/usr/share/pyshared/brian/threshold.py is in python-brian 1.3.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
'''
Threshold mechanisms
'''
__all__ = ['Threshold', 'FunThreshold', 'VariableThreshold', 'NoThreshold',
'EmpiricalThreshold', 'SimpleFunThreshold', 'PoissonThreshold',
'HomogeneousPoissonThreshold', 'StringThreshold']
from numpy import where, array, zeros, Inf
from units import *
from itertools import count
from clock import guess_clock, get_default_clock, reinit_default_clock
from random import sample # Python standard random module (sample is different)
from scipy import random
from numpy import clip
import bisect
from scipy import weave
from globalprefs import *
import warnings
from utils.approximatecomparisons import is_approx_equal
from log import *
import inspect
from inspection import *
import re
import numpy
CThreshold = PythonThreshold = None
def select_threshold(expr, eqs, level=0):
'''
Automatically selects the appropriate Threshold object from a string.
Matches the following patterns:
var_name > or >= const : Threshold
var_name > or >= var_name : VariableThreshold
others : StringThreshold
'''
global CThreshold, PythonThreshold
use_codegen = get_global_preference('usecodegen') and get_global_preference('usecodegenthreshold')
use_weave = get_global_preference('useweave') and get_global_preference('usecodegenweave')
if use_codegen:
if CThreshold is None:
from experimental.codegen.threshold import CThreshold, PythonThreshold
if use_weave:
log_warn('brian.threshold', 'Using codegen CThreshold')
return CThreshold(expr, level=level + 1)
else:
log_warn('brian.threshold', 'Using codegen PythonThreshold')
return PythonThreshold(expr, level=level + 1)
# plan:
# - see if it matches A > B or A >= B, if not select StringThreshold
# - check if A, B both match diffeq variable names, and if so
# select VariableThreshold
# - check that A is a variable name, if not select StringThreshold
# - extract all the identifiers from B, and if none of them are
# callable, assume it is a constant, try to eval it and then use
# Threshold. If not, or if eval fails, use StringThreshold.
# This misses the case of e.g. V>10*mV*exp(1) because exp will be
# callable, but in general a callable means that it could be
# non-constant.
expr = expr.strip()
eqs.prepare()
ns = namespace(expr, level=level + 1)
s = re.search(r'^\s*(\w+)\s*>=?(.+)', expr)
if not s:
return StringThreshold(expr, level=level + 1)
A = s.group(1)
B = s.group(2).strip()
if A not in eqs._diffeq_names:
return StringThreshold(expr, level=level + 1)
if B in eqs._diffeq_names:
return VariableThreshold(B, A)
try:
vars = get_identifiers(B)
except SyntaxError:
return StringThreshold(expr, level=level + 1)
all_vars = eqs._eq_names + eqs._diffeq_names + eqs._alias.keys() + ['t']
for v in vars:
if v not in ns or v in all_vars or callable(ns[v]):
return StringThreshold(expr, level=level + 1)
try:
val = eval(B, ns)
except:
return StringThreshold(expr, level=level + 1)
return Threshold(val, A)
class Threshold(object):
'''
All neurons with a specified state variable above a fixed value fire a spike.
**Initialised as:** ::
Threshold([threshold=1*mV[,state=0])
with arguments:
``threshold``
The value above which a neuron will fire.
``state``
The state variable which is checked.
**Compilation**
Note that if the global variable ``useweave`` is set to ``True``
then this function will use a ``C++`` accelerated version which
runs approximately 3x faster.
'''
def __init__(self, threshold=1 * mvolt, state=0):
self.threshold = threshold
self.state = state
self._useaccel = get_global_preference('useweave')
self._cpp_compiler = get_global_preference('weavecompiler')
self._extra_compile_args = ['-O3']
if self._cpp_compiler == 'gcc':
self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
def __call__(self, P):
'''
Checks the threshold condition and returns spike times.
P is the neuron group.
Note the accelerated version runs 3x faster.
'''
if self._useaccel:
spikes = P._spikesarray
V = P.state_(self.state)
Vt = float(self.threshold)
N = int(len(P))
code = """
int numspikes=0;
for(int i=0;i<N;i++)
if(V(i)>Vt)
spikes(numspikes++) = i;
return_val = numspikes;
"""
# WEAVE NOTE: set the environment variable USER if your username has a space
# in it, say set USER=DanGoodman if your username is Dan Goodman, this is
# because weave uses this to create file names, but doesn't correctly send these
# values to the compiler, causing problems.
numspikes = weave.inline(code, ['spikes', 'V', 'Vt', 'N'],
compiler=self._cpp_compiler,
type_converters=weave.converters.blitz,
extra_compile_args=self._extra_compile_args)
# WEAVE NOTE: setting verbose=True in the weave.inline function may help in
# finding errors.
return spikes[0:numspikes]
else:
return ((P.state_(self.state) > self.threshold).nonzero())[0]
def __repr__(self):
return 'Threshold mechanism with value=' + str(self.threshold) + " acting on state " + str(self.state)
class StringThreshold(Threshold):
'''
A threshold specified by a string expression.
Initialised with arguments:
``expr``
The expression used to test whether a neuron has fired a spike.
Should be a single statement that returns a value. For example,
``'V>50*mV'`` or ``'V>Vt'``.
``level``
How many levels up in the calling sequence to look for
names in the namespace. Usually 0 for user code.
'''
def __init__(self, expr, level=0):
self._namespace, unknowns = namespace(expr, level=level + 1, return_unknowns=True)
self._vars = unknowns
self._expr = expr
self._code = compile(expr, "StringThreshold", "eval")
class Replacer(object):
def __init__(self, func, n):
self.n = n
self.func = func
def __call__(self):
return self.func(self.n)
self._Replacer = Replacer
def __call__(self, P):
for var in self._vars: # couldn't we do this just once?
self._namespace[var] = P.state(var)
self._namespace['rand'] = self._Replacer(numpy.random.rand, len(P))
self._namespace['randn'] = self._Replacer(numpy.random.randn, len(P))
return eval(self._code, self._namespace).nonzero()[0]
def __repr__(self):
return "String threshold"
class NoThreshold(Threshold):
'''
No thresholding mechanism.
**Initialised as:** ::
NoThreshold()
'''
def __init__(self):
pass
def __call__(self, P):
return []
def __repr__(self):
return "No Threshold"
class FunThreshold(Threshold):
'''
Threshold mechanism with a user-specified function.
**Initialised as:** ::
FunThreshold(thresholdfun)
where ``thresholdfun`` is a function with one argument,
the 2d state value array, where each row is an array of
values for one state, of length N for N the number of
neurons in the group. For efficiency, data are numpy
arrays and there is no unit checking.
Note: if you only need to consider one state variable,
use the :class:`SimpleFunThreshold` object instead.
'''
def __init__(self, thresholdfun):
self.thresholdfun = thresholdfun # Threshold function
def __call__(self, P):
'''
Checks the threshold condition and returns spike times.
P is the neuron group.
'''
spikes = (self.thresholdfun(*P._S).nonzero())[0]
return spikes
def __repr__(self):
return 'Functional threshold mechanism'
class SimpleFunThreshold(FunThreshold):
'''
Threshold mechanism with a user-specified function.
**Initialised as:** ::
FunThreshold(thresholdfun[,state=0])
with arguments:
``thresholdfun``
A function with one argument, the array of values for
the specified state variable. For efficiency, this is
a numpy array, and there is no unit checking.
``state``
The name or number of the state variable to pass to
the threshold function.
**Sample usage:** ::
FunThreshold(lambda V:V>=Vt,state='V')
'''
def __init__(self, thresholdfun, state=0):
self.thresholdfun = thresholdfun # Threshold function
self.state = state
def __call__(self, P):
'''
Checks the threshold condition and returns spike times.
P is the neuron group.
'''
spikes = (self.thresholdfun(P.state_(self.state)).nonzero())[0]
#P.LS[spikes]=P.clock.t # Time of last spike (this line should be general)
return spikes
class VariableThreshold(Threshold):
'''
Threshold mechanism where one state variable is compared to another.
**Initialised as:** ::
VariableThreshold([threshold_state=1[,state=0]])
with arguments:
``threshold_state``
The state holding the lower bound for spiking.
``state``
The state that is checked.
If ``x`` is the value of state variable ``threshold_state`` on neuron
``i`` and ``y`` is the value of state variable ``state`` on neuron
``i`` then neuron ``i`` will fire if ``y>x``.
Typically, using this class is more time efficient than writing
a custom thresholding operation.
**Compilation**
Note that if the global variable ``useweave`` is set to ``True``
then this function will use a ``C++`` accelerated version.
'''
def __init__(self, threshold_state=1, state=0):
self.threshold_state = threshold_state # State variable representing the threshold
self.state = state
self._useaccel = get_global_preference('useweave')
self._cpp_compiler = get_global_preference('weavecompiler')
self._extra_compile_args = ['-O3']
if self._cpp_compiler == 'gcc':
self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
def __call__(self, P):
'''
Checks the threshold condition, resets and returns spike times.
P is the neuron group.
'''
if self._useaccel:
spikes = P._spikesarray
V = P.state_(self.state)
Vt = P.state_(self.threshold_state)
N = int(len(P))
code = """
int numspikes=0;
for(int i=0;i<N;i++)
if(V(i)>Vt(i))
spikes(numspikes++) = i;
return_val = numspikes;
"""
numspikes = weave.inline(code, ['spikes', 'V', 'Vt', 'N'], \
compiler=self._cpp_compiler,
type_converters=weave.converters.blitz,
extra_compile_args=self._extra_compile_args)
return spikes[0:numspikes]
else:
return ((P.state_(self.state) > P.state_(self.threshold_state)).nonzero())[0]
def __repr__(self):
return 'Variable threshold mechanism'
class EmpiricalThreshold(Threshold):
'''
Empirical threshold, e.g. for Hodgkin-Huxley models.
In empirical models such as the Hodgkin-Huxley method, after a spike
neurons are not instantaneously reset, but reset themselves
as part of the dynamical equations defining their behaviour. This class
can be used to model that. It is a simple threshold mechanism that
checks e.g. ``V>=Vt`` but it only does so for neurons that haven't
recently fired (giving the dynamical equations time to reset
the values naturally). It should be used in conjunction with the
:class:`NoReset` object.
**Initialised as:** ::
EmpiricalThreshold([threshold=1*mV[,refractory=1*ms[,state=0[,clock]]]])
with arguments:
``threshold``
The lower bound for the state variable to induce a spike.
``refractory``
The time to wait after a spike before checking for spikes again.
``state``
The name or number of the state variable to check.
``clock``
If this object is being used for a :class:`NeuronGroup` which doesn't
use the default clock, you need to specify its clock here.
'''
@check_units(refractory=second)
def __init__(self, threshold=1 * mvolt, refractory=1 * msecond, state=0, clock=None):
self.threshold = threshold # Threshold value
self.state = state
clock = guess_clock(clock)
self.refractory = int(refractory / clock.dt)
# this assumes that if the state stays over the threshold, and say
# refractory=5ms the user wants spiking at 0ms 5ms 10ms 15ms etc.
if is_approx_equal(self.refractory * clock.dt, refractory) and self.refractory > 0:
self.refractory -= 1
def __call__(self, P):
'''
Checks the threshold condition, resets and returns spike times.
P is the neuron group.
'''
#spikes=where((P._S[0,:]>self.Vt) & ((P.LS<P.clock.t-self.refractory) | (P.LS==P.clock.t)))[0]
spikescond = P.state_(self.state) > self.threshold
spikescond[P.LS[0:self.refractory]] = False
return spikescond.nonzero()[0]
#P.LS[spikes]=P.clock.t # Time of last spike (this line should be general)
#return spikes
def __repr__(self):
return 'Empirical threshold with value=' + str(self.threshold) + " acting on state " + str(self.state)
class PoissonThreshold(Threshold):
'''
Poisson threshold: a spike is produced with some probability S[0]*dt,
or S[state]*dt.
'''
# TODO: check the state has units in Hz
def __init__(self, state=0):
self.state = state
def __call__(self, P):
return (random.rand(len(P)) < P.state_(self.state)[:] * P.clock.dt).nonzero()[0]
def __repr__(self):
return 'Poisson threshold'
class HomogeneousPoissonThreshold(PoissonThreshold):
'''
Poisson threshold for spike trains with identical rates.
The underlying NeuronGroup has only one state variable.
N.B.: "homogeneous" is meant in the spatial (not temporal) sense,
the rate may change in time.
'''
def __call__(self, P):
# N.B.: is "float" necessary?
# Other possibility to avoid sorting: use an exponential distribution
n = random.poisson(float(len(P) * P.clock.dt * clip(P._S[self.state][0], 0, Inf))) # number of spikes
if n > len(P):
n = len(P)
log_warn('brian.HomogeneousPoissonThreshold', 'HomogeneousPoissonThreshold cannot generate enough spikes.')
spikes = sample(xrange(len(P)), n)
spikes.sort() # necessary only for subgrouping
return spikes
|