/usr/share/pyshared/deap/tools.py is in python-deap 0.7.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 | # This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
"""The :mod:`~deap.tools` module contains the operators for evolutionary
algorithms. They are used to modify, select and move the individuals in their
environment. The set of operators it contains are readily usable in the
:class:`~deap.base.Toolbox`. In addition to the basic operators this module
also contains utility tools to enhance the basic algorithms with
:class:`Statistics`, :class:`HallOfFame`, :class:`Checkpoint`, and
:class:`History`.
"""
from __future__ import division
import bisect
import copy
import inspect
import math
import random
from itertools import chain
from operator import attrgetter, eq
from collections import defaultdict
from functools import partial
try:
import yaml
CHECKPOINT_USE_YAML = True
try:
from yaml import CDumper as Dumper # CLoader and CDumper are much
from yaml import CLoader as Loader # faster than default ones, but
except ImportError: # requires LibYAML to be compiled
from yaml import Dumper
from yaml import Loader
except ImportError:
CHECKPOINT_USE_YAML = False
# If yaml ain't present, use
try: # pickling to dump
import cPickle as pickle # cPickle is much faster than
except ImportError: # pickle but only present under
import pickle # CPython
def initRepeat(container, func, n):
"""Call the function *container* with a generator function corresponding
to the calling *n* times the function *func*.
This helper function can can be used in conjunction with a Toolbox
to register a generator of filled containers, as individuals or
population.
>>> initRepeat(list, random.random, 2) # doctest: +ELLIPSIS,
... # doctest: +NORMALIZE_WHITESPACE
[0.4761..., 0.6302...]
"""
return container(func() for _ in xrange(n))
def initIterate(container, generator):
"""Call the function *container* with an iterable as
its only argument. The iterable must be returned by
the method or the object *generator*.
This helper function can can be used in conjunction with a Toolbox
to register a generator of filled containers, as individuals or
population.
>>> from random import sample
>>> from functools import partial
>>> gen_idx = partial(sample, range(10), 10)
>>> initIterate(list, gen_idx)
[4, 5, 3, 6, 0, 9, 2, 7, 1, 8]
"""
return container(generator())
def initCycle(container, seq_func, n=1):
"""Call the function *container* with a generator function corresponding
to the calling *n* times the functions present in *seq_func*.
This helper function can can be used in conjunction with a Toolbox
to register a generator of filled containers, as individuals or
population.
>>> func_seq = [lambda:1 , lambda:'a', lambda:3]
>>> initCycle(list, func_seq, 2)
[1, 'a', 3, 1, 'a', 3]
"""
return container(func() for _ in xrange(n) for func in seq_func)
class History(object):
"""The :class:`History` class helps to build a genealogy of all the
individuals produced in the evolution. It contains two attributes,
the :attr:`genealogy_tree` that is a dictionary of lists indexed by
individual, the list contain the indices of the parents. The second
attribute :attr:`genealogy_history` contains every individual indexed
by their individual number as in the genealogy tree.
The produced genealogy tree is compatible with `NetworkX
<http://networkx.lanl.gov/index.html>`_, here is how to plot the genealogy
tree ::
hist = History()
# Do some evolution and fill the history
import matplotlib.pyplot as plt
import networkx as nx
g = nx.DiGraph(hist.genealogy_tree)
nx.draw_springs(g)
plt.show()
.. note::
The genealogy tree might get very big if your population and/or the
number of generation is large.
"""
def __init__(self):
self.genealogy_index = 0
self.genealogy_history = dict()
self.genealogy_tree = dict()
def populate(self, individuals):
"""Populate the history with the initial *individuals*. An attribute
:attr:`history_index` is added to every individual, this index will
help to track the parents and the children through evolution. This
index will be modified by the :meth:`update` method when a child is
produced. Modifying the internal :attr:`genealogy_index` of the
history or the :attr:`history_index` of an individual may lead to
unpredictable results and corruption of the history.
"""
for ind in individuals:
self.genealogy_index += 1
ind.history_index = self.genealogy_index
self.genealogy_history[self.genealogy_index] = copy.deepcopy(ind)
self.genealogy_tree[self.genealogy_index] = list()
def update(self, *individuals):
"""Update the history with the new *individuals*. The index present
in their :attr:`history_index` attribute will be used to locate their
parents and modified to a unique one to keep track of those new
individuals.
"""
parent_indices = [ind.history_index for ind in individuals]
for ind in individuals:
self.genealogy_index += 1
ind.history_index = self.genealogy_index
self.genealogy_history[self.genealogy_index] = copy.deepcopy(ind)
self.genealogy_tree[self.genealogy_index] = parent_indices
@property
def decorator(self):
"""Property that returns an appropriate decorator to enhance the
operators of the toolbox. The returned decorator assumes that the
individuals are returned by the operator. First the decorator calls
the underlying operation and then calls the update function with what
has been returned by the operator as argument. Finally, it returns
the individuals with their history parameters modified according to
the update function.
"""
def decFunc(func):
def wrapFunc(*args, **kargs):
individuals = func(*args, **kargs)
self.update(*individuals)
return individuals
return wrapFunc
return decFunc
class Checkpoint(object):
"""A checkpoint is a file containing the state of any object that has been
hooked. While initializing a checkpoint, add the objects that you want to
be dumped by appending keyword arguments to the initializer or using the
:meth:`add`. By default the checkpoint tries to use the YAML format which
is human readable, if PyYAML is not installed, it uses pickling which is
not readable. You can force the use of pickling by setting the argument
*yaml* to :data:`False`.
In order to use efficiently this module, you must understand properly the
assignment principles in Python. This module use the *pointers* you passed
to dump the object, for example the following won't work as desired ::
>>> my_object = [1, 2, 3]
>>> cp = Checkpoint(obj=my_object)
>>> my_object = [3, 5, 6]
>>> cp.dump("example")
>>> cp.load("example.ems")
>>> cp["obj"]
[1, 2, 3]
In order to dump the new value of ``my_object`` it is needed to change its
internal values directly and not touch the *label*, as in the following ::
>>> my_object = [1, 2, 3]
>>> cp = Checkpoint(obj=my_object)
>>> my_object[:] = [3, 5, 6]
>>> cp.dump("example")
>>> cp.load("example.ems")
>>> cp["obj"]
[3, 5, 6]
"""
def __init__(self, yaml=True, **kargs):
# self.zipped = zipped
self._dict = kargs
if CHECKPOINT_USE_YAML and yaml:
self.use_yaml = True
else:
self.use_yaml = False
def add(self, **kargs):
"""Add objects to the list of objects to be dumped. The object is
added under the name specified by the argument's name. Keyword
arguments are mandatory in this function.
"""
self._dict.update(*kargs)
def remove(self, *args):
"""Remove objects with the specified name from the list of objects to
be dumped.
"""
for element in args:
del self._dict[element]
def __getitem__(self, value):
return self._dict[value]
def dump(self, prefix):
"""Dump the current registered objects in a file named *prefix.ecp*,
the randomizer state is always added to the file and available under
the ``"randomizer_state"`` tag.
"""
# if not self.zipped:
cp_file = open(prefix + ".ecp", "w")
# else:
# file = gzip.open(prefix + ".ems.gz", "w")
cp = self._dict.copy()
cp.update({"randomizer_state" : random.getstate()})
if self.use_yaml:
cp_file.write(yaml.dump(ms, Dumper=Dumper))
else:
pickle.dump(cp, cp_file)
cp_file.close()
def load(self, filename):
"""Load a checkpoint file retrieving the dumped objects, it is not
safe to load a checkpoint file in a checkpoint object that contains
references as all conflicting names will be updated with the new
values.
"""
if self.use_yaml:
self._dict.update(yaml.load(open(filename, "r"), Loader=Loader))
else:
self._dict.update(pickle.load(open(filename, "r")))
def mean(seq):
"""Returns the arithmetic mean of the sequence *seq* =
:math:`\{x_1,\ldots,x_n\}` as :math:`A = \\frac{1}{n} \sum_{i=1}^n x_i`.
"""
return sum(seq) / len(seq)
def median(seq):
"""Returns the median of *seq* - the numeric value separating the higher half
of a sample from the lower half. If there is an even number of elements in
*seq*, it returns the mean of the two middle values.
"""
sseq = sorted(seq)
length = len(seq)
if length % 2 == 1:
return sseq[int((length - 1) / 2)]
else:
return (sseq[int((length - 1) / 2)] + sseq[int(length / 2)]) / 2
def var(seq):
"""Returns the variance :math:`\sigma^2` of *seq* =
:math:`\{x_1,\ldots,x_n\}` as
:math:`\sigma^2 = \\frac{1}{N} \sum_{i=1}^N (x_i - \\mu )^2`,
where :math:`\\mu` is the arithmetic mean of *seq*.
"""
return abs(sum(x*x for x in seq) / len(seq) - mean(seq)**2)
def std(seq):
"""Returns the square root of the variance :math:`\sigma^2` of *seq*.
"""
return var(seq)**0.5
class Statistics(object):
"""A statistics object that holds the required data for as long as it
exists. When created the statistics object receives a *key* argument that
is used to get the required data, if not provided the *key* argument
defaults to the identity function. A statistics object can be represented
as a 4 dimensional matrix. Along the first axis (wich length is given by
the *n* argument) are independent statistics objects that are used on
different collections given this index in the :meth:`update` method. The
second axis is the function it-self, each element along the second axis
(indexed by their name) will represent a different function. The third
axis is the accumulator of statistics. each time the update function is
called the new statistics are added using the registered functions at the
end of this axis. The fourth axis is used when the entered data is an
iterable (for example a multiobjective fitness).
Data can be retrieved by different means in a statistics object. One can
use directly the registered function name with an *index* argument that
represent the first axis of the matrix. This method returns the last
entered data.
::
>>> s = Statistics(n=2)
>>> s.register("Mean", mean)
>>> s.update([1, 2, 3, 4], index=0)
>>> s.update([5, 6, 7, 8], index=1)
>>> s.Mean(0)
[2.5]
>>> s.Mean(1)
[6.5]
An other way to obtain the statistics is to use directly the ``[]``. In
that case all dimensions must be specified. This is how stats that have
been registered earlier in the process can be retrieved.
::
>>> s.update([10, 20, 30, 40], index=0)
>>> s.update([50, 60, 70, 80], index=1)
>>> s[0]["Mean"][0]
[2.5]
>>> s[1]["Mean"][0]
[6.5]
>>> s[0]["Mean"][1]
[25]
>>> s[1]["Mean"][1]
[65]
Finally, the fourth dimension is used when stats are needed on lists of
lists. The stats are computed on the matching indices of each list.
::
>>> s = Statistics()
>>> s.register("Mean", mean)
>>> s.update([[1, 2, 3], [4, 5, 6]])
>>> s.Mean()
[2.5, 3.5, 4.5]
>>> s[0]["Mean"][-1][0]
2.5
"""
class Data(defaultdict):
def __init__(self):
defaultdict.__init__(self, list)
def __str__(self):
return "\n".join("%s %s" % (key, ", ".join(map(str, stat[-1]))) for key, stat in self.iteritems())
def __init__(self, key=lambda x: x, n=1):
self.key = key
self.functions = {}
self.data = tuple(self.Data() for _ in xrange(n))
def __getitem__(self, index):
return self.data[index]
def _getFuncValue(self, name, index=0):
return self.data[index][name][-1]
def register(self, name, function):
"""Register a function *function* that will be apply on the sequence
each time :func:`~deap.tools.Statistics.update` is called.
The function result will be accessible by using the string given by
the argument *name* as a function of the statistics object.
>>> s = Statistics()
>>> s.register("Mean", mean)
>>> s.update([1,2,3,4,5,6,7])
>>> s.Mean()
[4.0]
"""
self.functions[name] = function
setattr(self, name, partial(self._getFuncValue, name))
def update(self, seq, index=0):
"""Apply to the input sequence *seq* each registered function
and store each result in a list specific to the function and
the data index *index*.
>>> s = Statistics()
>>> s.register("Mean", mean)
>>> s.register("Max", max)
>>> s.update([4,5,6,7,8])
>>> s.Max()
[8]
>>> s.Mean()
[6.0]
>>> s.update([1,2,3])
>>> s.Max()
[3]
>>> s[0]["Max"]
[[8], [3]]
>>> s[0]["Mean"]
[[6.0], [2.0]]
"""
# Transpose the values
data = self.data[index]
try:
values = zip(*(self.key(elem) for elem in seq))
except TypeError:
values = zip(*[(self.key(elem),) for elem in seq])
for key, func in self.functions.iteritems():
data[key].append(map(func, values))
def __str__(self):
return "\n".join("%s %s" % (key, ", ".join(map(str, stat[-1]))) for key, stat in self.data[-1].iteritems())
class HallOfFame(object):
"""The hall of fame contains the best individual that ever lived in the
population during the evolution. It is sorted at all time so that the
first element of the hall of fame is the individual that has the best
first fitness value ever seen, according to the weights provided to the
fitness at creation time.
The class :class:`HallOfFame` provides an interface similar to a list
(without being one completely). It is possible to retrieve its length, to
iterate on it forward and backward and to get an item or a slice from it.
"""
def __init__(self, maxsize):
self.maxsize = maxsize
self.keys = list()
self.items = list()
def update(self, population):
"""Update the hall of fame with the *population* by replacing the
worst individuals in it by the best individuals present in
*population* (if they are better). The size of the hall of fame is
kept constant.
"""
if len(self) < self.maxsize:
# Items are sorted with the best fitness first
self.items = sorted(chain(self, population),
key=attrgetter("fitness"),
reverse=True)[:self.maxsize]
self.items = [copy.deepcopy(item) for item in self.items]
# The keys are the fitnesses in reverse order to allow the use
# of the bisection algorithm
self.keys = map(attrgetter("fitness"),
reversed(self.items))
else:
for ind in population:
if ind.fitness > self[-1].fitness:
# Delete the worst individual from the front
self.remove(-1)
# Insert the new individual
self.insert(ind)
def insert(self, item):
"""Insert a new individual in the hall of fame using the
:func:`~bisect.bisect_right` function. The inserted individual is
inserted on the right side of an equal individual. Inserting a new
individual in the hall of fame also preserve the hall of fame's order.
This method **does not** check for the size of the hall of fame, in a
way that inserting a new individual in a full hall of fame will not
remove the worst individual to maintain a constant size.
"""
item = copy.deepcopy(item)
i = bisect.bisect_right(self.keys, item.fitness)
self.items.insert(len(self) - i, item)
self.keys.insert(i, item.fitness)
def remove(self, index):
"""Remove the specified *index* from the hall of fame."""
del self.keys[len(self) - (index % len(self) + 1)]
del self.items[index]
def clear(self):
"""Clear the hall of fame."""
del self.items[:]
del self.keys[:]
def __len__(self):
return len(self.items)
def __getitem__(self, i):
return self.items[i]
def __iter__(self):
return iter(self.items)
def __reversed__(self):
return reversed(self.items)
def __str__(self):
return str(self.items) + "\n" + str(self.keys)
class ParetoFront(HallOfFame):
"""The Pareto front hall of fame contains all the non-dominated individuals
that ever lived in the population. That means that the Pareto front hall of
fame can contain an infinity of different individuals.
The size of the front may become very large if it is used for example on
a continuous function with a continuous domain. In order to limit the number
of individuals, it is possible to specify a similarity function that will
return :data:`True` if the genotype of two individuals are similar. In that
case only one of the two individuals will be added to the hall of fame. By
default the similarity function is :func:`operator.__eq__`.
Since, the Pareto front hall of fame inherits from the :class:`HallOfFame`,
it is sorted lexicographically at every moment.
"""
def __init__(self, similar=eq):
self.similar = similar
HallOfFame.__init__(self, None)
def update(self, population):
"""Update the Pareto front hall of fame with the *population* by adding
the individuals from the population that are not dominated by the hall
of fame. If any individual in the hall of fame is dominated it is
removed.
"""
for ind in population:
is_dominated = False
has_twin = False
to_remove = []
for i, hofer in enumerate(self): # hofer = hall of famer
if ind.fitness.isDominated(hofer.fitness):
is_dominated = True
break
elif hofer.fitness.isDominated(ind.fitness):
to_remove.append(i)
elif ind.fitness == hofer.fitness and self.similar(ind, hofer):
has_twin = True
break
for i in reversed(to_remove): # Remove the dominated hofer
self.remove(i)
if not is_dominated and not has_twin:
self.insert(ind)
######################################
# GA Crossovers #
######################################
def cxTwoPoints(ind1, ind2):
"""Execute a two points crossover on the input individuals. The two
individuals are modified in place. This operation apply on an individual
composed of a list of attributes and act as follow ::
>>> ind1 = [A(1), ..., A(i), ..., A(j), ..., A(m)] #doctest: +SKIP
>>> ind2 = [B(1), ..., B(i), ..., B(j), ..., B(k)]
>>> # Crossover with mating points 1 < i < j <= min(m, k) + 1
>>> cxTwoPoints(ind1, ind2)
>>> print ind1, len(ind1)
[A(1), ..., B(i), ..., B(j-1), A(j), ..., A(m)], m
>>> print ind2, len(ind2)
[B(1), ..., A(i), ..., A(j-1), B(j), ..., B(k)], k
This function use the :func:`~random.randint` function from the python base
:mod:`random` module.
"""
size = min(len(ind1), len(ind2))
cxpoint1 = random.randint(1, size)
cxpoint2 = random.randint(1, size - 1)
if cxpoint2 >= cxpoint1:
cxpoint2 += 1
else: # Swap the two cx points
cxpoint1, cxpoint2 = cxpoint2, cxpoint1
ind1[cxpoint1:cxpoint2], ind2[cxpoint1:cxpoint2] \
= ind2[cxpoint1:cxpoint2], ind1[cxpoint1:cxpoint2]
return ind1, ind2
def cxOnePoint(ind1, ind2):
"""Execute a one point crossover on the input individuals.
The two individuals are modified in place. This operation apply on an
individual composed of a list of attributes
and act as follow ::
>>> ind1 = [A(1), ..., A(n), ..., A(m)] #doctest: +SKIP
>>> ind2 = [B(1), ..., B(n), ..., B(k)]
>>> # Crossover with mating point i, 1 < i <= min(m, k)
>>> cxOnePoint(ind1, ind2)
>>> print ind1, len(ind1)
[A(1), ..., B(i), ..., B(k)], k
>>> print ind2, len(ind2)
[B(1), ..., A(i), ..., A(m)], m
This function use the :func:`~random.randint` function from the
python base :mod:`random` module.
"""
size = min(len(ind1), len(ind2))
cxpoint = random.randint(1, size - 1)
ind1[cxpoint:], ind2[cxpoint:] = ind2[cxpoint:], ind1[cxpoint:]
return ind1, ind2
def cxUniform(ind1, ind2, indpb):
"""Execute a uniform crossover that modify in place the two individuals.
The genes are swapped according to the *indpb* probability.
This function use the :func:`~random.random` function from the python base
:mod:`random` module.
"""
size = min(len(ind1), len(ind2))
for i in xrange(size):
if random.random() < indpb:
ind1[i], ind2[i] = ind2[i], ind1[i]
return ind1, ind2
def cxPartialyMatched(ind1, ind2):
"""Execute a partially matched crossover (PMX) on the input individuals.
The two individuals are modified in place. This crossover expect iterable
individuals of indices, the result for any other type of individuals is
unpredictable.
Moreover, this crossover consists of generating two children by matching
pairs of values in a certain range of the two parents and swapping the values
of those indexes. For more details see Goldberg and Lingel, "Alleles,
loci, and the traveling salesman problem", 1985.
For example, the following parents will produce the two following children
when mated with crossover points ``a = 2`` and ``b = 4``. ::
>>> ind1 = [0, 1, 2, 3, 4]
>>> ind2 = [1, 2, 3, 4, 0]
>>> cxPartialyMatched(ind1, ind2)
>>> print ind1
[0, 2, 3, 1, 4]
>>> print ind2
[2, 3, 1, 4, 0]
This function use the :func:`~random.randint` function from the python base
:mod:`random` module.
"""
size = min(len(ind1), len(ind2))
p1, p2 = [0]*size, [0]*size
# Initialize the position of each indices in the individuals
for i in xrange(size):
p1[ind1[i]] = i
p2[ind2[i]] = i
# Choose crossover points
cxpoint1 = random.randint(0, size)
cxpoint2 = random.randint(0, size - 1)
if cxpoint2 >= cxpoint1:
cxpoint2 += 1
else: # Swap the two cx points
cxpoint1, cxpoint2 = cxpoint2, cxpoint1
# Apply crossover between cx points
for i in xrange(cxpoint1, cxpoint2):
# Keep track of the selected values
temp1 = ind1[i]
temp2 = ind2[i]
# Swap the matched value
ind1[i], ind1[p1[temp2]] = temp2, temp1
ind2[i], ind2[p2[temp1]] = temp1, temp2
# Position bookkeeping
p1[temp1], p1[temp2] = p1[temp2], p1[temp1]
p2[temp1], p2[temp2] = p2[temp2], p2[temp1]
return ind1, ind2
def cxUniformPartialyMatched(ind1, ind2, indpb):
"""Execute a uniform partially matched crossover (UPMX) on the input
individuals. The two individuals are modified in place. This crossover
expect iterable individuals of indices, the result for any other type of
individuals is unpredictable.
Moreover, this crossover consists of generating two children by matching
pairs of values chosen at random with a probability of *indpb* in the two
parents and swapping the values of those indexes. For more details see
Cicirello and Smith, "Modeling GA performance for control parameter
optimization", 2000.
For example, the following parents will produce the two following children
when mated with the chosen points ``[0, 1, 0, 0, 1]``. ::
>>> ind1 = [0, 1, 2, 3, 4] #doctest: +SKIP
>>> ind2 = [1, 2, 3, 4, 0]
>>> cxUniformPartialyMatched(ind1, ind2)
>>> print ind1
[4, 2, 1, 3, 0]
>>> print ind2
[2, 1, 3, 0, 4]
This function use the :func:`~random.random` and :func:`~random.randint`
functions from the python base :mod:`random` module.
"""
size = min(len(ind1), len(ind2))
p1, p2 = [0]*size, [0]*size
# Initialize the position of each indices in the individuals
for i in xrange(size):
p1[ind1[i]] = i
p2[ind2[i]] = i
for i in xrange(size):
if random.random < indpb:
# Keep track of the selected values
temp1 = ind1[i]
temp2 = ind2[i]
# Swap the matched value
ind1[i], ind1[p1[temp2]] = temp2, temp1
ind2[i], ind2[p2[temp1]] = temp1, temp2
# Position bookkeeping
p1[temp1], p1[temp2] = p1[temp2], p1[temp1]
p2[temp1], p2[temp2] = p2[temp2], p2[temp1]
return ind1, ind2
def cxBlend(ind1, ind2, alpha):
"""Executes a blend crossover that modify in-place the input individuals.
The blend crossover expect individuals formed of a list of floating point
numbers.
This function use the :func:`~random.random` function from the python base
:mod:`random` module.
"""
size = min(len(ind1), len(ind2))
for i in xrange(size):
gamma = (1. + 2. * alpha) * random.random() - alpha
x1 = ind1[i]
x2 = ind2[i]
ind1[i] = (1. - gamma) * x1 + gamma * x2
ind2[i] = gamma * x1 + (1. - gamma) * x2
return ind1, ind2
def cxSimulatedBinary(ind1, ind2, nu):
"""Executes a simulated binary crossover that modify in-place the input
individuals. The simulated binary crossover expect individuals formed of
a list of floating point numbers.
This function use the :func:`~random.random` function from the python base
:mod:`random` module.
"""
size = min(len(ind1), len(ind2))
for i in xrange(size):
rand = random.random()
if rand <= 0.5:
beta = 2. * rand
else:
beta = 1. / (2. * (1. - rand))
beta **= 1. / (nu + 1.)
x1 = ind1[i]
x2 = ind2[i]
ind1[i] = 0.5 * (((1 + beta) * x1) + ((1 - beta) * x2))
ind2[i] = 0.5 * (((1 - beta) * x1) + ((1 + beta) * x2))
return ind1, ind2
######################################
# Messy Crossovers #
######################################
def cxMessyOnePoint(ind1, ind2):
"""Execute a one point crossover that will in most cases change the
individuals size. This operation apply on an individual composed
of a list of attributes and act as follow ::
>>> ind1 = [A(1), ..., A(i), ..., A(m)] #doctest: +SKIP
>>> ind2 = [B(1), ..., B(j), ..., B(n)]
>>> # Crossover with mating points i, j, 1 <= i <= m, 1 <= j <= n
>>> cxMessyOnePoint(ind1, ind2)
>>> print ind1, len(ind1)
[A(1), ..., A(i - 1), B(j), ..., B(n)], n + j - i
>>> print ind2, len(ind2)
[B(1), ..., B(j - 1), A(i), ..., A(m)], m + i - j
This function use the :func:`~random.randint` function from the python base
:mod:`random` module.
"""
cxpoint1 = random.randint(0, len(ind1))
cxpoint2 = random.randint(0, len(ind2))
ind1[cxpoint1:], ind2[cxpoint2:] = ind2[cxpoint2:], ind1[cxpoint1:]
return ind1, ind2
######################################
# ES Crossovers #
######################################
def cxESBlend(ind1, ind2, alpha):
"""Execute a blend crossover on both, the individual and the strategy. The
individuals must have a :attr:`strategy` attribute. Adjustement of the
minimal strategy shall be done after the call to this function using a
decorator, for example ::
def checkStrategy(minstrategy):
def decMinStrategy(func):
def wrapMinStrategy(*args, **kargs):
children = func(*args, **kargs)
for child in children:
if child.strategy < minstrategy:
child.strategy = minstrategy
return children
return wrapMinStrategy
return decMinStrategy
toolbox.register("mate", tools.cxEsBlend, alpha=ALPHA)
toolbox.decorate("mate", checkStrategy(minstrategy=0.01))
"""
size = min(len(ind1), len(ind2))
for indx in xrange(size):
# Blend the values
gamma = (1. + 2. * alpha) * random.random() - alpha
x1 = ind1[indx]
x2 = ind2[indx]
ind1[indx] = (1. - gamma) * x1 + gamma * x2
ind2[indx] = gamma * x1 + (1. - gamma) * x2
# Blend the strategies
gamma = (1. + 2. * alpha) * random.random() - alpha
s1 = ind1.strategy[indx]
s2 = ind2.strategy[indx]
ind1.strategy[indx] = (1. - gamma) * s1 + gamma * s2
ind2.strategy[indx] = gamma * s1 + (1. - gamma) * s2
return ind1, ind2
def cxESTwoPoints(ind1, ind2):
"""Execute a classical two points crossover on both the individual and
its strategy. The crossover points for the individual and the strategy
are the same.
"""
size = min(len(ind1), len(ind2))
pt1 = random.randint(1, size)
pt2 = random.randint(1, size - 1)
if pt2 >= pt1:
pt2 += 1
else: # Swap the two cx points
pt1, pt2 = pt2, pt1
ind1[pt1:pt2], ind2[pt1:pt2] = ind2[pt1:pt2], ind1[pt1:pt2]
ind1.strategy[pt1:pt2], ind2.strategy[pt1:pt2] = \
ind2.strategy[pt1:pt2], ind1.strategy[pt1:pt2]
return ind1, ind2
######################################
# GA Mutations #
######################################
def mutGaussian(individual, mu, sigma, indpb):
"""This function applies a gaussian mutation of mean *mu* and standard
deviation *sigma* on the input individual and
returns the mutant. The *individual* is left intact and the mutant is an
independant copy. This mutation expects an iterable individual composed of
real valued attributes. The *mutIndxPb* argument is the probability of each
attribute to be mutated.
.. note::
The mutation is not responsible for constraints checking, because
there is too many possibilities for
resetting the values. Which way is closer to the representation used
is up to you.
One easy way to add constraint checking to an operator is to
use the function decoration in the toolbox. See the multi-objective
example (moga_kursawefct.py) for an explicit example.
This function uses the :func:`~random.random` and :func:`~random.gauss`
functions from the python base :mod:`random` module.
"""
for i in xrange(len(individual)):
if random.random() < indpb:
individual[i] += random.gauss(mu, sigma)
return individual,
def mutShuffleIndexes(individual, indpb):
"""Shuffle the attributes of the input individual and return the mutant.
The *individual* is left intact and the mutant is an independent copy. The
*individual* is expected to be iterable. The *shuffleIndxPb* argument is the
probability of each attribute to be moved.
This function uses the :func:`~random.random` and :func:`~random.randint`
functions from the python base :mod:`random` module.
"""
size = len(individual)
for i in xrange(size):
if random.random() < indpb:
swap_indx = random.randint(0, size - 2)
if swap_indx >= i:
swap_indx += 1
individual[i], individual[swap_indx] = \
individual[swap_indx], individual[i]
return individual,
def mutFlipBit(individual, indpb):
"""Flip the value of the attributes of the input individual and return the
mutant. The *individual* is left intact and the mutant is an independent
copy. The *individual* is expected to be iterable and the values of the
attributes shall stay valid after the ``not`` operator is called on them.
The *flipIndxPb* argument is the probability of each attribute to be
flipped.
This function uses the :func:`~random.random` function from the python base
:mod:`random` module.
"""
for indx in xrange(len(individual)):
if random.random() < indpb:
individual[indx] = not individual[indx]
return individual,
######################################
# ES Mutations #
######################################
def mutESLogNormal(individual, c, indpb):
"""Mutate an evolution strategy according to its :attr:`strategy`
attribute as described in *Beyer and Schwefel, 2002, Evolution strategies
- A Comprehensive Introduction*. The individual is first mutated by a
normal distribution of mean 0 and standard deviation of
:math:`\\boldsymbol{\sigma}_{t-1}` then the strategy is mutated according
to an extended log normal rule,
:math:`\\boldsymbol{\sigma}_t = \\exp(\\tau_0 \mathcal{N}_0(0, 1)) \\left[
\\sigma_{t-1, 1}\\exp(\\tau \mathcal{N}_1(0, 1)), \ldots, \\sigma_{t-1, n}
\\exp(\\tau \mathcal{N}_n(0, 1))\\right]`, with :math:`\\tau_0 =
\\frac{c}{\\sqrt{2n}}` and :math:`\\tau = \\frac{c}{\\sqrt{2\\sqrt{n}}}`.
A recommended choice is :math:`c=1` when using a :math:`(10, 100)`
evolution strategy (Beyer and Schwefel, 2002).
The strategy shall be the same size as the individual. Each index
(strategy and attribute) is mutated with probability *indpb*. In order to
limit the strategy, use a decorator as shown in the :func:`cxESBlend`
function.
"""
size = len(individual)
t = c / math.sqrt(2. * math.sqrt(size))
t0 = c / math.sqrt(2. * size)
n = random.gauss(0, 1)
t0_n = t0 * n
for indx in xrange(size):
if random.random() < indpb:
individual[indx] += individual.strategy[indx] * random.gauss(0, 1)
individual.strategy[indx] *= math.exp(t0_n + t * random.gauss(0, 1))
return individual,
######################################
# Selections #
######################################
def selRandom(individuals, k):
"""Select *k* individuals at random from the input *individuals* with
replacement. The list returned contains references to the input
*individuals*.
This function uses the :func:`~random.choice` function from the
python base :mod:`random` module.
"""
return [random.choice(individuals) for i in xrange(k)]
def selBest(individuals, k):
"""Select the *k* best individuals among the input *individuals*. The
list returned contains references to the input *individuals*.
"""
return sorted(individuals, key=attrgetter("fitness"), reverse=True)[:k]
def selWorst(individuals, k):
"""Select the *k* worst individuals among the input *individuals*. The
list returned contains references to the input *individuals*.
"""
return sorted(individuals, key=attrgetter("fitness"))[:k]
def selTournament(individuals, k, tournsize):
"""Select *k* individuals from the input *individuals* using *k*
tournaments of *tournSize* individuals. The list returned contains
references to the input *individuals*.
This function uses the :func:`~random.choice` function from the python base
:mod:`random` module.
"""
chosen = []
for i in xrange(k):
chosen.append(random.choice(individuals))
for j in xrange(tournsize - 1):
aspirant = random.choice(individuals)
if aspirant.fitness > chosen[i].fitness:
chosen[i] = aspirant
return chosen
def selRoulette(individuals, k):
"""Select *k* individuals from the input *individuals* using *k*
spins of a roulette. The selection is made by looking only at the first
objective of each individual. The list returned contains references to
the input *individuals*.
This function uses the :func:`~random.random` function from the python base
:mod:`random` module.
.. warning::
The roulette selection by definition cannot be used for minimization
or when the fitness can be smaller or equal to 0.
"""
s_inds = sorted(individuals, key=attrgetter("fitness"), reverse=True)
sum_fits = sum(ind.fitness.values[0] for ind in individuals)
chosen = []
for i in xrange(k):
u = random.random() * sum_fits
sum_ = 0
for ind in s_inds:
sum_ += ind.fitness.values[0]
if sum_ > u:
chosen.append(ind)
break
return chosen
######################################
# Non-Dominated Sorting (NSGA-II) #
######################################
def selNSGA2(individuals, k):
"""Apply NSGA-II selection operator on the *individuals*. Usually,
the size of *individuals* will be larger than *k* because any individual
present in *individuals* will appear in the returned list at most once.
Having the size of *individuals* equals to *n* will have no effect other
than sorting the population according to a non-domination scheme. The list
returned contains references to the input *individuals*.
For more details on the NSGA-II operator see Deb, Pratab, Agarwal,
and Meyarivan, "A fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II", 2002.
"""
pareto_fronts = sortFastND(individuals, k)
chosen = list(chain(*pareto_fronts[:-1]))
k = k - len(chosen)
if k > 0:
chosen.extend(sortCrowdingDist(pareto_fronts[-1], k))
return chosen
def sortFastND(individuals, k, first_front_only=False):
"""Sort the first *k* *individuals* according the the fast non-dominated
sorting algorithm.
"""
N = len(individuals)
pareto_fronts = []
if k == 0:
return pareto_fronts
pareto_fronts.append([])
pareto_sorted = 0
dominating_inds = [0] * N
dominated_inds = [list() for i in xrange(N)]
# Rank first Pareto front
for i in xrange(N):
for j in xrange(i+1, N):
if individuals[j].fitness.isDominated(individuals[i].fitness):
dominating_inds[j] += 1
dominated_inds[i].append(j)
elif individuals[i].fitness.isDominated(individuals[j].fitness):
dominating_inds[i] += 1
dominated_inds[j].append(i)
if dominating_inds[i] == 0:
pareto_fronts[-1].append(i)
pareto_sorted += 1
if not first_front_only:
# Rank the next front until all individuals are sorted or the given
# number of individual are sorted
N = min(N, k)
while pareto_sorted < N:
pareto_fronts.append([])
for indice_p in pareto_fronts[-2]:
for indice_d in dominated_inds[indice_p]:
dominating_inds[indice_d] -= 1
if dominating_inds[indice_d] == 0:
pareto_fronts[-1].append(indice_d)
pareto_sorted += 1
return [[individuals[index] for index in front] for front in pareto_fronts]
def sortCrowdingDist(individuals, k):
"""Sort the individuals according to the crowding distance."""
if len(individuals) == 0:
return []
distances = [0.0] * len(individuals)
crowding = [(ind, i) for i, ind in enumerate(individuals)]
number_objectives = len(individuals[0].fitness.values)
inf = float("inf") # It is four times faster to compare with a local
# variable than create the float("inf") each time
for i in xrange(number_objectives):
crowding.sort(key=lambda element: element[0].fitness.values[i])
distances[crowding[0][1]] = float("inf")
distances[crowding[-1][1]] = float("inf")
for j in xrange(1, len(crowding) - 1):
if distances[crowding[j][1]] < inf:
distances[crowding[j][1]] += \
crowding[j + 1][0].fitness.values[i] - \
crowding[j - 1][0].fitness.values[i]
sorted_dist = sorted([(dist, i) for i, dist in enumerate(distances)],
key=lambda value: value[0], reverse=True)
return (individuals[index] for dist, index in sorted_dist[:k])
######################################
# Strength Pareto (SPEA-II) #
######################################
def selSPEA2(individuals, k):
"""Apply SPEA-II selection operator on the *individuals*. Usually,
the size of *individuals* will be larger than *n* because any individual
present in *individuals* will appear in the returned list at most once.
Having the size of *individuals* equals to *n* will have no effect other
than sorting the population according to a strength Pareto scheme. The list
returned contains references to the input *individuals*.
For more details on the SPEA-II operator see Zitzler, Laumanns and Thiele,
"SPEA 2: Improving the strength Pareto evolutionary algorithm", 2001.
"""
N = len(individuals)
L = len(individuals[0].fitness.values)
K = math.sqrt(N)
strength_fits = [0] * N
fits = [0] * N
dominating_inds = [list() for i in xrange(N)]
for i in xrange(N):
for j in xrange(i + 1, N):
if individuals[i].fitness.isDominated(individuals[j].fitness):
strength_fits[j] += 1
dominating_inds[i].append(j)
elif individuals[j].fitness.isDominated(individuals[i].fitness):
strength_fits[i] += 1
dominating_inds[j].append(i)
for i in xrange(N):
for j in dominating_inds[i]:
fits[i] += strength_fits[j]
# Choose all non-dominated individuals
chosen_indices = [i for i in xrange(N) if fits[i] < 1]
if len(chosen_indices) < k: # The archive is too small
for i in xrange(N):
distances = [0.0] * N
for j in xrange(i + 1, N):
dist = 0.0
for l in xrange(L):
val = individuals[i].fitness.values[l] - \
individuals[j].fitness.values[l]
dist += val * val
distances[j] = dist
kth_dist = _randomizedSelect(distances, 0, N - 1, K)
density = 1.0 / (kth_dist + 2.0)
fits[i] += density
next_indices = [(fits[i], i) for i in xrange(N) \
if not i in chosen_indices]
next_indices.sort()
#print next_indices
chosen_indices += [i for _, i in next_indices[:k - len(chosen_indices)]]
elif len(chosen_indices) > k: # The archive is too large
N = len(chosen_indices)
distances = [[0.0] * N for i in xrange(N)]
sorted_indices = [[0] * N for i in xrange(N)]
for i in xrange(N):
for j in xrange(i + 1, N):
dist = 0.0
for l in xrange(L):
val = individuals[chosen_indices[i]].fitness.values[l] - \
individuals[chosen_indices[j]].fitness.values[l]
dist += val * val
distances[i][j] = dist
distances[j][i] = dist
distances[i][i] = -1
# Insert sort is faster than quick sort for short arrays
for i in xrange(N):
for j in xrange(1, N):
l = j
while l > 0 and distances[i][j] < distances[i][sorted_indices[i][l - 1]]:
sorted_indices[i][l] = sorted_indices[i][l - 1]
l -= 1
sorted_indices[i][l] = j
size = N
to_remove = []
while size > k:
# Search for minimal distance
min_pos = 0
for i in xrange(1, N):
for j in xrange(1, size):
dist_i_sorted_j = distances[i][sorted_indices[i][j]]
dist_min_sorted_j = distances[min_pos][sorted_indices[min_pos][j]]
if dist_i_sorted_j < dist_min_sorted_j:
min_pos = i
break
elif dist_i_sorted_j > dist_min_sorted_j:
break
# Remove minimal distance from sorted_indices
for i in xrange(N):
distances[i][min_pos] = float("inf")
distances[min_pos][i] = float("inf")
for j in xrange(1, size - 1):
if sorted_indices[i][j] == min_pos:
sorted_indices[i][j] = sorted_indices[i][j + 1]
sorted_indices[i][j + 1] = min_pos
# Remove corresponding individual from chosen_indices
to_remove.append(min_pos)
size -= 1
for index in reversed(sorted(to_remove)):
del chosen_indices[index]
return [individuals[i] for i in chosen_indices]
def _randomizedSelect(array, begin, end, i):
"""Allows to select the ith smallest element from array without sorting it.
Runtime is expected to be O(n).
"""
if begin == end:
return array[begin]
q = _randomizedPartition(array, begin, end)
k = q - begin + 1
if i < k:
return _randomizedSelect(array, begin, q, i)
else:
return _randomizedSelect(array, q + 1, end, i - k)
def _randomizedPartition(array, begin, end):
i = random.randint(begin, end)
array[begin], array[i] = array[i], array[begin]
return _partition(array, begin, end)
def _partition(array, begin, end):
x = array[begin]
i = begin - 1
j = end + 1
while True:
j -= 1
while array[j] > x:
j -= 1
i += 1
while array[i] < x:
i += 1
if i < j:
array[i], array[j] = array[j], array[i]
else:
return j
######################################
# Replacement Strategies (ES) #
######################################
######################################
# Migrations #
######################################
def migRing(populations, k, selection, replacement=None, migarray=None):
"""Perform a ring migration between the *populations*. The migration first
select *k* emigrants from each population using the specified *selection*
operator and then replace *k* individuals from the associated population
in the *migarray* by the emigrants. If no *replacement* operator is
specified, the immigrants will replace the emigrants of the population,
otherwise, the immigrants will replace the individuals selected by the
*replacement* operator. The migration array, if provided, shall contain
each population's index once and only once. If no migration array is
provided, it defaults to a serial ring migration (1 -- 2 -- ... -- n --
1). Selection and replacement function are called using the signature
``selection(populations[i], k)`` and ``replacement(populations[i], k)``.
It is important to note that the replacement strategy must select *k*
**different** individuals. For example, using a traditional tournament for
replacement strategy will thus give undesirable effects, two individuals
will most likely try to enter the same slot.
"""
if migarray is None:
migarray = range(1, len(populations)) + [0]
immigrants = [[] for i in xrange(len(migarray))]
emigrants = [[] for i in xrange(len(migarray))]
for from_deme in xrange(len(migarray)):
emigrants[from_deme].extend(selection(populations[from_deme], k))
if replacement is None:
# If no replacement strategy is selected, replace those who migrate
immigrants[from_deme] = emigrants[from_deme]
else:
# Else select those who will be replaced
immigrants[from_deme].extend(replacement(populations[from_deme], k))
mig_buf = emigrants[0]
for from_deme, to_deme in enumerate(migarray[1:]):
from_deme += 1 # Enumerate starts at 0
for i, immigrant in enumerate(immigrants[to_deme]):
indx = populations[to_deme].index(immigrant)
populations[to_deme][indx] = emigrants[from_deme][i]
to_deme = migarray[0]
for i, immigrant in enumerate(immigrants[to_deme]):
indx = populations[to_deme].index(immigrant)
populations[to_deme][indx] = mig_buf[i]
######################################
# Decoration tool #
######################################
# This function is a simpler version of the decorator module (version 3.2.0)
# from Michele Simionato available at http://pypi.python.org/pypi/decorator.
# Copyright (c) 2005, Michele Simionato
# All rights reserved.
# Modified by Francois-Michel De Rainville, 2010
def decorate(decorator):
"""Decorate a function preserving its signature. There is two way of
using this function, first as a decorator passing the decorator to
use as argument, for example ::
@decorate(a_decorator)
def myFunc(arg1, arg2, arg3="default"):
do_some_work()
return "some_result"
Or as a decorator ::
@decorate
def myDecorator(func):
def wrapFunc(*args, **kargs):
decoration_work()
return func(*args, **kargs)
return wrapFunc
@myDecorator
def myFunc(arg1, arg2, arg3="default"):
do_some_work()
return "some_result"
Using the :mod:`inspect` module, we can retrieve the signature of the
decorated function, what is not possible when not using this method. ::
print inspect.getargspec(myFunc)
It shall return something like ::
(["arg1", "arg2", "arg3"], None, None, ("default",))
This function is a simpler version of the decorator module (version 3.2.0)
from Michele Simionato available at http://pypi.python.org/pypi/decorator.
"""
def wrapDecorate(func):
# From __init__
assert func.__name__
if inspect.isfunction(func):
argspec = inspect.getargspec(func)
defaults = argspec[-1]
signature = inspect.formatargspec(formatvalue=lambda val: "",
*argspec)[1:-1]
elif inspect.isclass(func):
argspec = inspect.getargspec(func.__init__)
defaults = argspec[-1]
signature = inspect.formatargspec(formatvalue=lambda val: "",
*argspec)[1:-1]
if not signature:
raise TypeError("You are decorating a non function: %s" % func)
# From create
src = ("def %(name)s(%(signature)s):\n"
" return _call_(%(signature)s)\n") % dict(name=func.__name__,
signature=signature)
# From make
evaldict = dict(_call_=decorator(func))
reserved_names = set([func.__name__] + \
[arg.strip(' *') for arg in signature.split(',')])
for name in evaldict.iterkeys():
if name in reserved_names:
raise NameError("%s is overridden in\n%s" % (name, src))
try:
# This line does all the dirty work of reassigning the signature
code = compile(src, "<string>", "single")
exec code in evaldict
except:
raise RuntimeError("Error in generated code:\n%s" % src)
new_func = evaldict[func.__name__]
# From update
new_func.__source__ = src
new_func.__name__ = func.__name__
new_func.__doc__ = func.__doc__
new_func.__dict__ = func.__dict__.copy()
new_func.func_defaults = defaults
new_func.__module__ = func.__module__
return new_func
return wrapDecorate
if __name__ == "__main__":
import doctest
import random
random.seed(64)
doctest.run_docstring_examples(initRepeat, globals())
random.seed(64)
doctest.run_docstring_examples(initIterate, globals())
doctest.run_docstring_examples(initCycle, globals())
doctest.run_docstring_examples(Statistics.register, globals())
doctest.run_docstring_examples(Statistics.update, globals())
|