This file is indexed.

/usr/share/pyshared/treebeard/ns_tree.py is in python-django-treebeard 2.0~beta1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
"""Nested Sets"""

import sys
import operator

if sys.version_info >= (3, 0):
    from functools import reduce

from django.core import serializers
from django.db import connection, models, transaction
from django.db.models import Q
from django.utils.translation import ugettext_noop as _

from treebeard.exceptions import InvalidMoveToDescendant
from treebeard.models import Node


class NS_NodeQuerySet(models.query.QuerySet):
    """
    Custom queryset for the tree node manager.

    Needed only for the customized delete method.
    """

    def delete(self, removed_ranges=None):
        """
        Custom delete method, will remove all descendant nodes to ensure a
        consistent tree (no orphans)

        :returns: ``None``
        """
        if removed_ranges is not None:
            # we already know the children, let's call the default django
            # delete method and let it handle the removal of the user's
            # foreign keys...
            super(NS_NodeQuerySet, self).delete()
            cursor = self.model._get_database_cursor('write')

            # Now closing the gap (Celko's trees book, page 62)
            # We do this for every gap that was left in the tree when the nodes
            # were removed.  If many nodes were removed, we're going to update
            # the same nodes over and over again. This would be probably
            # cheaper precalculating the gapsize per intervals, or just do a
            # complete reordering of the tree (uses COUNT)...
            for tree_id, drop_lft, drop_rgt in sorted(removed_ranges,
                                                      reverse=True):
                sql, params = self.model._get_close_gap_sql(drop_lft, drop_rgt,
                                                            tree_id)
                cursor.execute(sql, params)
        else:
            # we'll have to manually run through all the nodes that are going
            # to be deleted and remove nodes from the list if an ancestor is
            # already getting removed, since that would be redundant
            removed = {}
            for node in self.order_by('tree_id', 'lft'):
                found = False
                for rid, rnode in removed.items():
                    if node.is_descendant_of(rnode):
                        found = True
                        break
                if not found:
                    removed[node.pk] = node

            # ok, got the minimal list of nodes to remove...
            # we must also remove their descendants
            toremove = []
            ranges = []
            for id, node in removed.items():
                toremove.append(Q(lft__range=(node.lft, node.rgt)) &
                                Q(tree_id=node.tree_id))
                ranges.append((node.tree_id, node.lft, node.rgt))
            if toremove:
                self.model.objects.filter(
                    reduce(operator.or_,
                           toremove)
                ).delete(removed_ranges=ranges)
        transaction.commit_unless_managed()


class NS_NodeManager(models.Manager):
    """ Custom manager for nodes.
    """

    def get_query_set(self):
        """Sets the custom queryset as the default."""
        return NS_NodeQuerySet(self.model).order_by('tree_id', 'lft')


class NS_Node(Node):
    """Abstract model to create your own Nested Sets Trees."""
    node_order_by = []

    lft = models.PositiveIntegerField(db_index=True)
    rgt = models.PositiveIntegerField(db_index=True)
    tree_id = models.PositiveIntegerField(db_index=True)
    depth = models.PositiveIntegerField(db_index=True)

    objects = NS_NodeManager()

    @classmethod
    def add_root(cls, **kwargs):
        """Adds a root node to the tree."""

        # do we have a root node already?
        last_root = cls.get_last_root_node()

        if last_root and last_root.node_order_by:
            # there are root nodes and node_order_by has been set
            # delegate sorted insertion to add_sibling
            return last_root.add_sibling('sorted-sibling', **kwargs)

        if last_root:
            # adding the new root node as the last one
            newtree_id = last_root.tree_id + 1
        else:
            # adding the first root node
            newtree_id = 1

        # creating the new object
        newobj = cls(**kwargs)
        newobj.depth = 1
        newobj.tree_id = newtree_id
        newobj.lft = 1
        newobj.rgt = 2
        # saving the instance before returning it
        newobj.save()
        transaction.commit_unless_managed()
        return newobj

    @classmethod
    def _move_right(cls, tree_id, rgt, lftmove=False, incdec=2):
        if lftmove:
            lftop = '>='
        else:
            lftop = '>'
        sql = 'UPDATE %(table)s '\
              ' SET lft = CASE WHEN lft %(lftop)s %(parent_rgt)d '\
              '                THEN lft %(incdec)+d '\
              '                ELSE lft END, '\
              '     rgt = CASE WHEN rgt >= %(parent_rgt)d '\
              '                THEN rgt %(incdec)+d '\
              '                ELSE rgt END '\
              ' WHERE rgt >= %(parent_rgt)d AND '\
              '       tree_id = %(tree_id)s' % {
                  'table': connection.ops.quote_name(cls._meta.db_table),
                  'parent_rgt': rgt,
                  'tree_id': tree_id,
                  'lftop': lftop,
                  'incdec': incdec}
        return sql, []

    @classmethod
    def _move_tree_right(cls, tree_id):
        sql = 'UPDATE %(table)s '\
              ' SET tree_id = tree_id+1 '\
              ' WHERE tree_id >= %(tree_id)d' % {
                  'table': connection.ops.quote_name(cls._meta.db_table),
                  'tree_id': tree_id}
        return sql, []

    def add_child(self, **kwargs):
        """Adds a child to the node."""
        if not self.is_leaf():
            # there are child nodes, delegate insertion to add_sibling
            if self.node_order_by:
                pos = 'sorted-sibling'
            else:
                pos = 'last-sibling'
            last_child = self.get_last_child()
            last_child._cached_parent_obj = self
            return last_child.add_sibling(pos, **kwargs)

        # we're adding the first child of this node
        sql, params = self.__class__._move_right(self.tree_id,
                                                 self.rgt, False, 2)

        # creating a new object
        newobj = self.__class__(**kwargs)
        newobj.tree_id = self.tree_id
        newobj.depth = self.depth + 1
        newobj.lft = self.lft + 1
        newobj.rgt = self.lft + 2

        # this is just to update the cache
        self.rgt += 2

        newobj._cached_parent_obj = self

        cursor = self._get_database_cursor('write')
        cursor.execute(sql, params)

        # saving the instance before returning it
        newobj.save()
        transaction.commit_unless_managed()

        return newobj

    def add_sibling(self, pos=None, **kwargs):
        """Adds a new node as a sibling to the current node object."""

        pos = self._prepare_pos_var_for_add_sibling(pos)

        # creating a new object
        newobj = self.__class__(**kwargs)
        newobj.depth = self.depth

        sql = None
        target = self

        if target.is_root():
            newobj.lft = 1
            newobj.rgt = 2
            if pos == 'sorted-sibling':
                siblings = list(target.get_sorted_pos_queryset(
                    target.get_siblings(), newobj))
                if siblings:
                    pos = 'left'
                    target = siblings[0]
                else:
                    pos = 'last-sibling'

            last_root = target.__class__.get_last_root_node()
            if (
                    (pos == 'last-sibling') or
                    (pos == 'right' and target == last_root)
            ):
                newobj.tree_id = last_root.tree_id + 1
            else:
                newpos = {'first-sibling': 1,
                          'left': target.tree_id,
                          'right': target.tree_id + 1}[pos]
                sql, params = target.__class__._move_tree_right(newpos)

                newobj.tree_id = newpos
        else:
            newobj.tree_id = target.tree_id

            if pos == 'sorted-sibling':
                siblings = list(target.get_sorted_pos_queryset(
                    target.get_siblings(), newobj))
                if siblings:
                    pos = 'left'
                    target = siblings[0]
                else:
                    pos = 'last-sibling'

            if pos in ('left', 'right', 'first-sibling'):
                siblings = list(target.get_siblings())

                if pos == 'right':
                    if target == siblings[-1]:
                        pos = 'last-sibling'
                    else:
                        pos = 'left'
                        found = False
                        for node in siblings:
                            if found:
                                target = node
                                break
                            elif node == target:
                                found = True
                if pos == 'left':
                    if target == siblings[0]:
                        pos = 'first-sibling'
                if pos == 'first-sibling':
                    target = siblings[0]

            move_right = self.__class__._move_right

            if pos == 'last-sibling':
                newpos = target.get_parent().rgt
                sql, params = move_right(target.tree_id, newpos, False, 2)
            elif pos == 'first-sibling':
                newpos = target.lft
                sql, params = move_right(target.tree_id, newpos - 1, False, 2)
            elif pos == 'left':
                newpos = target.lft
                sql, params = move_right(target.tree_id, newpos, True, 2)

            newobj.lft = newpos
            newobj.rgt = newpos + 1

        # saving the instance before returning it
        if sql:
            cursor = self._get_database_cursor('write')
            cursor.execute(sql, params)
        newobj.save()

        transaction.commit_unless_managed()

        return newobj

    def move(self, target, pos=None):
        """
        Moves the current node and all it's descendants to a new position
        relative to another node.
        """

        pos = self._prepare_pos_var_for_move(pos)
        cls = self.__class__

        parent = None

        if pos in ('first-child', 'last-child', 'sorted-child'):
            # moving to a child
            if target.is_leaf():
                parent = target
                pos = 'last-child'
            else:
                target = target.get_last_child()
                pos = {'first-child': 'first-sibling',
                       'last-child': 'last-sibling',
                       'sorted-child': 'sorted-sibling'}[pos]

        if target.is_descendant_of(self):
            raise InvalidMoveToDescendant(
                _("Can't move node to a descendant."))

        if self == target and (
            (pos == 'left') or
            (pos in ('right', 'last-sibling') and
             target == target.get_last_sibling()) or
            (pos == 'first-sibling' and
             target == target.get_first_sibling())):
            # special cases, not actually moving the node so no need to UPDATE
            return

        if pos == 'sorted-sibling':
            siblings = list(target.get_sorted_pos_queryset(
                target.get_siblings(), self))
            if siblings:
                pos = 'left'
                target = siblings[0]
            else:
                pos = 'last-sibling'
        if pos in ('left', 'right', 'first-sibling'):
            siblings = list(target.get_siblings())

            if pos == 'right':
                if target == siblings[-1]:
                    pos = 'last-sibling'
                else:
                    pos = 'left'
                    found = False
                    for node in siblings:
                        if found:
                            target = node
                            break
                        elif node == target:
                            found = True
            if pos == 'left':
                if target == siblings[0]:
                    pos = 'first-sibling'
            if pos == 'first-sibling':
                target = siblings[0]

        # ok let's move this
        cursor = self._get_database_cursor('write')
        move_right = cls._move_right
        gap = self.rgt - self.lft + 1
        sql = None
        target_tree = target.tree_id

        # first make a hole
        if pos == 'last-child':
            newpos = parent.rgt
            sql, params = move_right(target.tree_id, newpos, False, gap)
        elif target.is_root():
            newpos = 1
            if pos == 'last-sibling':
                target_tree = target.get_siblings().reverse()[0].tree_id + 1
            elif pos == 'first-sibling':
                target_tree = 1
                sql, params = cls._move_tree_right(1)
            elif pos == 'left':
                sql, params = cls._move_tree_right(target.tree_id)
        else:
            if pos == 'last-sibling':
                newpos = target.get_parent().rgt
                sql, params = move_right(target.tree_id, newpos, False, gap)
            elif pos == 'first-sibling':
                newpos = target.lft
                sql, params = move_right(target.tree_id,
                                         newpos - 1, False, gap)
            elif pos == 'left':
                newpos = target.lft
                sql, params = move_right(target.tree_id, newpos, True, gap)

        if sql:
            cursor.execute(sql, params)

        # we reload 'self' because lft/rgt may have changed

        fromobj = cls.objects.get(pk=self.pk)

        depthdiff = target.depth - fromobj.depth
        if parent:
            depthdiff += 1

        # move the tree to the hole
        sql = "UPDATE %(table)s "\
              " SET tree_id = %(target_tree)d, "\
              "     lft = lft + %(jump)d , "\
              "     rgt = rgt + %(jump)d , "\
              "     depth = depth + %(depthdiff)d "\
              " WHERE tree_id = %(from_tree)d AND "\
              "     lft BETWEEN %(fromlft)d AND %(fromrgt)d" % {
                  'table': connection.ops.quote_name(cls._meta.db_table),
                  'from_tree': fromobj.tree_id,
                  'target_tree': target_tree,
                  'jump': newpos - fromobj.lft,
                  'depthdiff': depthdiff,
                  'fromlft': fromobj.lft,
                  'fromrgt': fromobj.rgt}
        cursor.execute(sql, [])

        # close the gap
        sql, params = cls._get_close_gap_sql(fromobj.lft,
                                             fromobj.rgt, fromobj.tree_id)
        cursor.execute(sql, params)

        transaction.commit_unless_managed()

    @classmethod
    def _get_close_gap_sql(cls, drop_lft, drop_rgt, tree_id):
        sql = 'UPDATE %(table)s '\
              ' SET lft = CASE '\
              '           WHEN lft > %(drop_lft)d '\
              '           THEN lft - %(gapsize)d '\
              '           ELSE lft END, '\
              '     rgt = CASE '\
              '           WHEN rgt > %(drop_lft)d '\
              '           THEN rgt - %(gapsize)d '\
              '           ELSE rgt END '\
              ' WHERE (lft > %(drop_lft)d '\
              '     OR rgt > %(drop_lft)d) AND '\
              '     tree_id=%(tree_id)d' % {
                  'table': connection.ops.quote_name(cls._meta.db_table),
                  'gapsize': drop_rgt - drop_lft + 1,
                  'drop_lft': drop_lft,
                  'tree_id': tree_id}
        return sql, []

    @classmethod
    def load_bulk(cls, bulk_data, parent=None, keep_ids=False):
        """Loads a list/dictionary structure to the tree."""

        # tree, iterative preorder
        added = []
        if parent:
            parent_id = parent.pk
        else:
            parent_id = None
        # stack of nodes to analize
        stack = [(parent_id, node) for node in bulk_data[::-1]]
        foreign_keys = cls.get_foreign_keys()
        while stack:
            parent_id, node_struct = stack.pop()
            # shallow copy of the data strucure so it doesn't persist...
            node_data = node_struct['data'].copy()
            cls._process_foreign_keys(foreign_keys, node_data)
            if keep_ids:
                node_data['id'] = node_struct['id']
            if parent_id:
                parent = cls.objects.get(pk=parent_id)
                node_obj = parent.add_child(**node_data)
            else:
                node_obj = cls.add_root(**node_data)
            added.append(node_obj.pk)
            if 'children' in node_struct:
                # extending the stack with the current node as the parent of
                # the new nodes
                stack.extend([
                    (node_obj.pk, node)
                    for node in node_struct['children'][::-1]
                ])
        transaction.commit_unless_managed()
        return added

    def get_children(self):
        """:returns: A queryset of all the node's children"""
        return self.get_descendants().filter(depth=self.depth + 1)

    def get_depth(self):
        """:returns: the depth (level) of the node"""
        return self.depth

    def is_leaf(self):
        """:returns: True if the node is a leaf node (else, returns False)"""
        return self.rgt - self.lft == 1

    def get_root(self):
        """:returns: the root node for the current node object."""
        if self.lft == 1:
            return self
        return self.__class__.objects.get(tree_id=self.tree_id, lft=1)

    def is_root(self):
        """:returns: True if the node is a root node (else, returns False)"""
        return self.lft == 1

    def get_siblings(self):
        """
        :returns: A queryset of all the node's siblings, including the node
            itself.
        """
        if self.lft == 1:
            return self.get_root_nodes()
        return self.get_parent(True).get_children()

    @classmethod
    def dump_bulk(cls, parent=None, keep_ids=True):
        """Dumps a tree branch to a python data structure."""
        qset = cls._get_serializable_model().get_tree(parent)
        ret, lnk = [], {}
        for pyobj in qset:
            serobj = serializers.serialize('python', [pyobj])[0]
            # django's serializer stores the attributes in 'fields'
            fields = serobj['fields']
            depth = fields['depth']
            # this will be useless in load_bulk
            del fields['lft']
            del fields['rgt']
            del fields['depth']
            del fields['tree_id']
            if 'id' in fields:
                # this happens immediately after a load_bulk
                del fields['id']

            newobj = {'data': fields}
            if keep_ids:
                newobj['id'] = serobj['pk']

            if (not parent and depth == 1) or\
               (parent and depth == parent.depth):
                ret.append(newobj)
            else:
                parentobj = pyobj.get_parent()
                parentser = lnk[parentobj.pk]
                if 'children' not in parentser:
                    parentser['children'] = []
                parentser['children'].append(newobj)
            lnk[pyobj.pk] = newobj
        return ret

    @classmethod
    def get_tree(cls, parent=None):
        """
        :returns:

            A *queryset* of nodes ordered as DFS, including the parent.
            If no parent is given, all trees are returned.
        """
        if parent is None:
            # return the entire tree
            return cls.objects.all()
        if parent.is_leaf():
            return cls.objects.filter(pk=parent.pk)
        return cls.objects.filter(
            tree_id=parent.tree_id,
            lft__range=(parent.lft, parent.rgt - 1))

    def get_descendants(self):
        """
        :returns: A queryset of all the node's descendants as DFS, doesn't
            include the node itself
        """
        if self.is_leaf():
            return self.__class__.objects.none()
        return self.__class__.get_tree(self).exclude(pk=self.pk)

    def get_descendant_count(self):
        """:returns: the number of descendants of a node."""
        return (self.rgt - self.lft - 1) / 2

    def get_ancestors(self):
        """
        :returns: A queryset containing the current node object's ancestors,
            starting by the root node and descending to the parent.
        """
        if self.is_root():
            return self.__class__.objects.none()
        return self.__class__.objects.filter(
            tree_id=self.tree_id,
            lft__lt=self.lft,
            rgt__gt=self.rgt)

    def is_descendant_of(self, node):
        """
        :returns: ``True`` if the node if a descendant of another node given
            as an argument, else, returns ``False``
        """
        return (
            self.tree_id == node.tree_id and
            self.lft > node.lft and
            self.rgt < node.rgt
        )

    def get_parent(self, update=False):
        """
        :returns: the parent node of the current node object.
            Caches the result in the object itself to help in loops.
        """
        if self.is_root():
            return
        try:
            if update:
                del self._cached_parent_obj
            else:
                return self._cached_parent_obj
        except AttributeError:
            pass
        # parent = our most direct ancestor
        self._cached_parent_obj = self.get_ancestors().reverse()[0]
        return self._cached_parent_obj

    @classmethod
    def get_root_nodes(cls):
        """:returns: A queryset containing the root nodes in the tree."""
        return cls.objects.filter(lft=1)

    class Meta:
        """Abstract model."""
        abstract = True