/usr/lib/python2.7/dist-packages/foolscap/banana.py is in python-foolscap 0.6.4-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 | import struct, time
from twisted.internet import protocol, defer, reactor
from twisted.python.failure import Failure
from twisted.python import log
# make sure to import allslicers, so they all get registered. Even if the
# need for RootSlicer/etc goes away, do the import here anyway.
from foolscap.slicers.allslicers import RootSlicer, RootUnslicer
from foolscap.slicers.allslicers import ReplaceVocabSlicer, AddVocabSlicer
import stringchain
import tokens
from tokens import SIZE_LIMIT, STRING, LIST, INT, NEG, \
LONGINT, LONGNEG, VOCAB, FLOAT, OPEN, CLOSE, ABORT, ERROR, \
PING, PONG, \
BananaError, BananaFailure, Violation
EPSILON = 0.1
def int2b128(integer, stream):
if integer == 0:
stream(chr(0))
return
assert integer > 0, "can only encode positive integers"
while integer:
stream(chr(integer & 0x7f))
integer = integer >> 7
def b1282int(st):
# NOTE that this is little-endian
oneHundredAndTwentyEight = 128
i = 0
place = 0
for char in st:
num = ord(char)
i = i + (num * (oneHundredAndTwentyEight ** place))
place = place + 1
return i
# long_to_bytes and bytes_to_long taken from PyCrypto: Crypto/Util/number.py
def long_to_bytes(n, blocksize=0):
"""long_to_bytes(n:long, blocksize:int) : string
Convert a long integer to a byte string.
If optional blocksize is given and greater than zero, pad the front of
the byte string with binary zeros so that the length is a multiple of
blocksize.
"""
# after much testing, this algorithm was deemed to be the fastest
s = ''
n = long(n)
pack = struct.pack
while n > 0:
s = pack('>I', n & 0xffffffffL) + s
n = n >> 32
# strip off leading zeros
for i in range(len(s)):
if s[i] != '\000':
break
else:
# only happens when n == 0
s = '\000'
i = 0
s = s[i:]
# add back some pad bytes. this could be done more efficiently w.r.t. the
# de-padding being done above, but sigh...
if blocksize > 0 and len(s) % blocksize:
s = (blocksize - len(s) % blocksize) * '\000' + s
return s
def bytes_to_long(s):
"""bytes_to_long(string) : long
Convert a byte string to a long integer.
This is (essentially) the inverse of long_to_bytes().
"""
acc = 0L
unpack = struct.unpack
length = len(s)
if length % 4:
extra = (4 - length % 4)
s = '\000' * extra + s
length = length + extra
for i in range(0, length, 4):
acc = (acc << 32) + unpack('>I', s[i:i+4])[0]
return acc
HIGH_BIT_SET = chr(0x80)
# Banana is a big class. It is split up into three sections: sending,
# receiving, and connection setup. These used to be separate classes, but
# the __init__ functions got too weird.
class Banana(protocol.Protocol):
def __init__(self, features={}):
"""
@param features: a dictionary of negotiated connection features
"""
self.initSend()
self.initReceive()
def populateVocabTable(self, vocabStrings):
"""
I expect a list of strings. I will populate my initial vocab
table (both inbound and outbound) with this list.
It is not safe to use this method once anything has been serialized
onto the wire. This method can only be used to set up the initial
vocab table based upon a negotiated set of common words. The
'initial-vocab-table-index' parameter is used to decide upon the
contents of this table.
"""
out_vocabDict = dict(zip(vocabStrings, range(len(vocabStrings))))
self.outgoingVocabTableWasReplaced(out_vocabDict)
in_vocabDict = dict(zip(range(len(vocabStrings)), vocabStrings))
self.replaceIncomingVocabulary(in_vocabDict)
### connection setup
def connectionMade(self):
if self.debugSend:
print "Banana.connectionMade"
self.initSlicer()
self.initUnslicer()
if self.keepaliveTimeout is not None:
self.dataLastReceivedAt = time.time()
t = reactor.callLater(self.keepaliveTimeout + EPSILON,
self.keepaliveTimerFired)
self.keepaliveTimer = t
self.useKeepalives = True
if self.disconnectTimeout is not None:
self.dataLastReceivedAt = time.time()
t = reactor.callLater(self.disconnectTimeout + EPSILON,
self.disconnectTimerFired)
self.disconnectTimer = t
self.useKeepalives = True
# prime the pump
self.produce()
def connectionLost(self, why):
if self.disconnectTimer:
self.disconnectTimer.cancel()
self.disconnectTimer = None
if self.keepaliveTimer:
self.keepaliveTimer.cancel()
self.keepaliveTimer = None
protocol.Protocol.connectionLost(self, why)
### SendBanana
# called by .send()
# calls transport.write() and transport.loseConnection()
slicerClass = RootSlicer # this is used in connectionMade()
paused = False
streamable = True # this is checked at connectionMade() time
debugSend = False
def initSend(self):
self.openCount = 0
self.outgoingVocabulary = {}
self.nextAvailableOutgoingVocabularyIndex = 0
self.pendingVocabAdditions = set()
def initSlicer(self):
self.rootSlicer = self.slicerClass(self)
self.rootSlicer.allowStreaming(self.streamable)
assert tokens.ISlicer.providedBy(self.rootSlicer)
assert tokens.IRootSlicer.providedBy(self.rootSlicer)
itr = self.rootSlicer.slice()
next = iter(itr).next
top = (self.rootSlicer, next, None)
self.slicerStack = [top]
def send(self, obj):
if self.debugSend: print "Banana.send(%s)" % obj
return self.rootSlicer.send(obj)
def _slice_error(self, f, s):
log.msg("Error in Deferred returned by slicer %s: %s" % (s, f))
self.sendFailed(f)
def produce(self, dummy=None):
# optimize: cache 'next' because we get many more tokens than stack
# pushes/pops
while self.slicerStack and not self.paused:
if self.debugSend: print "produce.loop"
try:
slicer, next, openID = self.slicerStack[-1]
obj = next()
if self.debugSend: print " produce.obj=%s" % (obj,)
if isinstance(obj, defer.Deferred):
for s,n,o in self.slicerStack:
if not s.streamable:
raise Violation("parent not streamable")
obj.addCallback(self.produce)
obj.addErrback(self._slice_error, s)
# this is the primary exit point
break
elif type(obj) in (int, long, float, str):
# sendToken raises a BananaError for weird tokens
self.sendToken(obj)
else:
# newSlicerFor raises a Violation for unsendable types
# pushSlicer calls .slice, which can raise Violation
try:
slicer = self.newSlicerFor(obj)
self.pushSlicer(slicer, obj)
except Violation, v:
# pushSlicer is arranged such that the pushing of
# the Slicer and the sending of the OPEN happen
# together: either both occur or neither occur. In
# addition, there is nothing past the OPEN/push
# which can cause an exception.
# Therefore, if an exception was raised, we know
# that the OPEN has not been sent (so we don't have
# to send an ABORT), and that the new Unslicer has
# not been pushed (so we don't have to pop one from
# the stack)
f = BananaFailure()
if self.debugSend:
print " violation in newSlicerFor:", f
self.handleSendViolation(f,
doPop=False, sendAbort=False)
except StopIteration:
if self.debugSend: print "StopIteration"
self.popSlicer()
except Violation, v:
# Violations that occur because of Constraints are caught
# before the Slicer is pushed. A Violation that is caught
# here was raised inside .next(), or .streamable wasn't
# obeyed. The Slicer should now be abandoned.
if self.debugSend: print " violation in .next:", v
f = BananaFailure()
self.handleSendViolation(f, doPop=True, sendAbort=True)
except:
print "exception in produce"
log.msg("exception in produce")
self.sendFailed(Failure())
# there is no point to raising this again. The Deferreds are
# all errbacked in sendFailed(). This function was called
# inside a Deferred which errbacks to sendFailed(), and
# we've already called that once. The connection will be
# dropped by sendFailed(), and the error is logged, so there
# is nothing left to do.
return
assert self.slicerStack # should never be empty
def handleSendViolation(self, f, doPop, sendAbort):
f.value.setLocation(self.describeSend())
while True:
top = self.slicerStack[-1][0]
if self.debugSend:
print " handleSendViolation.loop, top=%s" % top
# should we send an ABORT? Only if an OPEN has been sent, which
# happens in pushSlicer (if at all).
if sendAbort:
lastOpenID = self.slicerStack[-1][2]
if lastOpenID is not None:
if self.debugSend:
print " sending ABORT(%s)" % lastOpenID
self.sendAbort(lastOpenID)
# should we pop the Slicer? yes
if doPop:
if self.debugSend: print " popping %s" % top
self.popSlicer()
if not self.slicerStack:
if self.debugSend: print "RootSlicer died!"
raise BananaError("Hey! You killed the RootSlicer!")
top = self.slicerStack[-1][0]
# now inform the parent. If they also give up, we will
# loop, popping more Slicers off the stack until the
# RootSlicer ignores the error
if self.debugSend:
print " notifying parent", top
f = top.childAborted(f)
if f:
doPop = True
sendAbort = True
continue
else:
break
# the parent wants to forge ahead
def newSlicerFor(self, obj):
if tokens.ISlicer.providedBy(obj):
return obj
topSlicer = self.slicerStack[-1][0]
# slicerForObject could raise a Violation, for unserializeable types
return topSlicer.slicerForObject(obj)
def pushSlicer(self, slicer, obj):
if self.debugSend: print "push", slicer
assert len(self.slicerStack) < 10000 # failsafe
# if this method raises a Violation, it means that .slice failed,
# and neither the OPEN nor the stack-push has occurred
topSlicer = self.slicerStack[-1][0]
slicer.parent = topSlicer
# we start the Slicer (by getting its iterator) first, so that if it
# fails we can refrain from sending the OPEN (hence we do not have
# to send an ABORT and CLOSE, which simplifies the send logic
# considerably). slicer.slice is the only place where a Violation
# can be raised: it is caught and passed cleanly to the parent. If
# it happens anywhere else, or if any other exception is raised, the
# connection will be dropped.
# the downside to this approach is that .slice happens before
# .registerReference, so any late-validation being done in .slice
# will not be able to detect the fact that this object has already
# begun serialization. Validation performed in .next is ok.
# also note that if .slice is a generator, any exception it raises
# will not occur until .next is called, which happens *after* the
# slicer has been pushed. This check is only useful for .slice
# methods which are *not* generators.
itr = slicer.slice(topSlicer.streamable, self)
next = iter(itr).next
# we are now committed to sending the OPEN token, meaning that
# failures after this point will cause an ABORT/CLOSE to be sent
openID = None
if slicer.sendOpen:
openID = self.sendOpen()
if slicer.trackReferences:
topSlicer.registerReference(openID, obj)
# note that the only reason to hold on to the openID here is for
# the debug/optional copy in the CLOSE token. Consider ripping
# this code out if we decide to stop sending that copy.
slicertuple = (slicer, next, openID)
self.slicerStack.append(slicertuple)
def popSlicer(self):
slicer, next, openID = self.slicerStack.pop()
if openID is not None:
self.sendClose(openID)
if self.debugSend: print "pop", slicer
def describeSend(self):
where = []
for i in self.slicerStack:
try:
piece = i[0].describe()
except:
log.msg("Banana.describeSend")
log.err()
piece = "???"
where.append(piece)
return ".".join(where)
def setOutgoingVocabulary(self, vocabStrings):
"""Schedule a replacement of the outbound VOCAB table.
Higher-level code may call this at any time with a list of strings.
Immediately after the replacement has occured, the outbound VOCAB
table will contain all of the strings in vocabStrings and nothing
else. This table tells the token-sending code which strings to
abbreviate with short integers in a VOCAB token.
This function can be called at any time (even while the protocol is
in the middle of serializing and transmitting some other object)
because it merely schedules a replacement to occur at some point in
the future. A special marker (the ReplaceVocabSlicer) is placed in
the outbound queue, and the table replacement will only happend after
all the items ahead of that marker have been serialized. At the same
time the table is replaced, a (set-vocab..) sequence will be
serialized towards the far end. This insures that we set our outbound
table at the same 'time' as the far end starts using it.
"""
# build a VOCAB message, send it, then set our outgoingVocabulary
# dictionary to start using the new table
assert isinstance(vocabStrings, (list, tuple))
for s in vocabStrings:
assert isinstance(s, str)
vocabDict = dict(zip(vocabStrings, range(len(vocabStrings))))
s = ReplaceVocabSlicer(vocabDict)
# the ReplaceVocabSlicer does some magic to insure the VOCAB message
# does not use vocab tokens itself. This would be legal (sort of a
# differential compression), but confusing. It accomplishes this by
# clearing our self.outgoingVocabulary dict when it begins to be
# serialized.
self.send(s)
# likewise, when it finishes, the ReplaceVocabSlicer replaces our
# self.outgoingVocabulary dict when it has finished sending the
# strings. It is important that this occur in the serialization code,
# or somewhen very close to it, because otherwise there could be a
# race condition that could result in some strings being vocabized
# with the wrong keys.
def addToOutgoingVocabulary(self, value):
"""Schedule 'value' for addition to the outbound VOCAB table.
This may be called at any time. If the string is already scheduled
for addition, or if it is already in the VOCAB table, it will be
ignored. (TODO: does this introduce an annoying-but-not-fatal race
condition?) The string will not actually be added to the table until
the outbound serialization queue has been serviced.
"""
assert isinstance(value, str)
if value in self.outgoingVocabulary:
return
if value in self.pendingVocabAdditions:
return
self.pendingVocabAdditions.add(str)
s = AddVocabSlicer(value)
self.send(s)
def outgoingVocabTableWasReplaced(self, newTable):
# this is called by the ReplaceVocabSlicer to manipulate our table.
# It must certainly *not* be called by higher-level user code.
self.outgoingVocabulary = newTable
if newTable:
maxIndex = max(newTable.values()) + 1
self.nextAvailableOutgoingVocabularyIndex = maxIndex
else:
self.nextAvailableOutgoingVocabularyIndex = 0
def allocateEntryInOutgoingVocabTable(self, string):
assert string not in self.outgoingVocabulary
# TODO: a softer failure more for this assert is to re-send the
# existing key. To make sure that really happens, though, we have to
# remove it from the vocab table, otherwise we'll tokenize the
# string. If we can insure that, then this failure mode would waste
# time and network but would otherwise be harmless.
#
# return self.outgoingVocabulary[string]
self.pendingVocabAdditions.remove(self.value)
index = self.nextAvailableOutgoingVocabularyIndex
self.nextAvailableOutgoingVocabularyIndex = index + 1
return index
def outgoingVocabTableWasAmended(self, index, string):
self.outgoingVocabulary[string] = index
# these methods define how we emit low-level tokens
def sendPING(self, number=0):
if number:
int2b128(number, self.transport.write)
self.transport.write(PING)
def sendPONG(self, number):
if number:
int2b128(number, self.transport.write)
self.transport.write(PONG)
def sendOpen(self):
openID = self.openCount
self.openCount += 1
int2b128(openID, self.transport.write)
self.transport.write(OPEN)
return openID
def sendToken(self, obj):
write = self.transport.write
if isinstance(obj, (int, long)):
if obj >= 2**31:
s = long_to_bytes(obj)
int2b128(len(s), write)
write(LONGINT)
write(s)
elif obj >= 0:
int2b128(obj, write)
write(INT)
elif -obj > 2**31: # NEG is [-2**31, 0)
s = long_to_bytes(-obj)
int2b128(len(s), write)
write(LONGNEG)
write(s)
else:
int2b128(-obj, write)
write(NEG)
elif isinstance(obj, float):
write(FLOAT)
write(struct.pack("!d", obj))
elif isinstance(obj, str):
if self.outgoingVocabulary.has_key(obj):
symbolID = self.outgoingVocabulary[obj]
int2b128(symbolID, write)
write(VOCAB)
else:
self.maybeVocabizeString(obj)
int2b128(len(obj), write)
write(STRING)
write(obj)
else:
raise BananaError, "could not send object: %s" % repr(obj)
def maybeVocabizeString(self, string):
# TODO: keep track of the last 30 strings we've send in full. If this
# string appears more than 3 times on that list, create a vocab item
# for it. Make sure we don't start using the vocab number until the
# ADDVOCAB token has been queued.
if False:
self.addToOutgoingVocabulary(string)
def sendClose(self, openID):
int2b128(openID, self.transport.write)
self.transport.write(CLOSE)
def sendAbort(self, count=0):
int2b128(count, self.transport.write)
self.transport.write(ABORT)
def sendError(self, msg):
if not self.transport:
return
if len(msg) > SIZE_LIMIT:
msg = msg[:SIZE_LIMIT-10] + "..."
int2b128(len(msg), self.transport.write)
self.transport.write(ERROR)
self.transport.write(msg)
# now you should drop the connection
self.transport.loseConnection()
def sendFailed(self, f):
# call this if an exception is raised in transmission. The Failure
# will be logged and the connection will be dropped. This is
# suitable for use as an errback handler.
print "SendBanana.sendFailed:", f
log.msg("Sendfailed.sendfailed")
log.err(f)
try:
if self.transport:
self.transport.loseConnection()
except:
print "exception during transport.loseConnection"
log.err()
try:
self.rootSlicer.connectionLost(f)
except:
print "exception during rootSlicer.connectionLost"
log.err()
### ReceiveBanana
# called with dataReceived()
# calls self.receivedObject()
unslicerClass = RootUnslicer
debugReceive = False
logViolations = False
logReceiveErrors = True
useKeepalives = False
keepaliveTimeout = None
keepaliveTimer = None
disconnectTimeout = None
disconnectTimer = None
def initReceive(self):
self.inOpen = False # set during the Index Phase of an OPEN sequence
self.opentype = [] # accumulates Index Tokens
# to pre-negotiate, set the negotiation parameters and set
# self.negotiated to True. It might instead make sense to fill
# self.buffer with the inbound negotiation block.
self.negotiated = False
self.connectionAbandoned = False
self.buffer = stringchain.StringChain()
self.incomingVocabulary = {}
self.skipBytes = 0 # used to discard a single long token
self.discardCount = 0 # used to discard non-primitive objects
self.exploded = None # last-ditch error catcher
def initUnslicer(self):
self.rootUnslicer = self.unslicerClass(self)
self.receiveStack = [self.rootUnslicer]
self.objectCounter = 0
self.objects = {}
def printStack(self, verbose=0):
print "STACK:"
for s in self.receiveStack:
if verbose:
d = s.__dict__.copy()
del d['protocol']
print " %s: %s" % (s, d)
else:
print " %s" % s
def setObject(self, count, obj):
for i in range(len(self.receiveStack)-1, -1, -1):
self.receiveStack[i].setObject(count, obj)
def getObject(self, count):
for i in range(len(self.receiveStack)-1, -1, -1):
obj = self.receiveStack[i].getObject(count)
if obj is not None:
return obj
raise ValueError, "dangling reference '%d'" % count
def replaceIncomingVocabulary(self, vocabDict):
# maps small integer to string, should be called in response to a
# OPEN(set-vocab) sequence.
self.incomingVocabulary = vocabDict
def addIncomingVocabulary(self, key, value):
# called in response to an OPEN(add-vocab) sequence
self.incomingVocabulary[key] = value
def dataReceived(self, chunk):
if self.connectionAbandoned:
return
if self.useKeepalives:
self.dataLastReceivedAt = time.time()
try:
self.handleData(chunk)
except Exception, e:
if isinstance(e, BananaError):
# only reveal the reason if it is a protocol error
e.where = self.describeReceive()
msg = str(e) # send them the text of the error
else:
msg = ("exception while processing data, more "
"information in the logfiles")
if not self.logReceiveErrors:
msg += ", except that self.logReceiveErrors=False"
msg += ", sucks to be you"
self.sendError(msg)
self.connectionAbandoned = True
self.reportReceiveError(Failure())
def keepaliveTimerFired(self):
self.keepaliveTimer = None
age = time.time() - self.dataLastReceivedAt
if age > self.keepaliveTimeout:
# the connection looks idle, so let's provoke a response
self.sendPING()
# we restart the timer in either case
t = reactor.callLater(self.keepaliveTimeout + EPSILON,
self.keepaliveTimerFired)
self.keepaliveTimer = t
def disconnectTimerFired(self):
self.disconnectTimer = None
age = time.time() - self.dataLastReceivedAt
if age > self.disconnectTimeout:
# the connection looks dead, so drop it
log.msg("disconnectTimeout, no data for %d seconds" % age)
self.connectionTimedOut()
# we assume that connectionTimedOut() will actually drop the
# connection, so we don't restart the timer. TODO: this might not
# be the right thing to do, perhaps we should restart it
# unconditionally.
else:
# we're still ok, so restart the timer
t = reactor.callLater(self.disconnectTimeout + EPSILON,
self.disconnectTimerFired)
self.disconnectTimer = t
def getDataLastReceivedAt(self):
"""If keepalives are enabled, this returns the seconds-since-epoch
when the most recent data was received on this connection. If
keepalives are disabled (which is the detault), it returns None."""
if self.useKeepalives:
return self.dataLastReceivedAt
return None
def connectionTimedOut(self):
# this is to be implemented by higher-level code. It ought to log a
# suitable message and then drop the connection.
pass
def reportReceiveError(self, f):
# tests can override this to stash the failure somewhere else. Tests
# which intentionally cause an error set self.logReceiveErrors=False
# so that the log.err doesn't flunk the test.
log.msg("Banana.reportReceiveError: an error occured during receive")
if self.logReceiveErrors:
log.err(f)
if self.debugReceive:
# trial watches log.err and treats it as a failure, so log the
# exception in a way that doesn't make trial flunk the test
log.msg(f.getBriefTraceback())
def handleData(self, chunk):
# buffer, assemble into tokens
# call self.receiveToken(token) with each
if self.skipBytes:
if len(chunk) <= self.skipBytes:
# skip the whole chunk
self.skipBytes -= len(chunk)
return
# skip part of the chunk, and stop skipping
chunk = chunk[self.skipBytes:]
self.skipBytes = 0
self.buffer.append(chunk)
# Loop through the available input data, extracting one token per
# pass.
while len(self.buffer):
first65 = self.buffer.popleft(65)
pos = 0
for ch in first65:
if ch >= HIGH_BIT_SET:
break
pos = pos + 1
if pos > 64:
# drop the connection. We log more of the buffer, but not
# all of it, to make it harder for someone to spam our
# logs.
s = first65 + self.buffer.popleft(200)
raise BananaError("token prefix is limited to 64 bytes: "
"but got %r" % s)
else:
# we've run out of buffer without seeing the high bit, which
# means we're still waiting for header to finish
self.buffer.appendleft(first65)
return
assert pos <= 64
# At this point, the header and type byte have been received.
# The body may or may not be complete.
typebyte = first65[pos]
if pos:
header = b1282int(first65[:pos])
else:
header = 0
# rejected is set as soon as a violation is detected. It
# indicates that this single token will be rejected.
rejected = False
if self.discardCount:
rejected = True
wasInOpen = self.inOpen
if typebyte == OPEN:
self.inboundObjectCount = self.objectCounter
self.objectCounter += 1
if self.inOpen:
raise BananaError("OPEN token followed by OPEN")
self.inOpen = True
# the inOpen flag is set as soon as the OPEN token is
# witnessed (even it it gets rejected later), because it
# means that there is a new sequence starting that must be
# handled somehow (either discarded or given to a new
# Unslicer).
# The inOpen flag is cleared when the Index Phase ends. There
# are two possibilities: 1) a new Unslicer is pushed, and
# tokens are delivered to it normally. 2) a Violation was
# raised, and the tokens must be discarded
# (self.discardCount++). *any* rejection-caused True->False
# transition of self.inOpen must be accompanied by exactly
# one increment of self.discardCount
# determine if this token will be accepted, and if so, how large
# it is allowed to be (for STRING and LONGINT/LONGNEG)
if ((not rejected) and
(typebyte not in (PING, PONG, ABORT, CLOSE, ERROR))):
# PING, PONG, ABORT, CLOSE, and ERROR are always legal. All
# others (including OPEN) can be rejected by the schema: for
# example, a list of integers would reject STRING, VOCAB, and
# OPEN because none of those will produce integers. If the
# unslicer's .checkToken rejects the tokentype, its
# .receiveChild will immediately get an Failure
try:
# the purpose here is to limit the memory consumed by
# the body of a STRING, OPEN, LONGINT, or LONGNEG token
# (i.e., the size of a primitive type). If the sender
# wants to feed us more data than we want to accept, the
# checkToken() method should raise a Violation. This
# will never be called with ABORT or CLOSE types.
top = self.receiveStack[-1]
if wasInOpen:
top.openerCheckToken(typebyte, header, self.opentype)
else:
top.checkToken(typebyte, header)
except Violation:
rejected = True
f = BananaFailure()
if wasInOpen:
methname = "openerCheckToken"
else:
methname = "checkToken"
self.handleViolation(f, methname, inOpen=self.inOpen)
self.inOpen = False
if typebyte == ERROR and header > SIZE_LIMIT:
# someone is trying to spam us with an ERROR token. Drop
# them with extreme prejudice.
raise BananaError("oversized ERROR token")
self.buffer.appendleft(first65[pos+1:])
# determine what kind of token it is. Each clause finishes in
# one of four ways:
#
# raise BananaError: the protocol was violated so badly there is
# nothing to do for it but hang up abruptly
#
# return: if the token is not yet complete (need more data)
#
# continue: if the token is complete but no object (for
# handleToken) was produced, e.g. OPEN, CLOSE, ABORT
#
# obj=foo: the token is complete and an object was produced
#
# note that if rejected==True, the object is dropped instead of
# being passed up to the current Unslicer
if typebyte == OPEN:
self.inboundOpenCount = header
if rejected:
if self.debugReceive:
print "DROP (OPEN)"
if self.inOpen:
# we are discarding everything at the old level, so
# discard everything in the new level too
self.discardCount += 1
if self.debugReceive:
print "++discardCount (OPEN), now %d" \
% self.discardCount
self.inOpen = False
else:
# the checkToken handleViolation has already started
# discarding this new sequence, we don't have to
pass
else:
self.inOpen = True
self.opentype = []
continue
elif typebyte == CLOSE:
count = header
if self.discardCount:
self.discardCount -= 1
if self.debugReceive:
print "--discardCount (CLOSE), now %d" \
% self.discardCount
else:
self.handleClose(count)
continue
elif typebyte == ABORT:
count = header
# TODO: this isn't really a Violation, but we need something
# to describe it. It does behave identically to what happens
# when receiveChild raises a Violation. The .handleViolation
# will pop the now-useless Unslicer and start discarding
# tokens just as if the Unslicer had made the decision.
if rejected:
if self.debugReceive:
print "DROP (ABORT)"
# I'm ignoring you, LALALALALA.
#
# In particular, do not deliver a second Violation
# because of the ABORT that we're supposed to be
# ignoring because of a first Violation that happened
# earlier.
continue
try:
# slightly silly way to do it, but nice and uniform
raise Violation("ABORT received")
except Violation:
f = BananaFailure()
self.handleViolation(f, "receive-abort")
continue
elif typebyte == ERROR:
strlen = header
if len(self.buffer) >= strlen:
# the whole string is available
obj = self.buffer.popleft(strlen)
# handleError must drop the connection
self.handleError(obj)
return
else:
self.buffer.appendleft(first65[:pos+1])
return # there is more to come
elif typebyte == LIST:
raise BananaError("oldbanana peer detected, " +
"compatibility code not yet written")
#listStack.append((header, []))
elif typebyte == STRING:
strlen = header
if len(self.buffer) >= strlen:
# the whole string is available
obj = self.buffer.popleft(strlen)
# although it might be rejected
else:
# there is more to come
if rejected:
# drop all we have and note how much more should be
# dropped
if self.debugReceive:
print "DROPPED some string bits"
self.skipBytes = strlen - len(self.buffer)
self.buffer.clear()
else:
self.buffer.appendleft(first65[:pos+1])
return
elif typebyte == INT:
obj = int(header)
elif typebyte == NEG:
# -2**31 is too large for a positive int, so go through
# LongType first
obj = int(-long(header))
elif typebyte == LONGINT or typebyte == LONGNEG:
strlen = header
if len(self.buffer) >= strlen:
# the whole number is available
obj = bytes_to_long(self.buffer.popleft(strlen))
if typebyte == LONGNEG:
obj = -obj
# although it might be rejected
else:
# there is more to come
if rejected:
# drop all we have and note how much more should be
# dropped
self.skipBytes = strlen - len(self.buffer)
self.buffer.clear()
else:
self.buffer.appendleft(first65[:pos+1])
return
elif typebyte == VOCAB:
obj = self.incomingVocabulary[header]
# TODO: bail if expanded string is too big
# this actually means doing self.checkToken(VOCAB, len(obj))
# but we have to make sure we handle the rejection properly
elif typebyte == FLOAT:
if len(self.buffer) >= 8:
obj = struct.unpack("!d", self.buffer.popleft(8))[0]
else:
# this case is easier than STRING, because it is only 8
# bytes. We don't bother skipping anything.
self.buffer.appendleft(first65[:pos+1])
return
elif typebyte == PING:
self.sendPONG(header)
continue # otherwise ignored
elif typebyte == PONG:
continue # otherwise ignored
else:
raise BananaError("Invalid Type Byte 0x%x" % ord(typebyte))
if not rejected:
if self.inOpen:
self.handleOpen(self.inboundOpenCount,
self.inboundObjectCount,
obj)
# handleOpen might push a new unslicer and clear
# .inOpen, or leave .inOpen true and append the object
# to .indexOpen
else:
self.handleToken(obj)
else:
if self.debugReceive:
print "DROP", type(obj), obj
pass # drop the object
# while loop ends here
# note: this is redundant, as there are no 'break' statements in that
# loop, and the loop exit condition is 'while len(self.buffer)'
self.buffer.clear()
def handleOpen(self, openCount, objectCount, indexToken):
self.opentype.append(indexToken)
opentype = tuple(self.opentype)
if self.debugReceive:
print "handleOpen(%d,%d,%s)" % (openCount, objectCount, indexToken)
top = self.receiveStack[-1]
try:
# obtain a new Unslicer to handle the object
child = top.doOpen(opentype)
if not child:
if self.debugReceive:
print " doOpen wants more index tokens"
return # they want more index tokens, leave .inOpen=True
if self.debugReceive:
print " opened[%d] with %s" % (openCount, child)
except Violation:
# must discard the rest of the child object. There is no new
# unslicer pushed yet, so we don't use abandonUnslicer
self.inOpen = False
f = BananaFailure()
self.handleViolation(f, "doOpen", inOpen=True)
return
assert tokens.IUnslicer.providedBy(child), "child is %s" % child
self.inOpen = False
child.protocol = self
child.openCount = openCount
child.parent = top
self.receiveStack.append(child)
try:
child.start(objectCount)
except Violation:
# the child is now on top, so use abandonUnslicer to discard the
# rest of the child
f = BananaFailure()
# notifies the new child
self.handleViolation(f, "start")
def handleToken(self, token, ready_deferred=None):
top = self.receiveStack[-1]
if self.debugReceive: print "handleToken(%s)" % (token,)
if ready_deferred:
assert isinstance(ready_deferred, defer.Deferred)
try:
top.receiveChild(token, ready_deferred)
except Violation:
# this is how the child says "I've been contaminated". We don't
# pop them automatically: if they want that, they should return
# back the failure in their reportViolation method.
f = BananaFailure()
self.handleViolation(f, "receiveChild")
def handleClose(self, closeCount):
if self.debugReceive:
print "handleClose(%d)" % closeCount
if self.receiveStack[-1].openCount != closeCount:
raise BananaError("lost sync, got CLOSE(%d) but expecting %s" \
% (closeCount, self.receiveStack[-1].openCount))
child = self.receiveStack[-1] # don't pop yet: describe() needs it
try:
obj, ready_deferred = child.receiveClose()
except Violation:
# the child is contaminated. However, they're finished, so we
# don't have to discard anything. Just give an Failure to the
# parent instead of the object they would have returned.
f = BananaFailure()
self.handleViolation(f, "receiveClose", inClose=True)
return
if self.debugReceive: print "receiveClose returned", obj
try:
child.finish()
except Violation:
# .finish could raise a Violation if an object that references
# the child is just now deciding that they don't like it
# (perhaps their TupleConstraint couldn't be asserted until the
# tuple was complete and referenceable). In this case, the child
# has produced a valid object, but an earlier (incomplete)
# object is not valid. So we treat this as if this child itself
# raised the Violation. The .where attribute will point to this
# child, which is the node that caused somebody problems, but
# will be marked <FINISH>, which indicates that it wasn't the
# child itself which raised the Violation. TODO: not true
#
# TODO: it would be more useful if the UF could also point to
# the completing object (the one which raised Violation).
f = BananaFailure()
self.handleViolation(f, "finish", inClose=True)
return
self.receiveStack.pop()
# now deliver the object to the parent
self.handleToken(obj, ready_deferred)
def handleViolation(self, f, methname, inOpen=False, inClose=False):
"""An Unslicer has decided to give up, or we have given up on it
(because we received an ABORT token).
"""
where = self.describeReceive()
f.value.setLocation(where)
if self.debugReceive:
print " handleViolation-%s (inOpen=%s, inClose=%s): %s" \
% (methname, inOpen, inClose, f)
assert isinstance(f, BananaFailure)
if self.logViolations:
log.msg("Violation in %s at %s" % (methname, where))
log.err(f)
if inOpen:
self.discardCount += 1
if self.debugReceive:
print " ++discardCount (inOpen), now %d" % self.discardCount
while True:
# tell the parent that their child is dead. This is useful for
# things like PB, which may want to errback the current request.
if self.debugReceive:
print " reportViolation to %s" % self.receiveStack[-1]
f = self.receiveStack[-1].reportViolation(f)
if not f:
# they absorbed the failure
if self.debugReceive:
print " buck stopped, error absorbed"
break
# the old top wants to propagate it upwards
if self.debugReceive:
print " popping %s" % self.receiveStack[-1]
if not inClose:
self.discardCount += 1
if self.debugReceive:
print " ++discardCount (pop, not inClose), now %d" \
% self.discardCount
inClose = False
old = self.receiveStack.pop()
try:
# TODO: if handleClose encountered a Violation in .finish,
# we will end up calling it a second time
old.finish() # ??
except Violation:
pass # they've already failed once
if not self.receiveStack:
# now there's nobody left to create new Unslicers, so we
# must drop the connection
why = "Oh my god, you killed the RootUnslicer! " + \
"You bastard!!"
raise BananaError(why)
# now we loop until someone absorbs the failure
def handleError(self, msg):
log.msg("got banana ERROR from remote side: %s" % msg)
self.transport.loseConnection()
def describeReceive(self):
where = []
for i in self.receiveStack:
try:
piece = i.describe()
except:
piece = "???"
#raise
where.append(piece)
return ".".join(where)
def receivedObject(self, obj):
"""Decoded objects are delivered here, unless you use a RootUnslicer
variant which does something else in its .childFinished method.
"""
raise NotImplementedError
def reportViolation(self, why):
return why
|