This file is indexed.

/usr/lib/python2.7/dist-packages/FIAT/functional.py is in python-fiat 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (C) 2008 Robert C. Kirby (Texas Tech University)
#
# This file is part of FIAT.
#
# FIAT is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FIAT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FIAT. If not, see <http://www.gnu.org/licenses/>.

# functionals require:
# - a degree of accuracy (-1 indicates that it works for all functions
#   such as point evaluation)
# - a reference element domain
# - type information

import numpy,string

# Import AD modules from ScientificPython
import Scientific.Functions.Derivatives as Derivatives
import Scientific.Functions.FirstDerivatives as FirstDerivatives
from functools import reduce

def index_iterator( shp ):
    """Constructs a generator iterating over all indices in
    shp in generalized column-major order  So if shp = (2,2), then we
    construct the sequence (0,0),(0,1),(1,0),(1,1)"""
    if len(shp) == 0:
        return
    elif len( shp ) == 1:
        for i in range( shp[0] ):
            yield [i]
    else:
        shp_foo = shp[1:]
        for i in range( shp[0] ):
            for foo in index_iterator( shp_foo ):
                yield [i] + foo

# also put in a "jet_dict" that maps
# pt --> {wt, multiindex, comp}
# the multiindex is an iterable of nonnegative
# integers

class Functional:
    """Class implementing an abstract functional.
    All functionals are discrete in the sense that
    the are written as a weighted sum of (components of) their
    argument evaluated at particular points."""
    def __init__( self , ref_el , target_shape , \
                  pt_dict , deriv_dict , functional_type ):
        self.ref_el = ref_el
        self.target_shape = target_shape
        self.pt_dict = pt_dict
        self.deriv_dict = deriv_dict
        self.functional_type = functional_type
        if len(deriv_dict) > 0:
            per_point = reduce( lambda a,b : a + b , list(deriv_dict.values()) )
            alphas = \
                [ foo[1] for foo in per_point ]
            self.max_deriv_order = max( [ sum( foo ) for foo in alphas ] )
        else:
            self.max_deriv_order = 0
        return
    def evaluate( self , f ):
        """Evaluates the functional on some callable object f."""
        result = 0

        # non-derivative part
        for pt in pt_dict:
            wc_list = pt_dict[pt]
            for (w,c) in wc_list:
                if comp == tuple:
                    result += w * f(pt)
                else:
                    result += w * f(pt)[comp]

        for pt in self.deriv_dict:
            dpt = tuple( [ Derivatives.DerivVar( pt[i] , i , self.max_deriv_order ) \
                               for i in range( len( pt ) ) ] )
            for (w,a,c) in self.deriv_dict[pt]:
                fpt = f( dpt )
                order = sum( a )
                if c == tuple():
                    val_cur = fpt[order]
                else:
                    val_cur = fpt[c][order]
                for i in range( len[a] ):
                    for j in range( a[j] ):
                        val_cur = val_cur[i]

                result += val_cur

        return result

    def get_point_dict( self ):
        """Returns the functional information, which is a dictionary
        mapping each point in the support of the functional to a list
        of pairs containing the weight and component."""
        return self.pt_dict
    def get_reference_element( self ):
        """Returns the reference element."""
        return self.ref_el
    def get_type_tag( self ):
        """Returns the type of function (e.g. point evaluation or
        normal component, which is probably handy for clients of FIAT"""
        return self.functional_type

    # overload me in subclasses to make life easier!!
    def to_riesz( self , poly_set ):
        """Constructs an array representation of the functional over
        the base of the given polynomial_set so that f(phi) for any
        phi in poly_set is given by a dot product."""
        es = poly_set.get_expansion_set()
        ed = poly_set.get_embedded_degree()
        pt_dict = self.get_point_dict()

        pts = list(pt_dict.keys())

        # bfs is matrix that is pdim rows by num_pts cols
        # where pdim is the polynomial dimension

        bfs = es.tabulate( ed , pts )

        result = numpy.zeros( poly_set.coeffs.shape[1:] , "d" )

        shp = poly_set.get_shape()


        # loop over points
        for j in range( len( pts ) ):
            pt_cur = pts[j]
            wc_list = pt_dict[ pt_cur ]

            # loop over expansion functions
            for i in range( bfs.shape[0] ):
                for (w,c) in wc_list:
                    result[c][i] += w * bfs[i,j]

        def pt_to_dpt( pt , dorder ):
            dpt = []
            for i in range( len( pt ) ):
                dpt.append( Derivatives.DerivVar( pt[i] , i , dorder ) )
            return tuple( dpt )

        # loop over deriv points
        dpt_dict = self.deriv_dict
        mdo = self.max_deriv_order

        dpts = list(dpt_dict.keys())
        dpts_dv = [ pt_to_dpt( pt , mdo ) for pt in dpts ]

        dbfs = es.tabulate( ed , dpts_dv )

        for j in range( len( dpts ) ):
            dpt_cur = dpts[j]
            for i in range( dbfs.shape[0] ):
                for (w,a,c) in dpt_dict[ dpt_cur ]:
                    dval_cur = dbfs[i,j][sum(a)]
                    for k in range( len( a ) ):
                        for l in range( a[k] ):
                            dval_cur = dval_cur[k]

                    result[c][i] += w * dval_cur

        return result

    def tostr( self ):
        return self.functional_type


class PointEvaluation( Functional ):
    """Class representing point evaluation of scalar functions at a
    particular point x."""
    def __init__( self , ref_el , x ):
        pt_dict = { x : [ (1.0,tuple()) ] }
        Functional.__init__( self , ref_el , \
                             tuple() , \
                             pt_dict , {} ,
                             "PointEval" )
        return
    def tostr( self ):
        import string
        x = list(map(str,list(self.pt_dict.keys())[0]))
        return "u(%s)"%(string.join(x,","),)

class ComponentPointEvaluation( Functional ):
    """Class representing point evaluation of a particular component
    of a vector function at a particular point x."""
    def __init__( self , ref_el , comp , shp , x ):
        if len( shp ) != 1:
            raise Exception("Illegal shape")
        if comp < 0 or comp >= shp[0]:
            raise Exception("Illegal component")
        self.comp = comp
        pt_dict = { x : [ ( 1.0 , (comp,) ) ] }
        Functional.__init__( self , ref_el , \
                                 shp, pt_dict , {}, \
                                 "ComponentPointEval" )

    def tostr( self ):
        import string
        x = list(map(str,list(self.pt_dict.keys())[0]))
        return "(u[%d](%s)"%(self.comp,string.join(x,","))


class PointDerivative( Functional ):
    """Class representing point partial differentiation of scalar
    functions at a particular point x."""
    def __init__( self , ref_el , x , alpha ):
        dpt_dict = { x : [ (1.0,alpha,tuple()) ] }
        self.alpha = alpha
        self.order = sum( self.alpha )

        Functional.__init__( self , ref_el , tuple() , {} , \
                             dpt_dict , "PointDeriv" )

        return
    def to_riesz( self , poly_set ):
        x = list(self.deriv_dict.keys())[0]
        dx = tuple( [ Derivatives.DerivVar( x[i] , i , self.order ) \
                          for i in range( len( x ) ) ] )

        es = poly_set.get_expansion_set()
        ed = poly_set.get_embedded_degree()

        bfs = es.tabulate( ed , [ dx ] )[:,0]


        idx = []
        for i in range( len( self.alpha ) ):
            for j in range( self.alpha[i] ):
                idx.append( i )
        idx = tuple( idx )

        return numpy.array( [ numpy.array(b[self.order])[idx] for b in bfs ] )

class PointNormalDerivative( Functional ):
    def __init__( self , ref_el , facet_no , pt ):
        n = ref_el.compute_normal( facet_no )
        self.n = n
        sd = ref_el.get_spatial_dimension()

        alphas = []
        for i in range( sd ):
            alpha = [0]*sd
            alpha[i] = 1
            alphas.append( alpha )

        dpt_dict = { pt : [ (n[i],alphas[i],tuple()) for i in range( sd ) ] }

        Functional.__init__( self , ref_el , tuple() , {} , \
                             dpt_dict , "PointNormalDeriv" )

        return

    def to_riesz( self , poly_set ):
        x = list(self.deriv_dict.keys())[0]
        dx = tuple( [ FirstDerivatives.DerivVar( x[i] , i ) \
                          for i in range( len( x ) ) ] )

        es = poly_set.get_expansion_set()
        ed = poly_set.get_embedded_degree()

        bfs = es.tabulate( ed , [ dx ] )[:,0]

        bfs_grad = numpy.array( [ b[1] for b in bfs ] )
        return numpy.dot( bfs_grad , self.n )


class IntegralMoment (Functional):
    """
    An IntegralMoment is a functional

    """
    def __init__( self , ref_el , Q , f_at_qpts , comp = tuple() ,
                  shp = tuple()):
        """
        Create IntegralMoment

        *Arguments*

          ref_el
              The reference element (cell)
          Q (QuadratureRule)
              A quadrature rule for the integral
          f_at_qpts
              ???
          comp (tuple)
              A component ??? (Optional)
          shp  (tuple)
              The shape ??? (Optional)
        """
        qpts,qwts = Q.get_points(), Q.get_weights()
        pt_dict = {}
        self.comp = comp
        for i in range( len( qpts ) ):
            pt_cur = tuple(qpts[i])
            pt_dict[ pt_cur ] = [ (qwts[i] * f_at_qpts[i] , comp ) ]
        Functional.__init__( self , ref_el , shp , \
                                 pt_dict , {} , "IntegralMoment" )

    def to_riesz( self , poly_set ):
        T = poly_set.get_reference_element()
        sd = T.get_spatial_dimension()
        es = poly_set.get_expansion_set()
        ed = poly_set.get_embedded_degree()
        pts = list(self.pt_dict.keys())
        bfs = es.tabulate( ed , pts )
        wts = numpy.array( [ foo[0][0] for foo in list(self.pt_dict.values()) ] )
        result = numpy.zeros( poly_set.coeffs.shape[1:] , "d" )
        result[self.comp,:] = numpy.dot( bfs , wts )
        return result

class FrobeniusIntegralMoment( Functional ):
    def __init__( self , ref_el , Q , f_at_qpts ):
        # f_at_qpts is num components x num_qpts
        if len( Q.get_points() ) != f_at_qpts.shape[1]:
            raise Exception("Mismatch in number of quadrature points and values")

        # make sure that shp is same shape as f given
        shp = (f_at_qpts.shape[0],)

        qpts,qwts = Q.get_points(), Q.get_weights()
        pt_dict = {}
        for i in range( len( qpts ) ):
            pt_cur = tuple(qpts[i])
            pt_dict[pt_cur] = [(qwts[i] * f_at_qpts[j,i] , (j, ) )
                               for j in range(f_at_qpts.shape[0])]

        Functional.__init__( self , ref_el , shp , \
                                 pt_dict , {} , "FrobeniusIntegralMoment" )



# point normals happen on a d-1 dimensional facet
# pt is the "physical" point on that facet
class PointNormalEvaluation( Functional ):
    """Implements the evaluation of the normal component of a vector at a
    point on a facet of codimension 1."""
    def __init__( self , ref_el , facet_no , pt ):
        n = ref_el.compute_normal( facet_no )
        self.n = n
        sd = ref_el.get_spatial_dimension()

        pt_dict = { pt : [ (n[i],(i,)) for i in range( sd ) ] }

        shp = (sd,)
        Functional.__init__( self , ref_el , shp , \
                             pt_dict , {} , "PointNormalEval" )
        return

class PointEdgeTangentEvaluation( Functional ):
    """Implements the evaluation of the tangential component of a
    vector at a point on a facet of dimension 1."""
    def __init__( self , ref_el , edge_no , pt ):
        t = ref_el.compute_edge_tangent( edge_no )
        self.t = t
        sd = ref_el.get_spatial_dimension()
        pt_dict = { pt : [ (t[i],(i,)) for i in range( sd ) ] }
        shp = (sd,)
        Functional.__init__( self , ref_el  ,shp , \
                             pt_dict , {} , "PointEdgeTangent" )
    def tostr( self ):
        import string
        x = list(map(str,list(self.pt_dict.keys())[0]))
        return "(u.t)(%s)"%(string.join(x,","),)
    def to_riesz( self , poly_set ):
        # should be singleton
        xs = list(self.pt_dict.keys())
        phis = poly_set.get_expansion_set().tabulate( poly_set.get_embedded_degree() , xs )
        return numpy.outer( self.t , phis )


class PointFaceTangentEvaluation( Functional ):
    """Implements the evaluation of a tangential component of a
    vector at a point on a facet of codimension 1."""
    def __init__( self , ref_el , face_no , tno , pt ):
        t = ref_el.compute_face_tangents( face_no )[ tno ]
        self.t = t
        self.tno = tno
        sd = ref_el.get_spatial_dimension()
        pt_dict = { pt : [ (t[i],(i,)) for i in range( sd ) ] }
        shp = (sd,)
        Functional.__init__( self , ref_el  ,shp , \
                             pt_dict , {} , "PointFaceTangent" )
    def tostr( self ):
        import string
        x = list(map(str,list(self.pt_dict.keys())[0]))
        return "(u.t%d)(%s)"%(self.tno,string.join(x,","),)
    def to_riesz( self , poly_set ):
        xs = list(self.pt_dict.keys())
        phis = poly_set.get_expansion_set().tabulate( poly_set.get_embedded_degree() , xs )
        return numpy.outer( self.t , phis )

class PointScaledNormalEvaluation( Functional ):
    """Implements the evaluation of the normal component of a vector at a
    point on a facet of codimension 1, where the normal is scaled by
    the volume of that facet."""
    def __init__( self , ref_el , facet_no , pt ):
        self.n = ref_el.compute_scaled_normal( facet_no )
        sd = ref_el.get_spatial_dimension()
        shp = (sd,)

        pt_dict = { pt : [ (self.n[i],(i,)) for i in range( sd ) ] }
        Functional.__init__( self , ref_el , shp , \
                             pt_dict , {} , "PointScaledNormalEval" )
        return
    def tostr( self ):
        import string
        x = list(map(str,list(self.pt_dict.keys())[0]))
        return "(u.n)(%s)"%(string.join(x,","),)

    def to_riesz( self , poly_set ):
        xs = list(self.pt_dict.keys())
        phis = poly_set.get_expansion_set().tabulate( poly_set.get_embedded_degree() , xs )

        return numpy.outer( self.n , phis )



def moments_against_set( ref_el , U , Q ):
    # check that U and Q are both over ref_el

    qpts = Q.get_points()
    qwts = Q.get_weights()

    Uvals = U.tabulate( pts )

    # handle scalar case

    for i in range( Uvals.shape[0] ):  # loop over members of U
        pass



if __name__=="__main__":
    # test functionals
    from . import polynomial_set, reference_element
    ref_el = reference_element.DefaultTriangle()
    sd = ref_el.get_spatial_dimension()
    U = polynomial_set.ONPolynomialSet( ref_el , 5 )

    f = PointDerivative( ref_el , (0.0,0.0) , (1,0) )
    print(numpy.allclose( Functional.to_riesz( f , U ) , f.to_riesz( U ) ))

    f = PointNormalDerivative( ref_el , 0 , (0.0,0.0) )
    print(numpy.allclose( Functional.to_riesz( f , U ) , f.to_riesz( U ) ))