apply(var, d)
    # Calculate A
    M = zeros((n, n))
    for i in range(n):
        for j in range(n):
            d[dynamicvars[j]] = 0. * eqs._units[dynamicvars[j]]
        if isinstance(eqs._units[dynamicvars[i]], Quantity):
            d[dynamicvars[i]] = Quantity.with_dimensions(1., eqs._units[dynamicvars[i]].get_dimensions())
        else:
            d[dynamicvars[i]] = 1.
        for var, j in zip(dynamicvars, count()):
            M[j, i] = eqs.apply(var, d) + AB[j]
    #B=linalg.solve(M,AB)
    numeulersteps = 100
    deltat = dt / numeulersteps
    E = eye(n) + deltat * M
    C = eye(n)
    D = zeros((n, 1))
    for step in xrange(numeulersteps):
        C, D = dot(E, C), dot(E, D) - AB * deltat
    return C, D
    #return M,B

set_global_preferences(useweave_linear_diffeq=False)
define_global_preference('useweave_linear_diffeq', 'False',
                           desc="""
                                  Whether to use weave C++ acceleration for the solution
                                  of linear differential equations. Note that on some
                                  platforms, typically older ones, this is faster and on
                                  some platforms, typically new ones, this is actually
                                  slower.
                                  """)


class LinearStateUpdater(StateUpdater):
    '''
    A linear model with dynamics dX/dt = M(X-B) or dX/dt = MX.
    
    **Initialised as:** ::
    
        LinearStateUpdater(M[,B[,clock]])
    
    with arguments:
    
    ``M``
        Matrix defining the differential equation.
    ``B``
        Optional linear term in the differential equation.
    ``clock``
        Optional clock.
    
    Computes an update matrix A=exp(M dt) for the linear system,
    and performs the update step.
    
    TODO: more mathematical details? 
    '''
    #TODO: sparse linear models (e.g. cable equations)
    def __init__(self, M, B=None, clock=None):
        '''
        Initialize a linear model with dynamics dX/dt = M(X-B) or dX/dt = MX,
        where B is a column vector.
        TODO: more checks
        TODO: rest
        '''
        self._useaccel = get_global_preference('useweave_linear_diffeq')
        self._cpp_compiler = get_global_preference('weavecompiler')
        self._extra_compile_args = ['-O3']
        if self._cpp_compiler == 'gcc':
            self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
        self._useB = False
        if clock == None:
            clock = guess_clock()
        if isinstance(M, ndarray):
            self.A = linalg.expm(M * clock.dt)
            self.B = B
        elif isinstance(M, Equations):
            try:
                M, self.B = get_linear_equations(M)
                self.A = linalg.expm(M * clock.dt)
                #self.A=array(self.A,single)
                if self.B is not None:
                    self._C = -dot(self.A, self.B) + self.B
                    #self._C=array(self._C,single)
                    self._useB = True
                else:
                    self._useB = False
            except LinAlgError:
                log_info('brian.stateupdater', 'Solving linear equations numerically')
                self.A, self._C = get_linear_equations_solution_numerically(M, clock.dt)
                self.B = NotImplemented # raises error on trying to use this
                self._useB = True
        # note the numpy dot command works faster if self.A has C ordering compared
        # to fortran ordering (although maybe this depends on which implementation
        # of BLAS you're using). The difference is only significant in small
        # calculations because making a copy of self.A is usually not serious, its
        # size is only the number of variables, not the number of neurons.
        self.A = array(self.A, order='C')
        if self._useB:
            self._C = array(self._C, order='C')

    def rest(self, P):
        if self._useB:
            if self.B is NotImplemented:
                raise NotImplementedError, \
                    "The resting potential cannot be found because the equations are degenerate " + \
                    "(most likely because they include a parameter)"
            P._S[:] = self.B
        else:
            P._S[:] = 0

    def __call__(self, P):
        '''
        Updates the state variables.
        Careful here: always use the slice operation for affectations.
        P is the neuron group.
        '''
        if self._useB: # This could be removed
            if not self._useaccel:
                #P._S[:]=dot(self.A,P._S)+self._C
                P._S[:] = dot(self.A, P._S)
                #P._S = dot(self.A,P._S)
                #P._S += self._C
                add(P._S, self._C, P._S)
                #P._S[:]=dot(self.A,P._S-self.B)+self.B
            else:
                m = len(self)
                S = P._S
                n = S.shape[1] #n = len(P)
                A = self.A
                c = self._C
                code = '''
                double x[m]; 
                for(int i=0;i<n;i++)  
                {
                    for(int j=0;j<m;j++)
                    {
                        x[j] = c(j);
                        for(int k=0;k<m;k++)
                           x[j] += A(j,k) * S(k,i);
                    }
                    for(int j=0;j<m;j++)
                        S(j,i) = x[j];
                } 
                '''
                weave.inline(code, ['n', 'm', 'S', 'A', 'c'],
                             compiler=self._cpp_compiler,
                             type_converters=weave.converters.blitz,
                             extra_compile_args=self._extra_compile_args)
        else:
            if not self._useaccel:
                P._S[:] = dot(self.A, P._S)
            else:
                n = len(P)
                m = len(self)
                S = P._S
                A = self.A
                code = '''
                double x[m]; 
                for(int i=0;i<n;i++)  
                {
                    for(int j=0;j<m;j++)
                    {
                        x[j] = 0.0;
                        for(int k=0;k<m;k++)
                           x[j] += A(j,k) * S(k,i);
                    }
                    for(int j=0;j<m;j++)
                        S(j,i) = x[j];
                } 
                '''
                weave.inline(code, ['n', 'm', 'S', 'A'],
                             compiler=self._cpp_compiler,
                             type_converters=weave.converters.blitz,
                             extra_compile_args=self._extra_compile_args)

    def __repr__(self):
        return 'Linear StateUpdater with ' + str(len(self)) + ' state variables'

    def __len__(self):
        '''
        Number of state variables
        '''
        return self.A.shape[0]


class NonlinearStateUpdater(StateUpdater):
    '''
    A nonlinear model with dynamics dX/dt = f(X).
    Uses an Equations object.
    By default, uses Euler integration.
    '''
    def __init__(self, eqs, clock=None, compile=False, freeze=False):
        '''
        Initialize a nonlinear model with dynamics dX/dt = f(X).
        f is given as an Equations object (see examples).
        If compile is True, a Python code object is compiled.
        '''
        # TODO: global pref?
        self.eqs = eqs
        self.optimized = compile
        self._first_time = True
        if freeze:
            self.eqs.compile_functions(freeze=freeze)
        self._frozen=freeze
        if compile:
            self._code = self.eqs.forward_euler_code()

    def rest(self, P):
        '''
        Sets the variables at rest.
        '''
        for name, value in self.eqs.fixed_point().iteritems():
            P.state(name)[:] = value

    def __call__(self, P):
        '''
        Updates the state variables.
        Careful here: always use the slice operation for affectations.
        P is the neuron group.
        Euler integration.
        '''
        #if self.optimized==False:
        #    self.eqs.optimize(len(P))
        #    self.optimized=True
        # TODO: do these operations once
        #states=dict.fromkeys(self.eqs.dynamicvars)
        # store that in the neurongroup?
        if self.optimized:
            if self._first_time:
                self._first_time = False
                P._dS = 0 * P._S
            dt = P.clock._dt
            t = P.clock.t
            exec(self._code)
        else:
            states = dict.fromkeys(self.eqs._diffeq_names) # ={}?
            #for var in self.eqs.dynamicvars:
            for var in self.eqs._diffeq_names:
                states[var] = P.state_(var)
            if self._frozen:
                states['t']=P.clock._t # without units
            else:
                states['t'] = P.clock.t #time
            self.eqs.forward_euler(states, P.clock._dt)

    def __repr__(self):
        return 'Nonlinear StateUpdater with ' + str(len(self)) + ' state variables'

    def __len__(self):
        '''
        Number of state variables
        '''
        return len(self.eqs)


class RK2StateUpdater(NonlinearStateUpdater):
    '''
    A nonlinear model with dynamics dX/dt = f(X).
    Uses an Equations object.
    Uses Runge-Kutta midpoint integration (second order).
    '''
    def __init__(self, eqs, clock=None, compile=False, freeze=False):
        '''
        Initialize a nonlinear model with dynamics dX/dt = f(X).
        f is given as an Equations object (see examples).
        If compile is True, a Python code object is compiled.
        '''
        # TODO: global pref?
        self.eqs = eqs
        self._first_time = True
        if freeze:
            self.eqs.compile_functions(freeze=freeze)
        self._frozen=freeze
        if compile:
            warnings.warn('Compilation is not implemented yet for RK2 integration.')

    def __call__(self, P):
        '''
        Updates the state variables.
        Careful here: always use the slice operation for affectations.
        P is the neuron group.
        Euler integration.
        '''
        states = dict.fromkeys(self.eqs._diffeq_names) # ={}?
        #for var in self.eqs.dynamicvars:
        for var in self.eqs._diffeq_names:
            states[var] = P.state_(var)
        if self._frozen:
            states['t']=P.clock._t # without units
        else:
            states['t'] = P.clock.t #time
        self.eqs.Runge_Kutta2(states, P.clock._dt)


class ExponentialEulerStateUpdater(NonlinearStateUpdater):
    def __init__(self, eqs, clock=None, compile=False, freeze=False):
        '''
        Initialize a nonlinear model with dynamics dX/dt = f(X).
        '''
        # TODO: global pref?
        self.eqs = eqs
        self.optimized = compile
        self._first_time = True
        if freeze:
            self.eqs.compile_functions(freeze=freeze)
        self._frozen=freeze
        if compile:
            self._code = self.eqs.exponential_euler_code()

    def __call__(self, P):
        '''
        Updates the state variables.
        Careful here: always use the slice operation for affectations.
        P is the neuron group.
        '''
        if self.optimized:
            if self._first_time:
                self._first_time = False
                P._dS = P._S.copy()
            dt = P.clock._dt
            t = P.clock.t
            exec(self._code)
        else:
            # TODO: do these operations once
            states = dict.fromkeys(self.eqs._diffeq_names) #={}?
            for var in self.eqs._diffeq_names:
                states[var] = P.state_(var)
            if self._frozen:
                states['t']=P.clock._t # without units
            else:
                states['t'] = P.clock.t #time
            self.eqs.exponential_euler(states, P.clock._dt)


class SynapticNoise(StateUpdater):
    '''
    Synaptic noise mechanism, plugged into another StateUpdater.
    '''
    def __init__(self, baseupdater, nstate, mu, sigma, clock=None):
        '''
        baseupdater = source neuron StateUpdater
        nstate = index of synaptic state variable
        mu = mean synaptic input rate (per ms)
        sigma = s.d. of synaptic input per ms^{1/2}
        '''
        self.baseupdater = baseupdater
        self.nstate = nstate
        if clock == None:
            clock = guess_clock()
        if clock:
            # TODO: check units
            self.mu = mu * clock.dt
            self.sigma = sigma * clock.dt ** .5
        else:
            raise TypeError, "A time reference must be passed."

    def rest(self, P):
        self.baseupdater.rest(P)

    def __call__(self, P):
        '''
        Updates the state variables.
        Careful here: always use the slice operation for affectations.
        P is the neuron group.
        '''
        self.baseupdater(P) # update the underlying model
        P._S[self.nstate, :] += self.mu + random.randn(P._S.shape[1]) * self.sigma

    def __repr__(self):
        return self.baseupdater.__repr__() + ' with synaptic noise on variable ' + str(self.nstate)

    def __len__(self):
        '''
        Number of state variables
        '''
        return len(self.baseupdater)


class LazyStateUpdater(StateUpdater):
    '''
    A StateUpdater that does nothing.
    
    **Initialised as:** ::
    
        LazyStateUpdater([numstatevariables=1[,clock]])
        
    with arguments:
    
    ``numstatevariables``
        The number of state variables to create.
    ``clock``
        An optional clock to determine when it updates,
        although the update function does nothing so...
    '''
#    Alternatively, we might replace the parent StateUpdater class by this and
#    write a basic leaky integrator class.
    def __init__(self, numstatevariables=1, clock=None):
        self._N = numstatevariables
        pass

    def __call__(self, P):
        '''
        Updates the state variables.
        '''
        pass

    def __repr__(self):
        return 'Lazy StateUpdater (does nothing)'

    def __len__(self):
        '''
        Number of state variables
        '''
        return self._N

# UNTESTED
class FunStateUpdater(StateUpdater):
    """
    A StateUpdater that calls a function at each update step
    
    A StateUpdater function takes one argument, the neuron group
    that is being updated.
    """
    def __init__(self, func, numstates, clock=None):
        self.clock = guess_clock(clock)
        self.func = func
        self.numstates = numstates

    def __call__(self, P):
        self.func(P)

    def __repr__(self):
        return "Function StateUpdater, function " + self.func.__name__

    def __len__(self):
        return self.numstates