/usr/share/pyshared/treebeard/ns_tree.py is in python-django-treebeard 2.0~beta1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 | """Nested Sets"""
import sys
import operator
if sys.version_info >= (3, 0):
from functools import reduce
from django.core import serializers
from django.db import connection, models, transaction
from django.db.models import Q
from django.utils.translation import ugettext_noop as _
from treebeard.exceptions import InvalidMoveToDescendant
from treebeard.models import Node
class NS_NodeQuerySet(models.query.QuerySet):
"""
Custom queryset for the tree node manager.
Needed only for the customized delete method.
"""
def delete(self, removed_ranges=None):
"""
Custom delete method, will remove all descendant nodes to ensure a
consistent tree (no orphans)
:returns: ``None``
"""
if removed_ranges is not None:
# we already know the children, let's call the default django
# delete method and let it handle the removal of the user's
# foreign keys...
super(NS_NodeQuerySet, self).delete()
cursor = self.model._get_database_cursor('write')
# Now closing the gap (Celko's trees book, page 62)
# We do this for every gap that was left in the tree when the nodes
# were removed. If many nodes were removed, we're going to update
# the same nodes over and over again. This would be probably
# cheaper precalculating the gapsize per intervals, or just do a
# complete reordering of the tree (uses COUNT)...
for tree_id, drop_lft, drop_rgt in sorted(removed_ranges,
reverse=True):
sql, params = self.model._get_close_gap_sql(drop_lft, drop_rgt,
tree_id)
cursor.execute(sql, params)
else:
# we'll have to manually run through all the nodes that are going
# to be deleted and remove nodes from the list if an ancestor is
# already getting removed, since that would be redundant
removed = {}
for node in self.order_by('tree_id', 'lft'):
found = False
for rid, rnode in removed.items():
if node.is_descendant_of(rnode):
found = True
break
if not found:
removed[node.pk] = node
# ok, got the minimal list of nodes to remove...
# we must also remove their descendants
toremove = []
ranges = []
for id, node in removed.items():
toremove.append(Q(lft__range=(node.lft, node.rgt)) &
Q(tree_id=node.tree_id))
ranges.append((node.tree_id, node.lft, node.rgt))
if toremove:
self.model.objects.filter(
reduce(operator.or_,
toremove)
).delete(removed_ranges=ranges)
transaction.commit_unless_managed()
class NS_NodeManager(models.Manager):
""" Custom manager for nodes.
"""
def get_query_set(self):
"""Sets the custom queryset as the default."""
return NS_NodeQuerySet(self.model).order_by('tree_id', 'lft')
class NS_Node(Node):
"""Abstract model to create your own Nested Sets Trees."""
node_order_by = []
lft = models.PositiveIntegerField(db_index=True)
rgt = models.PositiveIntegerField(db_index=True)
tree_id = models.PositiveIntegerField(db_index=True)
depth = models.PositiveIntegerField(db_index=True)
objects = NS_NodeManager()
@classmethod
def add_root(cls, **kwargs):
"""Adds a root node to the tree."""
# do we have a root node already?
last_root = cls.get_last_root_node()
if last_root and last_root.node_order_by:
# there are root nodes and node_order_by has been set
# delegate sorted insertion to add_sibling
return last_root.add_sibling('sorted-sibling', **kwargs)
if last_root:
# adding the new root node as the last one
newtree_id = last_root.tree_id + 1
else:
# adding the first root node
newtree_id = 1
# creating the new object
newobj = cls(**kwargs)
newobj.depth = 1
newobj.tree_id = newtree_id
newobj.lft = 1
newobj.rgt = 2
# saving the instance before returning it
newobj.save()
transaction.commit_unless_managed()
return newobj
@classmethod
def _move_right(cls, tree_id, rgt, lftmove=False, incdec=2):
if lftmove:
lftop = '>='
else:
lftop = '>'
sql = 'UPDATE %(table)s '\
' SET lft = CASE WHEN lft %(lftop)s %(parent_rgt)d '\
' THEN lft %(incdec)+d '\
' ELSE lft END, '\
' rgt = CASE WHEN rgt >= %(parent_rgt)d '\
' THEN rgt %(incdec)+d '\
' ELSE rgt END '\
' WHERE rgt >= %(parent_rgt)d AND '\
' tree_id = %(tree_id)s' % {
'table': connection.ops.quote_name(cls._meta.db_table),
'parent_rgt': rgt,
'tree_id': tree_id,
'lftop': lftop,
'incdec': incdec}
return sql, []
@classmethod
def _move_tree_right(cls, tree_id):
sql = 'UPDATE %(table)s '\
' SET tree_id = tree_id+1 '\
' WHERE tree_id >= %(tree_id)d' % {
'table': connection.ops.quote_name(cls._meta.db_table),
'tree_id': tree_id}
return sql, []
def add_child(self, **kwargs):
"""Adds a child to the node."""
if not self.is_leaf():
# there are child nodes, delegate insertion to add_sibling
if self.node_order_by:
pos = 'sorted-sibling'
else:
pos = 'last-sibling'
last_child = self.get_last_child()
last_child._cached_parent_obj = self
return last_child.add_sibling(pos, **kwargs)
# we're adding the first child of this node
sql, params = self.__class__._move_right(self.tree_id,
self.rgt, False, 2)
# creating a new object
newobj = self.__class__(**kwargs)
newobj.tree_id = self.tree_id
newobj.depth = self.depth + 1
newobj.lft = self.lft + 1
newobj.rgt = self.lft + 2
# this is just to update the cache
self.rgt += 2
newobj._cached_parent_obj = self
cursor = self._get_database_cursor('write')
cursor.execute(sql, params)
# saving the instance before returning it
newobj.save()
transaction.commit_unless_managed()
return newobj
def add_sibling(self, pos=None, **kwargs):
"""Adds a new node as a sibling to the current node object."""
pos = self._prepare_pos_var_for_add_sibling(pos)
# creating a new object
newobj = self.__class__(**kwargs)
newobj.depth = self.depth
sql = None
target = self
if target.is_root():
newobj.lft = 1
newobj.rgt = 2
if pos == 'sorted-sibling':
siblings = list(target.get_sorted_pos_queryset(
target.get_siblings(), newobj))
if siblings:
pos = 'left'
target = siblings[0]
else:
pos = 'last-sibling'
last_root = target.__class__.get_last_root_node()
if (
(pos == 'last-sibling') or
(pos == 'right' and target == last_root)
):
newobj.tree_id = last_root.tree_id + 1
else:
newpos = {'first-sibling': 1,
'left': target.tree_id,
'right': target.tree_id + 1}[pos]
sql, params = target.__class__._move_tree_right(newpos)
newobj.tree_id = newpos
else:
newobj.tree_id = target.tree_id
if pos == 'sorted-sibling':
siblings = list(target.get_sorted_pos_queryset(
target.get_siblings(), newobj))
if siblings:
pos = 'left'
target = siblings[0]
else:
pos = 'last-sibling'
if pos in ('left', 'right', 'first-sibling'):
siblings = list(target.get_siblings())
if pos == 'right':
if target == siblings[-1]:
pos = 'last-sibling'
else:
pos = 'left'
found = False
for node in siblings:
if found:
target = node
break
elif node == target:
found = True
if pos == 'left':
if target == siblings[0]:
pos = 'first-sibling'
if pos == 'first-sibling':
target = siblings[0]
move_right = self.__class__._move_right
if pos == 'last-sibling':
newpos = target.get_parent().rgt
sql, params = move_right(target.tree_id, newpos, False, 2)
elif pos == 'first-sibling':
newpos = target.lft
sql, params = move_right(target.tree_id, newpos - 1, False, 2)
elif pos == 'left':
newpos = target.lft
sql, params = move_right(target.tree_id, newpos, True, 2)
newobj.lft = newpos
newobj.rgt = newpos + 1
# saving the instance before returning it
if sql:
cursor = self._get_database_cursor('write')
cursor.execute(sql, params)
newobj.save()
transaction.commit_unless_managed()
return newobj
def move(self, target, pos=None):
"""
Moves the current node and all it's descendants to a new position
relative to another node.
"""
pos = self._prepare_pos_var_for_move(pos)
cls = self.__class__
parent = None
if pos in ('first-child', 'last-child', 'sorted-child'):
# moving to a child
if target.is_leaf():
parent = target
pos = 'last-child'
else:
target = target.get_last_child()
pos = {'first-child': 'first-sibling',
'last-child': 'last-sibling',
'sorted-child': 'sorted-sibling'}[pos]
if target.is_descendant_of(self):
raise InvalidMoveToDescendant(
_("Can't move node to a descendant."))
if self == target and (
(pos == 'left') or
(pos in ('right', 'last-sibling') and
target == target.get_last_sibling()) or
(pos == 'first-sibling' and
target == target.get_first_sibling())):
# special cases, not actually moving the node so no need to UPDATE
return
if pos == 'sorted-sibling':
siblings = list(target.get_sorted_pos_queryset(
target.get_siblings(), self))
if siblings:
pos = 'left'
target = siblings[0]
else:
pos = 'last-sibling'
if pos in ('left', 'right', 'first-sibling'):
siblings = list(target.get_siblings())
if pos == 'right':
if target == siblings[-1]:
pos = 'last-sibling'
else:
pos = 'left'
found = False
for node in siblings:
if found:
target = node
break
elif node == target:
found = True
if pos == 'left':
if target == siblings[0]:
pos = 'first-sibling'
if pos == 'first-sibling':
target = siblings[0]
# ok let's move this
cursor = self._get_database_cursor('write')
move_right = cls._move_right
gap = self.rgt - self.lft + 1
sql = None
target_tree = target.tree_id
# first make a hole
if pos == 'last-child':
newpos = parent.rgt
sql, params = move_right(target.tree_id, newpos, False, gap)
elif target.is_root():
newpos = 1
if pos == 'last-sibling':
target_tree = target.get_siblings().reverse()[0].tree_id + 1
elif pos == 'first-sibling':
target_tree = 1
sql, params = cls._move_tree_right(1)
elif pos == 'left':
sql, params = cls._move_tree_right(target.tree_id)
else:
if pos == 'last-sibling':
newpos = target.get_parent().rgt
sql, params = move_right(target.tree_id, newpos, False, gap)
elif pos == 'first-sibling':
newpos = target.lft
sql, params = move_right(target.tree_id,
newpos - 1, False, gap)
elif pos == 'left':
newpos = target.lft
sql, params = move_right(target.tree_id, newpos, True, gap)
if sql:
cursor.execute(sql, params)
# we reload 'self' because lft/rgt may have changed
fromobj = cls.objects.get(pk=self.pk)
depthdiff = target.depth - fromobj.depth
if parent:
depthdiff += 1
# move the tree to the hole
sql = "UPDATE %(table)s "\
" SET tree_id = %(target_tree)d, "\
" lft = lft + %(jump)d , "\
" rgt = rgt + %(jump)d , "\
" depth = depth + %(depthdiff)d "\
" WHERE tree_id = %(from_tree)d AND "\
" lft BETWEEN %(fromlft)d AND %(fromrgt)d" % {
'table': connection.ops.quote_name(cls._meta.db_table),
'from_tree': fromobj.tree_id,
'target_tree': target_tree,
'jump': newpos - fromobj.lft,
'depthdiff': depthdiff,
'fromlft': fromobj.lft,
'fromrgt': fromobj.rgt}
cursor.execute(sql, [])
# close the gap
sql, params = cls._get_close_gap_sql(fromobj.lft,
fromobj.rgt, fromobj.tree_id)
cursor.execute(sql, params)
transaction.commit_unless_managed()
@classmethod
def _get_close_gap_sql(cls, drop_lft, drop_rgt, tree_id):
sql = 'UPDATE %(table)s '\
' SET lft = CASE '\
' WHEN lft > %(drop_lft)d '\
' THEN lft - %(gapsize)d '\
' ELSE lft END, '\
' rgt = CASE '\
' WHEN rgt > %(drop_lft)d '\
' THEN rgt - %(gapsize)d '\
' ELSE rgt END '\
' WHERE (lft > %(drop_lft)d '\
' OR rgt > %(drop_lft)d) AND '\
' tree_id=%(tree_id)d' % {
'table': connection.ops.quote_name(cls._meta.db_table),
'gapsize': drop_rgt - drop_lft + 1,
'drop_lft': drop_lft,
'tree_id': tree_id}
return sql, []
@classmethod
def load_bulk(cls, bulk_data, parent=None, keep_ids=False):
"""Loads a list/dictionary structure to the tree."""
# tree, iterative preorder
added = []
if parent:
parent_id = parent.pk
else:
parent_id = None
# stack of nodes to analize
stack = [(parent_id, node) for node in bulk_data[::-1]]
foreign_keys = cls.get_foreign_keys()
while stack:
parent_id, node_struct = stack.pop()
# shallow copy of the data strucure so it doesn't persist...
node_data = node_struct['data'].copy()
cls._process_foreign_keys(foreign_keys, node_data)
if keep_ids:
node_data['id'] = node_struct['id']
if parent_id:
parent = cls.objects.get(pk=parent_id)
node_obj = parent.add_child(**node_data)
else:
node_obj = cls.add_root(**node_data)
added.append(node_obj.pk)
if 'children' in node_struct:
# extending the stack with the current node as the parent of
# the new nodes
stack.extend([
(node_obj.pk, node)
for node in node_struct['children'][::-1]
])
transaction.commit_unless_managed()
return added
def get_children(self):
""":returns: A queryset of all the node's children"""
return self.get_descendants().filter(depth=self.depth + 1)
def get_depth(self):
""":returns: the depth (level) of the node"""
return self.depth
def is_leaf(self):
""":returns: True if the node is a leaf node (else, returns False)"""
return self.rgt - self.lft == 1
def get_root(self):
""":returns: the root node for the current node object."""
if self.lft == 1:
return self
return self.__class__.objects.get(tree_id=self.tree_id, lft=1)
def is_root(self):
""":returns: True if the node is a root node (else, returns False)"""
return self.lft == 1
def get_siblings(self):
"""
:returns: A queryset of all the node's siblings, including the node
itself.
"""
if self.lft == 1:
return self.get_root_nodes()
return self.get_parent(True).get_children()
@classmethod
def dump_bulk(cls, parent=None, keep_ids=True):
"""Dumps a tree branch to a python data structure."""
qset = cls._get_serializable_model().get_tree(parent)
ret, lnk = [], {}
for pyobj in qset:
serobj = serializers.serialize('python', [pyobj])[0]
# django's serializer stores the attributes in 'fields'
fields = serobj['fields']
depth = fields['depth']
# this will be useless in load_bulk
del fields['lft']
del fields['rgt']
del fields['depth']
del fields['tree_id']
if 'id' in fields:
# this happens immediately after a load_bulk
del fields['id']
newobj = {'data': fields}
if keep_ids:
newobj['id'] = serobj['pk']
if (not parent and depth == 1) or\
(parent and depth == parent.depth):
ret.append(newobj)
else:
parentobj = pyobj.get_parent()
parentser = lnk[parentobj.pk]
if 'children' not in parentser:
parentser['children'] = []
parentser['children'].append(newobj)
lnk[pyobj.pk] = newobj
return ret
@classmethod
def get_tree(cls, parent=None):
"""
:returns:
A *queryset* of nodes ordered as DFS, including the parent.
If no parent is given, all trees are returned.
"""
if parent is None:
# return the entire tree
return cls.objects.all()
if parent.is_leaf():
return cls.objects.filter(pk=parent.pk)
return cls.objects.filter(
tree_id=parent.tree_id,
lft__range=(parent.lft, parent.rgt - 1))
def get_descendants(self):
"""
:returns: A queryset of all the node's descendants as DFS, doesn't
include the node itself
"""
if self.is_leaf():
return self.__class__.objects.none()
return self.__class__.get_tree(self).exclude(pk=self.pk)
def get_descendant_count(self):
""":returns: the number of descendants of a node."""
return (self.rgt - self.lft - 1) / 2
def get_ancestors(self):
"""
:returns: A queryset containing the current node object's ancestors,
starting by the root node and descending to the parent.
"""
if self.is_root():
return self.__class__.objects.none()
return self.__class__.objects.filter(
tree_id=self.tree_id,
lft__lt=self.lft,
rgt__gt=self.rgt)
def is_descendant_of(self, node):
"""
:returns: ``True`` if the node if a descendant of another node given
as an argument, else, returns ``False``
"""
return (
self.tree_id == node.tree_id and
self.lft > node.lft and
self.rgt < node.rgt
)
def get_parent(self, update=False):
"""
:returns: the parent node of the current node object.
Caches the result in the object itself to help in loops.
"""
if self.is_root():
return
try:
if update:
del self._cached_parent_obj
else:
return self._cached_parent_obj
except AttributeError:
pass
# parent = our most direct ancestor
self._cached_parent_obj = self.get_ancestors().reverse()[0]
return self._cached_parent_obj
@classmethod
def get_root_nodes(cls):
""":returns: A queryset containing the root nodes in the tree."""
return cls.objects.filter(lft=1)
class Meta:
"""Abstract model."""
abstract = True
|