This file is indexed.

/usr/share/pyshared/cclib/parser/gamessukparser.py is in python-cclib 1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# This file is part of cclib (http://cclib.sf.net), a library for parsing
# and interpreting the results of computational chemistry packages.
#
# Copyright (C) 2006, the cclib development team
#
# The library is free software, distributed under the terms of
# the GNU Lesser General Public version 2.1 or later. You should have
# received a copy of the license along with cclib. You can also access
# the full license online at http://www.gnu.org/copyleft/lgpl.html.

__revision__ = "$Revision: 1031 $"

import re

import numpy

import logfileparser
import utils


class GAMESSUK(logfileparser.Logfile):
    """A GAMESS UK log file"""
    SCFRMS, SCFMAX, SCFENERGY = range(3) # Used to index self.scftargets[]
    def __init__(self, *args, **kwargs):

        # Call the __init__ method of the superclass
        super(GAMESSUK, self).__init__(logname="GAMESSUK", *args, **kwargs)
        
    def __str__(self):
        """Return a string representation of the object."""
        return "GAMESS UK log file %s" % (self.filename)

    def __repr__(self):
        """Return a representation of the object."""
        return 'GAMESSUK("%s")' % (self.filename)
    
    def normalisesym(self, label):
        """Use standard symmetry labels instead of GAMESS UK labels.

        >>> t = GAMESSUK("dummyfile.txt")
        >>> labels = ['a', 'a1', 'ag', "a'", 'a"', "a''", "a1''", 'a1"']
        >>> labels.extend(["e1+", "e1-"])
        >>> answer = [t.normalisesym(x) for x in labels]
        >>> answer
        ['A', 'A1', 'Ag', "A'", 'A"', 'A"', 'A1"', 'A1"', 'E1', 'E1']
        """
        label = label.replace("''", '"').replace("+", "").replace("-", "")
        ans = label[0].upper() + label[1:]
        
        return ans

    def before_parsing(self):

        # This will be used to detect the first set of "nuclear coordinates" in
        # a geometry-optimization
        self.firstnuccoords = True

        # used for determining whether to add a second mosyms, etc.
        self.betamosyms = self.betamoenergies = self.betamocoeffs = False

    def extract(self, inputfile, line):
        """Extract information from the file object inputfile."""

        if line[1:22] == "total number of atoms":
            if not hasattr(self, "natom"):
                self.natom = int(line.split()[-1])

        if line[3:44] == "convergence threshold in optimization run":
            # Assuming that this is only found in the case of OPTXYZ
            # (i.e. an optimization in Cartesian coordinates)
            self.geotargets = [float(line.split()[-2])]

        if line[32:61] == "largest component of gradient":
            # This is the geotarget in the case of OPTXYZ
            if not hasattr(self, "geovalues"):
                self.geovalues = []
            self.geovalues.append([float(line.split()[4])])

        if line[37:49] == "convergence?":
            # Get the geovalues and geotargets for OPTIMIZE
            if not hasattr(self, "geovalues"):
                self.geovalues = []
                self.geotargets = []
            geotargets = []
            geovalues = []
            for i in range(4):
                temp = line.split()
                geovalues.append(float(temp[2]))
                if not self.geotargets:
                    geotargets.append(float(temp[-2]))
                line = inputfile.next()
            self.geovalues.append(geovalues)
            if not self.geotargets:
                self.geotargets = geotargets
        
        if line[40:58] == "molecular geometry":
            # Only one set of atomcoords is taken from this section
            # For geo-opts, more coordinates are taken from the "nuclear coordinates"
            if not hasattr(self, "atomcoords"):
                self.atomcoords = []
            self.atomnos = []
            
            stop = " "*9 + "*"*79
            line = inputfile.next()
            while not line.startswith(stop):
                line = inputfile.next()
            line = inputfile.next()
            while not line.startswith(stop):
                line = inputfile.next()
            empty = inputfile.next()

            atomcoords = []
            empty = inputfile.next()
            while not empty.startswith(stop):
                line = inputfile.next().split() # the coordinate data
                atomcoords.append(map(float, line[3:6]))
                self.atomnos.append(int(round(float(line[2]))))
                while line != empty:
                    line = inputfile.next()
                # at this point, line is an empty line, right after
                # 1 or more lines containing basis set information
                empty = inputfile.next()
                # empty is either a row of asterisks or the empty line
                # before the row of coordinate data
            
            self.atomcoords.append(atomcoords)
            self.atomnos = numpy.array(self.atomnos, "i")

        if line[40:59] == "nuclear coordinates":
            # We need not remember the first geometry in the geo-opt as this will
            # be recorded already, in the "molecular geometry" section
            # (note: single-point calculations have no "nuclear coordinates" only
            # "molecular geometry")
            if self.progress:
                self.updateprogress(inputfile, "Coordinates")

            if self.firstnuccoords:
                self.firstnuccoords = False
                return
                # This was continue (in loop) before parser refactoring.
                # continue
            if not hasattr(self, "atomcoords"):
                self.atomcoords = []
                self.atomnos = []
                
            asterisk = inputfile.next()
            blank = inputfile.next()
            colmname = inputfile.next()
            equals = inputfile.next()

            atomcoords = []
            atomnos = []
            line = inputfile.next()
            while line != equals:
                temp = line.strip().split()
                atomcoords.append([utils.convertor(float(x), "bohr", "Angstrom") for x in temp[0:3]])
                if not hasattr(self, "atomnos") or len(self.atomnos) == 0:
                    atomnos.append(int(float(temp[3])))
                    
                line = inputfile.next()

            self.atomcoords.append(atomcoords)
            if not hasattr(self, "atomnos") or len(self.atomnos) == 0:
                self.atomnos = atomnos

        if line[1:32] == "total number of basis functions":
            self.nbasis = int(line.split()[-1])
            while line.find("charge of molecule")<0:
                line = inputfile.next()
            self.charge = int(line.split()[-1])
            self.mult = int(inputfile.next().split()[-1])

            alpha = int(inputfile.next().split()[-1])-1
            beta = int(inputfile.next().split()[-1])-1
            if self.mult == 1:
                self.homos = numpy.array([alpha], "i")
            else:
                self.homos = numpy.array([alpha, beta], "i")

        if line[37:69] == "s-matrix over gaussian basis set":
            self.aooverlaps = numpy.zeros((self.nbasis, self.nbasis), "d")

            minus = inputfile.next()
            blank = inputfile.next()
            i = 0
            while i < self.nbasis:
                if self.progress:
                    self.updateprogress(inputfile, "Overlap")

                blank = inputfile.next()
                blank = inputfile.next()
                header = inputfile.next()
                blank = inputfile.next()
                blank = inputfile.next()

                for j in range(self.nbasis):
                    temp = map(float, inputfile.next().split()[1:])
                    self.aooverlaps[j,(0+i):(len(temp)+i)] = temp
                    
                i += len(temp)

        if line[18:43] == 'EFFECTIVE CORE POTENTIALS':
            self.coreelectrons = numpy.zeros(self.natom, 'i')
            asterisk = inputfile.next()
            line = inputfile.next()
            while line[15:46] != "*"*31:
                if line.find("for atoms ...")>=0:
                    atomindex = []
                    line = inputfile.next()
                    while line.find("core charge")<0:
                        broken = line.split()
                        atomindex.extend([int(x.split("-")[0]) for x in broken])
                        line = inputfile.next()
                    charge = float(line.split()[4])
                    for idx in atomindex:
                        self.coreelectrons[idx-1] = self.atomnos[idx-1] - charge
                line = inputfile.next()
                            
        if line[3:27] == "Wavefunction convergence":
            self.scftarget = float(line.split()[-2])
            self.scftargets = []

        if line[11:22] == "normal mode":
            if not hasattr(self, "vibfreqs"):
                self.vibfreqs = []
                self.vibirs = []
            
            units = inputfile.next()
            xyz = inputfile.next()
            equals = inputfile.next()
            line = inputfile.next()
            while line != equals:
                temp = line.split()
                self.vibfreqs.append(float(temp[1]))
                self.vibirs.append(float(temp[-2]))
                line = inputfile.next()
            # Use the length of the vibdisps to figure out
            # how many rotations and translations to remove
            self.vibfreqs = self.vibfreqs[-len(self.vibdisps):]
            self.vibirs = self.vibirs[-len(self.vibdisps):]

        if line[44:73] == "normalised normal coordinates":
            self.vibdisps = []
            equals = inputfile.next()
            blank = inputfile.next()
            blank = inputfile.next()
            freqnum = inputfile.next()
            while freqnum.find("=")<0:
                blank = inputfile.next()
                equals = inputfile.next()
                freqs = inputfile.next()
                equals = inputfile.next()
                blank = inputfile.next()
                header = inputfile.next()
                equals = inputfile.next()
                p = [ [] for x in range(9) ]
                for i in range(len(self.atomnos)):
                    brokenx = map(float, inputfile.next()[25:].split())
                    brokeny = map(float, inputfile.next()[25:].split())            
                    brokenz = map(float, inputfile.next()[25:].split())
                    for j, x in enumerate(zip(brokenx, brokeny, brokenz)):
                        p[j].append(x)
                self.vibdisps.extend(p)
        
                blank = inputfile.next()
                blank = inputfile.next()
                freqnum = inputfile.next()                    

        if line[26:36] == "raman data":
            self.vibramans = []

            stars = inputfile.next()
            blank = inputfile.next()
            header = inputfile.next()

            blank = inputfile.next()
            line = inputfile.next()
            while line[1] != "*":
                self.vibramans.append(float(line.split()[3]))
                blank = inputfile.next()
                line = inputfile.next()
            # Use the length of the vibdisps to figure out
            # how many rotations and translations to remove
            self.vibramans = self.vibramans[-len(self.vibdisps):]
                        
        if line[3:11] == "SCF TYPE":
            self.scftype = line.split()[-2]
            assert self.scftype in ['rhf', 'uhf', 'gvb'], "%s not one of 'rhf', 'uhf' or 'gvb'" % self.scftype

        if line[15:31] == "convergence data":
            if not hasattr(self, "scfvalues"):
                self.scfvalues = []
            self.scftargets.append([self.scftarget]) # Assuming it does not change over time
            while line[1:10] != "="*9:
                line = inputfile.next()
            line = inputfile.next()
            tester = line.find("tester") # Can be in a different place depending
            assert tester >= 0
            while line[1:10] != "="*9: # May be two or three lines (unres)
                line = inputfile.next()
            
            scfvalues = []
            line = inputfile.next()
            while line.strip():
                if line[2:6] != "****":
            # e.g. **** recalulation of fock matrix on iteration  4 (examples/chap12/pyridine.out)
                    scfvalues.append([float(line[tester-5:tester+6])])
                line = inputfile.next()
            self.scfvalues.append(scfvalues)   

        if line[10:22] == "total energy" and len(line.split()) == 3:
            if not hasattr(self, "scfenergies"):
                self.scfenergies = []
            scfenergy = utils.convertor(float(line.split()[-1]), "hartree", "eV")
            self.scfenergies.append(scfenergy)
        
        # Total energies after Moller-Plesset corrections
        # Second order correction is always first, so its first occurance
        #   triggers creation of mpenergies (list of lists of energies)
        # Further corrections are appended as found
        # Note: GAMESS-UK sometimes prints only the corrections,
        #   so they must be added to the last value of scfenergies
        if line[10:32] == "mp2 correlation energy" or \
           line[10:42] == "second order perturbation energy":
            if not hasattr(self, "mpenergies"):
                self.mpenergies = []
            self.mpenergies.append([])
            self.mp2correction = self.float(line.split()[-1])
            self.mp2energy = self.scfenergies[-1] + self.mp2correction
            self.mpenergies[-1].append(utils.convertor(self.mp2energy, "hartree", "eV"))
        if line[10:41] == "third order perturbation energy":
            self.mp3correction = self.float(line.split()[-1])
            self.mp3energy = self.mp2energy + self.mp3correction
            self.mpenergies[-1].append(utils.convertor(self.mp3energy, "hartree", "eV"))

        if line[40:59] == "molecular basis set":
            self.gbasis = []
            line = inputfile.next()
            while line.find("contraction coefficients")<0:
                line = inputfile.next()
            equals = inputfile.next()
            blank = inputfile.next()
            atomname = inputfile.next()
            basisregexp = re.compile("\d*(\D+)") # Get everything after any digits
            shellcounter = 1
            while line != equals:
                gbasis = [] # Stores basis sets on one atom
                blank = inputfile.next()
                blank = inputfile.next()
                line = inputfile.next()
                shellno = int(line.split()[0])
                shellgap = shellno - shellcounter
                shellsize = 0
                while len(line.split())!=1 and line!=equals:
                    if line.split():
                        shellsize += 1
                    coeff = {}
                    # coefficients and symmetries for a block of rows
                    while line.strip() and line!=equals:
                        temp = line.strip().split()
                    # temp[1] may be either like (a) "1s" and "1sp", or (b) "s" and "sp"
                    # See GAMESS-UK 7.0 distribution/examples/chap12/pyridine2_21m10r.out
                    # for an example of the latter
                        sym = basisregexp.match(temp[1]).groups()[0]
                        assert sym in ['s', 'p', 'd', 'f', 'sp'], "'%s' not a recognized symmetry" % sym
                        if sym == "sp":
                            coeff.setdefault("S", []).append( (float(temp[3]), float(temp[6])) )
                            coeff.setdefault("P", []).append( (float(temp[3]), float(temp[10])) )
                        else:
                            coeff.setdefault(sym.upper(), []).append( (float(temp[3]), float(temp[6])) )
                        line = inputfile.next()
                    # either a blank or a continuation of the block
                    if coeff:
                        if sym == "sp":
                            gbasis.append( ('S', coeff['S']))
                            gbasis.append( ('P', coeff['P']))
                        else:
                            gbasis.append( (sym.upper(), coeff[sym.upper()]))
                    if line == equals:
                        continue
                    line = inputfile.next()
                    # either the start of the next block or the start of a new atom or
                    # the end of the basis function section (signified by a line of equals)
                numtoadd = 1 + (shellgap / shellsize)
                shellcounter = shellno + shellsize
                for x in range(numtoadd):
                    self.gbasis.append(gbasis)

        if line[50:70] == "----- beta set -----":
            self.betamosyms = True
            self.betamoenergies = True
            self.betamocoeffs = True
            # betamosyms will be turned off in the next
            # SYMMETRY ASSIGNMENT section
                
        if line[31:50] == "SYMMETRY ASSIGNMENT":
            if not hasattr(self, "mosyms"):
                self.mosyms = []

            multiple = {'a':1, 'b':1, 'e':2, 't':3, 'g':4, 'h':5}
            
            equals = inputfile.next()
            line = inputfile.next()
            while line != equals: # There may be one or two lines of title (compare mg10.out and duhf_1.out)
                line = inputfile.next()

            mosyms = []
            line = inputfile.next()
            while line != equals:
                temp = line[25:30].strip()
                if temp[-1] == '?':
                    # e.g. e? or t? or g? (see example/chap12/na7mg_uhf.out)
                    # for two As, an A and an E, and two Es of the same energy respectively.
                    t = line[91:].strip().split()
                    for i in range(1, len(t), 2):
                        for j in range(multiple[t[i][0]]): # add twice for 'e', etc.
                            mosyms.append(self.normalisesym(t[i]))
                else:
                    for j in range(multiple[temp[0]]):
                        mosyms.append(self.normalisesym(temp)) # add twice for 'e', etc.
                line = inputfile.next()
            assert len(mosyms) == self.nmo, "mosyms: %d but nmo: %d" % (len(mosyms), self.nmo)
            if self.betamosyms:
                # Only append if beta (otherwise with IPRINT SCF
                # it will add mosyms for every step of a geo opt)
                self.mosyms.append(mosyms)
                self.betamosyms = False
            elif self.scftype == 'gvb':
                # gvb has alpha and beta orbitals but they are identical
                self.mosysms = [mosyms, mosyms]
            else:
                self.mosyms = [mosyms]

        if line[50:62] == "eigenvectors":
        # Mocoeffs...can get evalues from here too
        # (only if using FORMAT HIGH though will they all be present)                
            if not hasattr(self, "mocoeffs"):
                self.aonames = []
                aonames = []
            minus = inputfile.next()

            mocoeffs = numpy.zeros( (self.nmo, self.nbasis), "d")
            readatombasis = False
            if not hasattr(self, "atombasis"):
                self.atombasis = []
                for i in range(self.natom):
                    self.atombasis.append([])
                readatombasis = True

            blank = inputfile.next()
            blank = inputfile.next()
            evalues = inputfile.next()

            p = re.compile(r"\d+\s+(\d+)\s*(\w+) (\w+)")
            oldatomname = "DUMMY VALUE"

            mo = 0
            while mo < self.nmo:
                if self.progress:
                    self.updateprogress(inputfile, "Coefficients")

                blank = inputfile.next()
                blank = inputfile.next()
                nums = inputfile.next()
                blank = inputfile.next()
                blank = inputfile.next()
                for basis in range(self.nbasis):
                    line = inputfile.next()
                    # Fill atombasis only first time around.
                    if readatombasis:
                        orbno = int(line[1:5])-1
                        atomno = int(line[6:9])-1
                        self.atombasis[atomno].append(orbno)
                    if not self.aonames:
                        pg = p.match(line[:18].strip()).groups()
                        atomname = "%s%s%s" % (pg[1][0].upper(), pg[1][1:], pg[0])
                        if atomname != oldatomname:
                            aonum = 1
                        oldatomname = atomname
                        name = "%s_%d%s" % (atomname, aonum, pg[2].upper())
                        if name in aonames:
                            aonum += 1
                        name = "%s_%d%s" % (atomname, aonum, pg[2].upper())
                        aonames.append(name) 
                    temp = map(float, line[19:].split())
                    mocoeffs[mo:(mo+len(temp)), basis] = temp
                # Fill atombasis only first time around.
                readatombasis = False
                if not self.aonames:
                    self.aonames = aonames

                line = inputfile.next() # blank line
                while line == blank:
                    line = inputfile.next()
                evalues = line
                if evalues[:17].strip(): # i.e. if these aren't evalues
                    break # Not all the MOs are present
                mo += len(temp)
            mocoeffs = mocoeffs[0:(mo+len(temp)), :] # In case some aren't present
            if self.betamocoeffs:
                self.mocoeffs.append(mocoeffs)
            else:
                self.mocoeffs = [mocoeffs]

        if line[7:12] == "irrep":
            ########## eigenvalues ###########
            # This section appears once at the start of a geo-opt and once at the end
            # unless IPRINT SCF is used (when it appears at every step in addition)
            if not hasattr(self, "moenergies"):
                self.moenergies = []

            equals = inputfile.next()
            while equals[1:5] != "====": # May be one or two lines of title (compare duhf_1.out and mg10.out)
                equals = inputfile.next()

            moenergies = []
            line = inputfile.next()
            if not line.strip(): # May be a blank line here (compare duhf_1.out and mg10.out)
                line = inputfile.next()

            while line.strip() and line != equals: # May end with a blank or equals
                temp = line.strip().split()
                moenergies.append(utils.convertor(float(temp[2]), "hartree", "eV"))
                line = inputfile.next()
            self.nmo = len(moenergies)
            if self.betamoenergies:
                self.moenergies.append(moenergies)
                self.betamoenergies = False
            elif self.scftype == 'gvb':
                self.moenergies = [moenergies, moenergies]
            else:
                self.moenergies = [moenergies]

        # Net atomic charges are not printed at all, it seems,
        # but you can get at them from nuclear charges and
        # electron populations, which are printed like so:
        #
        #  ---------------------------------------
        #  mulliken and lowdin population analyses  
        #  ---------------------------------------
        #
        # ----- total gross population in aos ------
        #
        # 1  1  c s         1.99066     1.98479
        # 2  1  c s         1.14685     1.04816
        # ...
        #
        #  ----- total gross population on atoms ----
        #
        # 1  c            6.0     6.00446     5.99625
        # 2  c            6.0     6.00446     5.99625
        # 3  c            6.0     6.07671     6.04399
        # ...
        if line[10:49] == "mulliken and lowdin population analyses":

            if not hasattr(self, "atomcharges"):
                self.atomcharges = {}

            while not "total gross population on atoms" in line:
                line = inputfile.next()

            blank = inputfile.next()
            line = inputfile.next()
            mulliken, lowdin = [], []
            while line.strip():
                nuclear = float(line.split()[2])
                mulliken.append(nuclear - float(line.split()[3]))
                lowdin.append(nuclear - float(line.split()[4]))
                line = inputfile.next()

            self.atomcharges["mulliken"] = mulliken
            self.atomcharges["lowdin"] = lowdin

             
if __name__ == "__main__":
    import doctest
    doctest.testmod()