/usr/share/pyshared/brian/tools/statistics.py is in python-brian 1.3.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 | '''
Spike statistics
----------------
In all functions below, spikes is a sorted list of spike times
'''
from numpy import *
from brian.units import check_units, second
from brian.stdunits import ms, Hz
from operator import itemgetter
__all__ = ['firing_rate', 'CV', 'correlogram', 'autocorrelogram', 'CCF', 'ACF', 'CCVF', 'ACVF', 'group_correlations', 'sort_spikes',
'total_correlation', 'vector_strength', 'gamma_factor', 'get_gamma_factor_matrix', 'get_gamma_factor','spike_triggered_average']
# First-order statistics
def firing_rate(spikes):
'''
Rate of the spike train.
'''
if spikes==[]:
return NaN
return (len(spikes) - 1) / (spikes[-1] - spikes[0])
def CV(spikes):
'''
Coefficient of variation.
'''
if spikes==[]:
return NaN
ISI = diff(spikes) # interspike intervals
return std(ISI) / mean(ISI)
# Second-order statistics
def correlogram(T1, T2, width=20 * ms, bin=1 * ms, T=None):
'''
Returns a cross-correlogram with lag in [-width,width] and given bin size.
T is the total duration (optional) and should be greater than the duration of T1 and T2.
The result is in Hz (rate of coincidences in each bin).
N.B.: units are discarded.
TODO: optimise?
'''
if (T1==[]) or (T2==[]): # empty spike train
return NaN
# Remove units
width = float(width)
T1 = array(T1)
T2 = array(T2)
i = 0
j = 0
n = int(ceil(width / bin)) # Histogram length
l = []
for t in T1:
while i < len(T2) and T2[i] < t - width: # other possibility use searchsorted
i += 1
while j < len(T2) and T2[j] < t + width:
j += 1
l.extend(T2[i:j] - t)
H, _ = histogram(l, bins=arange(2 * n + 1) * bin - n * bin) #, new = True)
# Divide by time to get rate
if T is None:
T = max(T1[-1], T2[-1]) - min(T1[0], T2[0])
# Windowing function (triangle)
W = zeros(2 * n)
W[:n] = T - bin * arange(n - 1, -1, -1)
W[n:] = T - bin * arange(n)
return H / W
def autocorrelogram(T0, width=20 * ms, bin=1 * ms, T=None):
'''
Returns an autocorrelogram with lag in [-width,width] and given bin size.
T is the total duration (optional) and should be greater than the duration of T1 and T2.
The result is in Hz (rate of coincidences in each bin).
N.B.: units are discarded.
'''
return correlogram(T0, T0, width, bin, T)
def CCF(T1, T2, width=20 * ms, bin=1 * ms, T=None):
'''
Returns the cross-correlation function with lag in [-width,width] and given bin size.
T is the total duration (optional).
The result is in Hz**2:
CCF(T1,T2)=<T1(t)T2(t+s)>
N.B.: units are discarded.
'''
return correlogram(T1, T2, width, bin, T) / bin
def ACF(T0, width=20 * ms, bin=1 * ms, T=None):
'''
Returns the autocorrelation function with lag in [-width,width] and given bin size.
T is the total duration (optional).
The result is in Hz**2:
ACF(T0)=<T0(t)T0(t+s)>
N.B.: units are discarded.
'''
return CCF(T0, T0, width, bin, T)
def CCVF(T1, T2, width=20 * ms, bin=1 * ms, T=None):
'''
Returns the cross-covariance function with lag in [-width,width] and given bin size.
T is the total duration (optional).
The result is in Hz**2:
CCVF(T1,T2)=<T1(t)T2(t+s)>-<T1><T2>
N.B.: units are discarded.
'''
return CCF(T1, T2, width, bin, T) - firing_rate(T1) * firing_rate(T2)
def ACVF(T0, width=20 * ms, bin=1 * ms, T=None):
'''
Returns the autocovariance function with lag in [-width,width] and given bin size.
T is the total duration (optional).
The result is in Hz**2:
ACVF(T0)=<T0(t)T0(t+s)>-<T0>**2
N.B.: units are discarded.
'''
return CCVF(T0, T0, width, bin, T)
def spike_triggered_average(spikes,stimulus,max_interval,dt,onset=None,display=False):
'''
Spike triggered average reverse correlation.
spikes is an array containing spike times
stimulus is an array containing the stimulus
max_interval (second) is the duration of the averaging window
dt (second) is the sampling period
onset (second) before which the spikes are discarded. Note: it will be at least as long as max_interval
display (default=False) display the number of spikes processed out of the total number
output the spike triggered average and the corresponding time axis
'''
stimulus = stimulus.flatten()
if onset < max_interval or onset == None:
onset = max_interval
nspikes = len(spikes)
sta_length = int(max_interval/dt)
spike_triggered_ensemble=zeros((nspikes,sta_length))
time_axis = linspace(0*ms,max_interval,sta_length)
onset = float(onset)
for ispike,spike in enumerate(spikes):
if display==True:
print 'sta: spike #',ispike,' out of :',nspikes
if spike>onset:
spike = int(spike/dt)
print stimulus[spike-sta_length:spike].shape
spike_triggered_ensemble[ispike,:] = stimulus[spike-sta_length:spike]
ispike +=1
return sum(spike_triggered_ensemble,axis=0)[::-1]/(nspikes-1),time_axis
def total_correlation(T1, T2, width=20 * ms, T=None):
'''
Returns the total correlation coefficient with lag in [-width,width].
T is the total duration (optional).
The result is a real (typically in [0,1]):
total_correlation(T1,T2)=int(CCVF(T1,T2))/rate(T1)
'''
if (T1==[]) or (T2==[]): # empty spike train
return NaN
# Remove units
width = float(width)
T1 = array(T1)
T2 = array(T2)
# Divide by time to get rate
if T is None:
T = max(T1[-1], T2[-1]) - min(T1[0], T2[0])
i = 0
j = 0
x = 0
for t in T1:
while i < len(T2) and T2[i] < t - width: # other possibility use searchsorted
i += 1
while j < len(T2) and T2[j] < t + width:
j += 1
x += sum(1. / (T - abs(T2[i:j] - t))) # counts coincidences with windowing (probabilities)
return float(x / firing_rate(T1)) - float(firing_rate(T2) * 2 * width)
def sort_spikes(spikes):
"""
Sorts spikes stored in a (i,t) list by time.
"""
spikes = sorted(spikes, key=itemgetter(1))
return spikes
def group_correlations(spikes, delta=None):
"""
Computes the pairwise correlation strength and timescale of the given pool of spike trains.
spikes is a (i,t) list and must be sorted.
delta is the length of the time window, 10*ms by default.
"""
aspikes = array(spikes)
N = aspikes[:, 0].max() + 1 # neuron count
T = aspikes[:, 1].max() # total duration
spikecount = zeros(N)
tauc = zeros((N, N))
S = zeros((N, N))
if delta is None:
delta = 10 * ms # size of the window
windows = -2 * delta * ones(N) # windows[i] is the end of the window for neuron i = lastspike[i}+delta
for i, t in spikes:
sources = (t <= windows) # neurons such that (i,t) is a target spike for them
if sum(sources) > 0:
indices = nonzero(sources)[0]
S[indices, i] += 1
delays = t - windows[indices] + delta
# print i, t, indices, delays
tauc[indices, i] += delays
spikecount[i] += 1
windows[i] = t + delta # window update
tauc /= S
S = S / tile(spikecount.reshape((-1, 1)), (1, N)) # normalize S
rates = spikecount / T
S = S - tile(rates.reshape((1, -1)), (N, 1)) * delta
S[isnan(S)] = 0.0
tauc[isnan(tauc)] = 0.0
return S, tauc
# Phase-locking properties
def vector_strength(spikes, period):
'''
Returns the vector strength of the given train
'''
return abs(mean(exp(array(spikes) * 1j * 2 * pi / period)))
# Normalize the coincidence count of two spike trains (return the gamma factor)
def get_gamma_factor(coincidence_count, model_length, target_length, target_rates, delta):
NCoincAvg = 2 * delta * target_length * target_rates
norm = .5 * (1 - 2 * delta * target_rates)
gamma = (coincidence_count - NCoincAvg) / (norm * (target_length + model_length))
return gamma
# Normalize the coincidence matrix between a set of trains (return the gamma factor matrix)
def get_gamma_factor_matrix(coincidence_matrix, model_length, target_length, target_rates, delta):
target_lengthMAT =tile(target_length,(len(model_length),1))
target_rateMAT =tile(target_rates,(len(model_length),1))
model_lengthMAT =tile(model_length.reshape(-1,1),(1,len(target_length)))
NCoincAvg =2 * delta * target_lengthMAT * target_rateMAT
norm =.5 * (1 - 2 * delta * target_rateMAT)
# print target_rateMAT
print coincidence_matrix
#print NCoincAvg
#print (norm * (target_lengthMAT + model_lengthMAT))
gamma = (coincidence_matrix - NCoincAvg) / (norm * (target_lengthMAT + model_lengthMAT))
gamma=triu(gamma,0)+triu(gamma,1).T
return gamma
# Gamma factor
@check_units(delta=second)
def gamma_factor(source, target, delta, normalize=True, dt=None):
'''
Returns the gamma precision factor between source and target trains,
with precision delta.
source and target are lists of spike times.
If normalize is True, the function returns the normalized gamma factor
(less than 1.0), otherwise it returns the number of coincidences.
dt is the precision of the trains, by default it is defaultclock.dt
Reference:
R. Jolivet et al., 'A benchmark test for a quantitative assessment of simple neuron models',
Journal of Neuroscience Methods 169, no. 2 (2008): 417-424.
'''
source = array(source)
target = array(target)
target_rate = firing_rate(target) * Hz
if dt is None:
delta_diff = delta
else:
source = array(rint(source / dt), dtype=int)
target = array(rint(target / dt), dtype=int)
delta_diff = int(rint(delta / dt))
source_length = len(source)
target_length = len(target)
if (target_length == 0 or source_length == 0):
return 0
if (source_length > 1):
bins = .5 * (source[1:] + source[:-1])
indices = digitize(target, bins)
diff = abs(target - source[indices])
matched_spikes = (diff <= delta_diff)
coincidences = sum(matched_spikes)
else:
indices = [amin(abs(source - target[i])) <= delta_diff for i in xrange(target_length)]
coincidences = sum(indices)
# Normalization of the coincidences count
# NCoincAvg = 2 * delta * target_length * target_rate
# norm = .5*(1 - 2 * target_rate * delta)
# gamma = (coincidences - NCoincAvg)/(norm*(source_length + target_length))
# TODO: test this
gamma = get_gamma_factor(coincidences, source_length, target_length, target_rate, delta)
if normalize:
return gamma
else:
return coincidences
if __name__ == '__main__':
from brian import *
print vector_strength([1.1 * ms, 1 * ms, .9 * ms], 2 * ms)
N = 100000
T1 = cumsum(rand(N) * 10 * ms)
T2 = cumsum(rand(N) * 10 * ms)
duration = T1[N / 2] # Cut so that both spike trains have the same duration
T1 = T1[T1 < duration]
T2 = T2[T2 < duration]
print firing_rate(T1)
C = CCVF(T1, T2, bin=1 * ms)
print total_correlation(T1, T2)
plot(C)
show()
|