This file is indexed.

/usr/share/pyshared/gadfly/kjParseBuild.py is in python-gadfly 1.0.0-15.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
"""Python code for building a parser from a grammar

:Author: Aaron Watters
:Maintainers: http://gadfly.sf.net/
:Copyright: Aaron Robert Watters, 1994
:Id: $Id: kjParseBuild.py,v 1.6 2002/05/11 02:59:04 richard Exp $:
"""

# BUGS:
#  A bad grammar that has no derivations for
#  the root nonterminal may cause a name error
#  on the variable "GoodStartingPlace"

# this needs to be modified so the RULEGRAM is loaded from a
# compiled representation if available.

import string
import kjSet
import kjParser
import re

# import some constants
from kjParser import TERMFLAG, NOMATCHFLAG, MOVETOFLAG, REDUCEFLAG, \
    TRANSFLAG, KEYFLAG, NONTERMFLAG, TERMFLAG, EOFFLAG, ENDOFFILETOKEN

PMODULE = kjParser.THISMODULE

# errors raised here
TokenError = "TokenError" # may happen on autogen with bad grammar
NotSLRError = "NotSLRError" # may happen for nonSLR grammar

# set this flag to abort automatic generation on Errors
ABORTONERROR = 0

# token used to mark null productions
NULLTOKEN = (None,None)


class CFSMachine(kjParser.FSMachine):
    ''' a derived FSM class, with closure computation methods defined
        (compilable FSMachine)
    '''
    def __init__(self, nonterm):
        kjParser.FSMachine.__init__(self, nonterm)

    def Eclosure(self, Epsilon, DoNullMaps=0):
        ''' return the epsilon closure of the FSM as a new FSM

            DoNullMap, if set, will map unexpected tokens to
            the "empty" state (usually creating a really big fsm)
        '''
        Closure = CFSMachine( self.root_nonTerminal )

        # compute the Epsilon Graph between states
        EGraph = kjSet.NewDG([])
        for State in range(0,self.maxState+1):
            # every state is E-connected to self
            kjSet.AddArc( EGraph, State, State )
            # add possible transition on epsilon (ONLY ONE SUPPORTED!)
            key = (State, Epsilon)
            if self.StateTokenMap.has_key(key):
                keymap = self.StateTokenMap[key]
                if keymap[0][0] != MOVETOFLAG:
                    raise TypeError, "unexpected map type in StateTokenMap"
                for (Flag,ToState) in keymap:
                    kjSet.AddArc( EGraph, State, ToState )
        #endfor
        # transitively close EGraph
        kjSet.TransClose( EGraph )

        # Translate EGraph into a dictionary of lists
        EMap = {}
        for State in range(0,self.maxState+1):
            EMap[State] = kjSet.Neighbors( EGraph, State )

        # make each e-closure of each self.state a state of the closure FSM.
        # here closure states assumed transient -- reset elsewhere.
        # first do the initial state
        Closure.States[ Closure.initial_state ] = \
           [TRANSFLAG, kjSet.NewSet(EMap[self.initial_state]) ]
        # do all other states (save initial and successful final states)
        #for State in range(0,self.maxState+1):
        #   if State != self.initial_state \
        #    and State != self.successful_final_state:
        #      Closure.NewSetState(TRANSFLAG, kjSet.NewSet(EMap[State]) )
        ##endfor

        # compute set of all known tokens EXCEPT EPSILON
        Tokens = kjSet.NewSet( [] )
        for (State, Token) in self.StateTokenMap.keys():
            if Token != Epsilon:
                kjSet.addMember(Token, Tokens)
        # tranform it into a list
        Tokens = kjSet.get_elts(Tokens)

        # for each state of the the closure FSM (past final) add transitions
        # and add new states as needed until all states are processed
        # (uses convention that states are allocated sequentially)
        ThisClosureState = 1
        while ThisClosureState <= Closure.maxState:
            MemberStates = kjSet.get_elts(Closure.States[ThisClosureState][1])
            # for each possible Token, compute the union UTrans of all
            # e-closures for all transitions for all member states,
            # on the Token, make  UTrans a new state (if needed),
            # and transition ThisClosureState to UTrans on Token
            for Token in Tokens:
                UTrans = kjSet.NewSet( [] )
                for MState in MemberStates:
                    # if MState has a transition on Token, include
                    # EMap for the destination state
                    key = (MState, Token)
                    if self.StateTokenMap.has_key(key):
                        DStateTup = self.StateTokenMap[key]
                        if DStateTup[0][0] != MOVETOFLAG:
                            raise TypeError, "unknown map type"
                        for (DFlag, DState) in DStateTup:
                            for EDState in EMap[DState]:
                                kjSet.addMember(EDState, UTrans)
                    #endif
                #endfor MState
                # register UTrans as a new state if needed
                UTState = Closure.NewSetState(TRANSFLAG, UTrans)
                # record transition from
                # ThisClosureState to UTState on Token
                if DoNullMaps:
                    Closure.SetMap( ThisClosureState, Token, UTState)
                else:
                    if not kjSet.Empty(UTrans):
                        Closure.SetMap( ThisClosureState, Token, UTState)
            #endfor Token
            ThisClosureState = ThisClosureState +1
        #endwhile
        return Closure

    def NewSetState(self, kind, InSet):
        ''' add an set-marked state to self if not present
            uses self.States[s][1] as the set marking the state s

            only used by Eclosure above
        '''
        # return existing state if one is present that matches the set
        LastState= self.maxState
        # skip state 0 (successful final state)???
        for State in range(1,LastState+1):
            MarkSet = self.States[State][1]
            if kjSet.Same(InSet,MarkSet):
                return State  # nonlocal
        #endfor
        # if not exited then allocate a new state
        LastState = LastState + 1
        self.States[LastState] = [ kind , InSet ]
        self.maxState = LastState
        return LastState


class Ruleset:
    ''' Ruleset class, used to compute NFA and then DFA for parsing based on
        a list of rules.
    '''
    def __init__(self, StartNonterm, Rulelist):
        self.StartNonterm = StartNonterm
        self.Rules = Rulelist

    def compFirst(self):
        ''' method to compute prefixes and First sets for nonterminals
        '''
        # uses the special null production token NULLTOKEN
        # snarfed directly from Aho+Ullman (terminals glossed)
        First = kjSet.NewDG([])
        # repeat the while loop until no change is made to First
        done = 0
        while not done:
            # assume we're done until a change is made to First
            done = 1

            # iterate through all rules looking for a new arc to add
            # indicating Terminal > possible first token derivation
            #
            for R in self.Rules:
                GoalNonterm = R.Nonterm
                Bodylength = len(R.Body)
                # look through the body of the rule up to the token with
                # no epsilon production (yet seen)
                Bodyindex = 0
                Processindex = 1
                while Processindex:
                    # unless otherwise indicated below, don't go to next token
                    Processindex = 0

                    # if index is past end of body then record
                    # an epsilon production for this nonterminal
                    if Bodyindex >= Bodylength:
                        if not kjSet.HasArc(First, GoalNonterm, NULLTOKEN ):
                            kjSet.AddArc( First, GoalNonterm, NULLTOKEN )
                            done = 0 # change made to First
                    else:
                        # otherwise try to add firsts of this token
                        # to firsts of the Head of the rule.
                        Token = R.Body[Bodyindex]
                        (type, name) = Token
                        if type in (KEYFLAG,TERMFLAG):
                            # try to add this terminal to First for GoalNonterm
                            if not kjSet.HasArc(First, GoalNonterm, Token):
                                kjSet.AddArc( First, GoalNonterm, Token)
                                done = 0
                        elif type == NONTERMFLAG:
                            # try to add each First entry for nonterminal
                            # to First entry for GoalNonterm
                            for FToken in kjSet.Neighbors( First, Token ):
                                if not kjSet.HasArc(First, GoalNonterm, FToken):
                                    kjSet.AddArc( First, GoalNonterm, FToken)
                                    done = 0
                            # does this nonterminal have a known e production?
                            if kjSet.HasArc( First, Token, NULLTOKEN ):
                                # if so, process next token in rule
                                Processindex = 1
                        else:
                            raise TokenError, "unknown token type in rule body"
                    #endif
                    Bodyindex = Bodyindex + 1
                #endwhile Processindex
            #endfor R in self.Rules
        #endwhile not done
        self.First = First

    def compFollow(self):
        ''' computing the Follow set for the ruleset
            the good news: I think it's correct.
            the bad news: It's slower than it needs to be for epsilon cases.
        '''
        Follow = kjSet.NewDG([])

        # put end marker on follow of start nonterminal
        kjSet.AddArc(Follow, self.StartNonterm, kjParser.ENDOFFILETOKEN)

        # now compute other follows using the rules;
        # repeat the loop until no change to Follow.
        while not self.compFollowRules(Follow):
            pass

        self.Follow = Follow

    def compFollowRules(self, Follow):
        done = 1 # assume done unless Follow changes
        for R in self.Rules:
            newdone = self.compFollowRule(Follow, R)
            if not newdone: done = 0
        return done

    def compFollowRule(self, Follow, R):
        done = 1
        # work backwards in the rule body to
        # avoid retesting for epsilon nonterminals
        Bodylength = len(R.Body)
        # the tail of rule may expand to null
        EpsilonTail = 1
        # loop starts at the last
        for BodyIndex in range(Bodylength-1, -1, -1):
            Token = R.Body[BodyIndex]
            (Ttype,Tname) = Token

            if Ttype not in (KEYFLAG, TERMFLAG, NONTERMFLAG):
                raise TokenError, "unknown token type in rule body"

            if Ttype in (KEYFLAG,TERMFLAG):
                # keywords etc cancel epsilon tail, otherwise ignore
                EpsilonTail = 0
                continue

            # if the tail expands to epsilon, map
            # follow for the goal nonterminal to this token
            # and also follow for the tail nonterms
            if EpsilonTail:
                # add follow for goal
                for FToken in kjSet.Neighbors(Follow,R.Nonterm):
                    if not kjSet.HasArc(Follow, Token, FToken):
                        kjSet.AddArc(Follow, Token, FToken)
                        # follow changed, loop again
                        done = 0
                # add follow for tail members
                #for Index2 in range(BodyIndex+1, Bodylength):
                #   TailToken = R.Body[Index2]
                #   for FToken in kjSet.Neighbors(Follow,TailToken):
                #       if not kjSet.HasArc(Follow,Token,FToken):
                #          kjSet.AddArc(Follow,Token,FToken)
                #          done = 0
            #endif EpsilonTail

            # if we are not at the end use First set for next token
            if BodyIndex != Bodylength-1:
                NextToken = R.Body[BodyIndex+1]
                (NTtype, NTname) = NextToken
                if NTtype in (KEYFLAG,TERMFLAG):
                    if not kjSet.HasArc(Follow, Token, NextToken):
                        kjSet.AddArc(Follow, Token, NextToken)
                        done = 0
                elif NTtype == NONTERMFLAG:
                    for FToken in kjSet.Neighbors(self.First, NextToken):
                        if FToken != NULLTOKEN:
                            if not kjSet.HasArc(Follow, Token, FToken):
                                kjSet.AddArc(Follow, Token, FToken)
                                done = 0
                            continue
                        # next token expands to epsilon:
                        # add its follow, unless already done above
                        for FToken in kjSet.Neighbors(Follow, NextToken):
                            if not kjSet.HasArc(Follow, Token, FToken):
                                kjSet.AddArc(Follow, Token, FToken)
                                done = 0
                else:
                    raise TokenError, "unknown token type in rule body"

            # finally, check whether next iteration has epsilon tail
            if not kjSet.HasArc(self.First, Token, NULLTOKEN):
                EpsilonTail = 0

        return done

    def DumpFirstFollow(self):
        First = self.First
        Follow = self.Follow
        print "First:"
        for key in First.keys():
            name = key[1]
            print name," :: ",
            for (flag2,name2) in First[key].keys():
                print name2,", ",
            print
        print "Follow:"
        for key in Follow.keys():
            name = key[1]
            print name," :: ",
            for (flag2,name2) in Follow[key].keys():
                print name2,", ",
            print

    def FirstOfTail(self, Rule, TailIndex, Token=None):
        ''' computing the "first" of the tail of a rule followed by an optional
            terminal.

            doesn't include NULLTOKEN
            requires self.First to be computed
        '''
        Result = kjSet.NewSet( [] )
        # go through all tokens in rule tail so long as there is a
        #  null derivation for the remainder
        Nullprefix = 1
        BodyLength = len(Rule.Body)
        ThisIndex = TailIndex
        while Nullprefix and ThisIndex < BodyLength:
            RToken = Rule.Body[ThisIndex]
            (RTtype, RTname) = RToken
            if RTtype == NONTERMFLAG:
                for FToken in kjSet.Neighbors(self.First, RToken):
                    if FToken != NULLTOKEN:
                        kjSet.addMember(FToken, Result)
                #endfor
                # check whether this symbol might have a null production
                if not kjSet.HasArc(self.First, RToken, NULLTOKEN):
                    Nullprefix = 0
            elif RTtype in [KEYFLAG, TERMFLAG]:
                kjSet.addMember(RToken, Result)
                Nullprefix = 0
            else:
                raise TokenError, "unknown token type in rule body"
            ThisIndex = ThisIndex + 1
        #endwhile
        # add the optional token if given and Nullprefix still set
        if Nullprefix and Token != None:
            kjSet.addMember(Token, Result)
        return Result

    def compSLRNFA(self):
        '''compute an SLR NFA for the ruleset with states for each SLR "item"
           and transitions, eg:
               X > .AB
             on A maps to X > A.B
             on epsilon maps to A > .ZC
                            and A > .WK
           an item is a pair (rulenumber, bodyposition)
           where body position 0 is interpreted to point before the
           beginning of the body.

           SLR = "simple LR" in Aho+Ullman terminology
        '''
        NFA = CFSMachine(self.StartNonterm)
        Nrules = len(self.Rules)
        itemStateMap = {}
        for Ruleindex in range(0,Nrules):
            Rule = self.Rules[Ruleindex]
            # make an item for each "dot" position in the body
            for DotPos in range(0, len(Rule.Body) + 1):
                item = (Ruleindex, DotPos)
                itemState = NFA.NewState(TRANSFLAG, [item])
                itemStateMap[item] = itemState
            #endfor DotPos
        #endfor Ruleindex

        # now that the states are initialized
        # compute transitions except for the last item of a rule
        # (which has none)
        for Ruleindex in range(0,Nrules):
            Rule = self.Rules[Ruleindex]
            for DotPos in range(0, len(Rule.Body)):
                item = (Ruleindex, DotPos)
                CurrentToken = Rule.Body[DotPos]
                ThisState = itemStateMap[item]
                NextState = itemStateMap[ (Ruleindex, DotPos + 1) ]
                NFA.SetMap( ThisState, CurrentToken, NextState  )
                # if the current token is a nonterminal
                # ad epsilon transitions to first item for any
                # rule that derives this nonterminal
                (CTtype, CTname) = CurrentToken
                if CTtype == NONTERMFLAG:
                    for Rule2index in range(0,Nrules):
                        Rule2 = self.Rules[Rule2index]
                        Head = Rule2.Nonterm
                        if Head == CurrentToken:
                            NextState = itemStateMap[( Rule2index, 0 )]
                            NFA.SetMap( ThisState, NULLTOKEN, NextState )
                    #endfor Rule2index
                #endif CTtype == NONTERMFLAG
            #endfor DotPos
        #endfor Ruleindex

        # must handle the initial state properly here!
        # Make a dummy state with e-transitions to all first items
        # for rules that derive the initial nonterminal
        ThisState = NFA.initial_state
        GoodStartingPlace = None
        for Ruleindex in range(0,Nrules):
            Rule = self.Rules[Ruleindex]
            Head = Rule.Nonterm
            if Head == self.StartNonterm:
                GoodStartingPlace= (Ruleindex, 0)
                NextState = itemStateMap[ GoodStartingPlace ]
                NFA.SetMap( ThisState, NULLTOKEN, NextState )
        # fix the NFA.States entry
        if GoodStartingPlace == None:
            raise NotSLRError, "No derivation for root nonterminal."
        NFA.States[ NFA.initial_state ] = \
             [ 'transient', GoodStartingPlace ]

        self.SLRNFA = NFA
    #enddef compSLRNFA

    def ItemDump(self, item):
        ''' dump an item
        '''
        (ruleindex, position) = item
        Rule = self.Rules[ruleindex]
        print Rule.Nonterm[1],' >> ',
        for bindex in range(0, len(Rule.Body)):
            if position == bindex:
                print " (*) ",
            print Rule.Body[bindex][1],
        if position == len(Rule.Body):
            print " (*) "
        else:
            print

    def SLRItemIsFinal(self, item):
        ''' utility function -- returns true if an item is a final item
        '''
        (ruleindex, position) = item
        Rule = self.Rules[ruleindex]
        if position == len(Rule.Body):
            return 1
        else:
            return 0

    def DumpSLRNFA(self):
        ''' dump the NFA
        '''
        NFA = self.SLRNFA
        print "root: ", NFA.root_nonTerminal
        for key in NFA.StateTokenMap.keys():
            map = NFA.StateTokenMap[key]
            (fromstate, token) = key
            fromitem = NFA.States[ fromstate ][1]
            self.ItemDump(fromitem)
            print " on ", token[1], " maps "
            for Tostate in map:
                Toitem = NFA.States[Tostate][1]
                print "    ",
                self.ItemDump(Toitem)

    def compDFA(self):
        ''' compute DFA for ruleset by computing the E-closure of the NFA
        '''
        self.DFA = self.SLRNFA.Eclosure(NULLTOKEN)

    def DumpDFAsets(self):
        DFA = self.DFA
        print "root: ", DFA.root_nonTerminal
        for State in range(1, len(DFA.States) ):
            self.DumpItemSet(State)

    def DumpItemSet(self,State):
        DFA = self.DFA
        NFA = self.SLRNFA
        print
        print "STATE ", State, " *******"
        fromNFAindices = kjSet.get_elts(DFA.States[State][1])
        for NFAindex in fromNFAindices:
            item = NFA.States[NFAindex][1]
            print "  ", NFAindex, ": ",
            self.ItemDump(item)

    def SLRFixDFA(self):
        '''this function completes the computation of an SLR DFA
           by adding reduction states for each DFA state S containing
           item   H > B.
           which reduces rule H > B
           for each token T in Follow of H.
           if S already has a transition for T then there is a conflict!

           assumes DFA and SLRNFA and Follow have been computed.
        '''
        DFA = self.DFA
        NFA = self.SLRNFA
        # look through the states (except 0=success) of the DFA
        # initially don't add any new states, just record
        # actions to be done
        #   uses convention that 0 is successful final state

        # ToDo is a dictionary which maps
        #     (State, Token) to a item to reduce
        ToDo = {}
        Error = None
        for State in range(1, len(DFA.States) ):
            # look for a final item for a rule in this state
            fromNFAindices = kjSet.get_elts(DFA.States[State][1])
            for NFAindex in fromNFAindices:
                item = NFA.States[NFAindex][1]
                # if the item is final remember to do the reductions...
                if self.SLRItemIsFinal(item):
                    (ruleindex, position) = item
                    Rule = self.Rules[ruleindex]
                    Head = Rule.Nonterm
                    Following = kjSet.Neighbors( self.Follow, Head )
                    for Token in Following:
                        key = (State, Token)
                        if not ToDo.has_key(key):
                            ToDo[ key ] = item
                        else:
                            # it might be okay if the items are identical?
                            item2 = ToDo[key]
                            if item != item2:
                                print "reduce/reduce conflict on ",key
                                self.ItemDump(item)
                                self.ItemDump(item2)
                            Error = " apparent reduce/reduce conflict"
                        #endif
                    #endfor
                #endif
            #endfor NFAindex
        #endfor State

        # for each (State,Token) pair which indicates a reduction
        # record the reduction UNLESS the map is already set for the pair
        for key in ToDo.keys():
            (State,Token) = key
            item = ToDo[key]
            (rulenum, dotpos) = item
            ExistingMap = DFA.map( State, Token )
            if ExistingMap[0] == NOMATCHFLAG:
                DFA.SetReduction( State, Token, rulenum )
            else:
                print "apparent shift/reduce conflict"
                print "reduction: ", key, ": "
                self.ItemDump(item)
                print "existing map ", ExistingMap
                Error = " apparent shift/reduce conflict"
        #endfor
        if Error and ABORTONERROR:
            raise NotSLRError, Error
    #enddef SLRfixDFA()

    def DoSLRGeneration(self):
        ''' do complete SLR DFA creation starting after initialization
        '''
        self.compFirst()
        self.compFollow()
        self.compSLRNFA()
        self.compDFA()
        self.SLRFixDFA()


################ the following are interpretation functions
################ used by RULEGRAM meta grammar
# some constants used here
COMMENTFORM = "##.*\n"
RSKEY = "@R"
COLKEY = "::"
LTKEY = ">>"
IDNAME = "ident"
# an identifier in the meta grammar is any nonwhite string
# except the keywords @R :: >> or comment flag ##
IDFORM = "[^" + string.whitespace + "]+"

def IdentFun(string):
    ''' for identifiers simply return the string
    '''
    return string

def RootReduction(list, ObjectGram):
    ''' RootReduction should receive list of form
       [ nontermtoken, keyword COLKEY, RuleList ]
    '''
    if len(list) != 3 or list[1] != COLKEY:
        raise FlowError, "unexpected metagrammar root reduction"
    return (list[0], list[2])

def NullRuleList(list, ObjectGram):
    ''' NullRuleList should receive list of form []
    '''
    if list != []:
        raise FlowError, "unexpected null RuleList form"
    return []

def FullRuleList(list, ObjectGram):
    ''' FullRuleList should receive list of form
          [ Rule, RuleList ]
    '''
    if type(list) != type([]) or len(list)!=2:
        raise FlowError, "unexpected full RuleList form"
    NewRule = list[0]
    OldRules = list[1]
    return [NewRule] + OldRules

def InterpRule(list, ObjectGram):
    ''' InterpRule should receive list of form
         [keyword RSKEY,
          RuleNameStr,
          keyword COLKEY,
          Nontermtoken,
          keyword LTKEY,
          Bodylist]
    '''
    # check keywords:
    if len(list)!=6 or list[0]!=RSKEY or list[2]!=COLKEY or list[4]!=LTKEY:
        raise FlowError, "unexpected meta rule reduction form"
    ruleName = list[1]
    ruleNonterm = list[3]
    ruleBody = list[5]
    # upcase the the representation of keywords if needed
    if not ObjectGram.LexD.isCaseSensitive():
        for i in range(0,len(ruleBody)):
            (flag, name) = ruleBody[i]
            if flag == KEYFLAG:
                ruleBody[i] = (KEYFLAG, string.upper(name))
            elif not flag in (TERMFLAG, NONTERMFLAG):
                raise FlowError, "unexpected rule body member"
    rule = kjParser.ParseRule( ruleNonterm, ruleBody )
    rule.Name = ruleName
    return rule

def InterpRuleName(list, ObjectGram):
    ''' InterpRuleName should receive
          [ string ]
    '''
    # add error checking?
    return list[0]

def InterpNonTerm(list, ObjectGram):
    ''' InterpNonTerm should receive
          [ string ]
    '''
    if type(list)!=type([]) or len(list)!=1:
        raise FlowError, "unexpected rulename form"
    Name = list[0]
    # determine whether this is a valid nonterminal
    if not ObjectGram.NonTermDict.has_key(Name):
        raise TokenError, "LHS of Rule must be nonterminal: "+Name
    return ObjectGram.NonTermDict[Name]

def NullBody(list, ObjectGram):
    ''' NullBody should receive []
    '''
    if list != []:
        raise FlowError, "unexpected null Body form"
    return []

def FullBody(list,ObjectGram):
    ''' FullBody should receive
        [ string, Bodylist]
       must determine whether the string represents
       a keyword, a nonterminal, or a terminal of the object
       grammar.
       returns (KEYFLAG, string) (TERMFLAG, string) or
               (NONTERMFLAG, string) respectively
    '''
    if type(list)!=type([]) or len(list)!=2:
        raise FlowError, "unexpected body form"
    Name = list[0]
    # Does the Name rep a nonterm, keyword or term
    # of the object grammar (in that order).
    if ObjectGram.NonTermDict.has_key(Name):
        kind = NONTERMFLAG
    elif ObjectGram.LexD.keywordmap.has_key(Name):
        kind = KEYFLAG
    elif ObjectGram.TermDict.has_key(Name):
        kind = TERMFLAG
    else:
        raise TokenError, "Rule body contains unregistered string: "+Name
    restOfBody = list[1]
    return [(kind, Name)] + restOfBody

def ruleGrammar():
    ''' function to generate a grammar for parsing grammar rules
    '''
    LexD = kjParser.LexDictionary()
    # use SQL/Ansi style comments
    LexD.comment( COMMENTFORM )
    # declare keywords
    RStart = LexD.keyword( RSKEY )
    TwoColons = LexD.keyword( COLKEY )
    LeadsTo = LexD.keyword( LTKEY )
    # declare terminals
    ident = LexD.terminal(IDNAME, IDFORM, IdentFun )
    # declare nonterminals
    Root = kjParser.nonterminal("Root")
    Rulelist = kjParser.nonterminal("RuleList")
    Rule = kjParser.nonterminal("Rule")
    RuleName = kjParser.nonterminal("RuleName")
    NonTerm = kjParser.nonterminal("NonTerm")
    Body = kjParser.nonterminal("Body")

    # declare rules
    #   Root >> NonTerm :: Rulelist
    InitRule = kjParser.ParseRule( Root, \
                [NonTerm, TwoColons, Rulelist], RootReduction )
    #   Rulelist >>
    RLNull = kjParser.ParseRule( Rulelist, [], NullRuleList)
    #   Rulelist >> Rule Rulelist
    RLFull = kjParser.ParseRule( Rulelist, [Rule,Rulelist], FullRuleList)
    #   Rule >> "@R :: NonTerm >> Body
    RuleR = kjParser.ParseRule( Rule, \
       [RStart, RuleName, TwoColons, NonTerm, LeadsTo, Body],\
       InterpRule)
    #   Rulename >> ident
    RuleNameR = kjParser.ParseRule( RuleName, [ident], InterpRuleName)
    #   NonTerm >> ident
    NonTermR = kjParser.ParseRule( NonTerm, [ident], InterpNonTerm)
    #   Body >>
    BodyNull = kjParser.ParseRule( Body, [], NullBody)
    #   Body >> ident Body
    BodyFull = kjParser.ParseRule( Body, [ident,Body], FullBody)

    # declare Rules list and Associated Name dictionary
    Rules = [RLNull, RLFull, RuleR, RuleNameR, NonTermR,\
                 BodyNull, BodyFull, InitRule]
    RuleDict = \
     { "RLNull":0, "RLFull":1, "RuleR":2, "RuleNameR":3, \
       "NonTermR":4, "BodyNull":5, "BodyFull":6 , "InitRule":7 }
    # make the RuleSet and compute the associate DFA
    RuleSet = Ruleset( Root, Rules )
    RuleSet.DoSLRGeneration()
    # construct the Grammar object
    Result = kjParser.Grammar( LexD, RuleSet.DFA, Rules, RuleDict )
    return Result

#enddef RuleGrammar()


# this is the rule grammar object for parsing
RULEGRAM = ruleGrammar()

class CGrammar(kjParser.Grammar):
    ''' a derived grammar class
        this is a compilable grammar for automatic parser generation.
    '''

    def Keywords(self, Stringofkeys):
        ''' insert a white separated list of keywords into the LexD
            TODO: THIS SHOULD CHECK FOR KEYWORD/NONTERMINAL/PUNCT NAME
            COLLISIONS (BUT DOESN'T YET).
        '''
        keywordlist = string.split(Stringofkeys)
        for keyword in keywordlist:
            self.LexD.keyword( keyword )

    def punct(self, Stringofpuncts):
        ''' insert a string of punctuations into the LexD
        '''
        for p in Stringofpuncts:
            self.LexD.punctuation(p)

    def comments(self, listOfCommentStrings):
        ''' register a list of regular expression strings
            to represent comments in LexD
        '''
        for str in listOfCommentStrings:
            self.LexD.comment(str)

    def Nonterms(self, StringofNonterms):
        ''' register a white separated list of nonterminal strings
        '''
        nonTermlist = string.split(StringofNonterms)
        for NonTerm in nonTermlist:
            self.NonTermDict[NonTerm] = kjParser.nonterminal(NonTerm)

    def Declarerules(self, StringWithRules):
        ''' initialize or add more rules to the RuleString
        '''
        self.RuleString = self.RuleString + "\n" + StringWithRules

    def Compile(self, MetaGrammar=RULEGRAM):
        ''' The compilation function assumes
              NonTermDict
              RuleString
              LexD
              TermDict
            have all been set up properly
            (at least if the default MetaGrammar is used).
            On successful completion it will set up
              DFA
              RuleL
              RuleNameToIndex

            the following should return a list of rules
            with punctuations of self.LexD interpreted as trivial keywords
              keywords of seld.LexD interpreted as keywords
            and nonterminals registered in NonTermDict interpreted as
            nonterms.
             ParseResult should be of form ( (rootNT, RuleL), self )
        '''
        ParseResult = MetaGrammar.DoParse1( self.RuleString, self )
        (RootNonterm, Rulelist) = ParseResult

        # make a ruleset and compute its DFA
        RuleS = Ruleset( RootNonterm, Rulelist )
        RuleS.DoSLRGeneration()

        # make the rulename to index map to allow future bindings
        for i in range(0,len(Rulelist)):
            Rule = Rulelist[i]
            self.RuleNameToIndex[ Rule.Name ] = i

        # fill in the blanks
        self.DFA = RuleS.DFA
        self.RuleL = Rulelist

        # FOR DEBUG AND TESTING
        self.Ruleset = RuleS

        # DON'T clean up the grammar (misc structures are used)
        # in future bindings
    #enddef Compile

    def Reconstruct(self, VarName, Tofile, FName=None, indent=""):
        ''' Write a reconstructable representation for this grammar to a file
           EXCEPT:
             - rule associations to reduction functions
               will be lost (must be reset elsewhere)
             - terminals in the lexical dictionary
               will not be initialized

           IND is used for indentation, should be whitespace (add check!)

           FName if given will cause the reconstructed to be placed
           inside a function `FName`+"()" returning the grammar object

           NOTE: this function violates information hiding principles;
            in particular it "knows" the guts of the FSM and LexD classes
        '''
        Reconstruction = codeReconstruct(VarName, Tofile, self, FName, indent)
        GrammarDumpSequence(Reconstruction)

    def MarshalDump(self, Tofile):
        ''' marshalling of a grammar to a file
        '''
        Reconstruction = marshalReconstruct(self, Tofile)
        GrammarDumpSequence(Reconstruction)

#endclass CGrammar

def GrammarDumpSequence(ReconstructObj):
    ''' general procedure for different types of archiving for grammars
    '''
    # assume an initialized Reconstruct Object with appropriate grammar etc.
    # put the lexical part
    ReconstructObj.PutLex()
    # put the rules
    ReconstructObj.PutRules()
    # put transitions
    ReconstructObj.PutTransitions()
    # finish up
    ReconstructObj.Cleanup()

def NullCGrammar():
    ''' function to create a "null CGrammar"
    '''
    return CGrammar(None,None,None,{})


# utility classes
class Reconstruct:
    ''' Grammar reconstruction objects encapsulate the process of grammar
        archiving.

        This "virtual class" is only for common behaviors of subclasses.
    '''
    def MakeTokenArchives(self):
        # make a list of all tokens and
        # initialize token > int dictionary
        keys = self.Gram.DFA.StateTokenMap.keys()
        tokenToInt = {}
        tokenSet = kjSet.NewSet([])
        for k in keys:
            kjSet.addMember(k[1], tokenSet)
        tokens = kjSet.get_elts(tokenSet)
        for i in range(0,len(tokens)):
            tokenToInt[ tokens[i] ] = i

        self.keys = keys
        self.tokens = tokens # global sub
        self.tokInt = tokenToInt # global sub

class codeReconstruct(Reconstruct):
    ''' grammar reconstruction to a file
    '''
    def __init__(self, VarName, Tofile, Grammar, FName=None, indent =""):
        # do global subs for each of these
        self.Var = VarName
        self.File = Tofile
        self.FName = FName
        self.Gram = Grammar

        # put the reconstruction in a function if FName is given
        if FName != None:
            Tofile.write("\n\n")
            Tofile.write(indent+"def "+FName+"():\n")
            IND = indent+"   "
        else:
            IND = indent
        self.I = IND # global sub!
        Tofile.write("\n\n")
        Tofile.write(IND+"# ***************************BEGIN RECONSTRUCTION\n")
        Tofile.write(IND+"# Python declaration of Grammar variable "+VarName+".\n")
        Tofile.write(IND+"# automatically generated by module "+PMODULE+".\n")
        Tofile.write(IND+"# Altering this sequence by hand will probably\n")
        Tofile.write(IND+"# leave it unusable.\n")
        Tofile.write(IND+"#\n")
        Tofile.write(IND+"import "+PMODULE+"\n\n")
        Tofile.write(IND+"# variable declaration:\n")
        Tofile.write(IND+VarName+"= "+PMODULE+".NullGrammar()\n\n")

        # make self.keys list of dfa keys,
        #      self.tokens list of grammar tokens,
        #      self.tokInt inverted dictionary for self.tokens
        self.MakeTokenArchives()

        Tofile.write("\n\n"+IND+"# case sensitivity behavior for keywords.\n")
        if self.Gram.LexD.isCaseSensitive():
            Tofile.write(IND+VarName+".SetCaseSensitivity(1)\n")
        else:
            Tofile.write(IND+VarName+".SetCaseSensitivity(0)\n")
    #enddef __init__

    def PutLex(self):
        IND = self.I
        Tofile = self.File
        VarName = self.Var
        LexD = self.Gram.LexD
        tokens = self.tokens

        Tofile.write("\n\n"+IND+"# declaration of lexical dictionary.\n")
        Tofile.write(IND+"# EXCEPT FOR TERMINALS\n")
        Tofile.write(IND+VarName+".LexD.punctuationlist = ")
        Tofile.write(`LexD.punctuationlist`+"\n")
        Tofile.write(IND+"# now comment patterns\n")
        for comment in LexD.commentstrings:
            Tofile.write(IND+VarName+".LexD.comment("+`comment`+")\n")
        Tofile.write(IND+"# now define tokens\n")
        for i in range(0,len(tokens)):
            tok = tokens[i]
            (kind, name) = tok
            if kind == TERMFLAG:
                # put warning at end!
                #  nonterminal not installed in lexical dictionary here!
                Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ")
                Tofile.write(PMODULE+".termrep("+`name`+")\n")
            elif kind == KEYFLAG:
                Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ")
                Tofile.write(VarName+".LexD.keyword("+`name`+")\n")
            elif kind == NONTERMFLAG:
                Tofile.write(IND+VarName+".IndexToToken["+`i`+"] = ")
                Tofile.write(PMODULE+".nonterminal("+`name`+")\n")
            else:
                raise FlowError, "unknown token type"
    #enddef PutLex

    def PutRules(self):
        IND = self.I
        VarName = self.Var
        Rules = self.Gram.RuleL
        Tofile = self.File
        Root = self.Gram.DFA.root_nonTerminal
        Tofile.write("\n\n"+IND+"# declaration of rule list with names.\n")
        Tofile.write(IND+"# EXCEPT FOR INTERP FUNCTIONS\n")
        nrules = len(Rules)
        Tofile.write(IND+VarName+".RuleL = [None] * "+`nrules`+"\n")
        for i in range(0,nrules):
            # put warning at end:
            #  rule reduction function not initialized here!
            rule = Rules[i]
            name = rule.Name
            Tofile.write(IND+"rule = "+`rule`+"\n")
            Tofile.write(IND+"name = "+`name`+"\n")
            Tofile.write(IND+"rule.Name = name\n")
            Tofile.write(IND+VarName+".RuleL["+`i`+"] = rule\n")
            Tofile.write(IND+VarName+".RuleNameToIndex[name] = "+`i`+"\n")

        Tofile.write("\n\n"+IND+"# DFA root nonterminal.\n")
        Tofile.write(IND+VarName+".DFA.root_nonTerminal =")
        Tofile.write(`Root`+"\n")
    #enddef PutRules

    def PutTransitions(self):
        IND = self.I
        Tofile = self.File
        VarName = self.Var
        maxState = self.Gram.DFA.maxState
        tokenToInt = self.tokInt
        StateTokenMap = self.Gram.DFA.StateTokenMap
        keys = self.keys

        Tofile.write("\n\n"+IND+"# DFA state declarations.\n")
        for state in range(1, maxState+1):
            Tofile.write(IND+VarName+".DFA.States["+`state`+"] = ")
            Tofile.write('['+`TRANSFLAG`+']\n')
        Tofile.write(IND+VarName+".DFA.maxState = "+`maxState`+"\n")

        Tofile.write("\n\n"+IND+"# DFA transition declarations.\n")
        for key in keys:
            (fromState, TokenRep) = key
            TokenIndex = tokenToInt[TokenRep]
            TokenArg = VarName+".IndexToToken["+`TokenIndex`+"]"
            TMap = StateTokenMap[key]
            TMaptype = TMap[0][0]
            if TMaptype == REDUCEFLAG:
                # reduction
                rulenum = TMap[0][1]
                Args = "("+`fromState`+","+TokenArg+","+`rulenum`+")"
                Tofile.write(IND+VarName+".DFA.SetReduction"+Args+"\n")
            elif TMaptype == MOVETOFLAG:
                # MoveTo
                Args = "("+`fromState`+","+TokenArg+","+`TMap[0][1]`+")"
                Tofile.write(IND+VarName+".DFA.SetMap"+Args+"\n")
            else:
                raise FlowError, "unexpected else (2)"
    #enddef

    def Cleanup(self):
        Tofile = self.File
        RuleL = self.Gram.RuleL
        tokens = self.tokens
        VarName = self.Var
        IND = self.I
        FName = self.FName

        Tofile.write("\n\n"+IND+"# Clean up the grammar.\n")
        Tofile.write(IND+VarName+".CleanUp()\n")

        # if the Fname was given return the grammar as function result
        if FName != None:
            Tofile.write("\n\n"+IND+"# return the grammar.\n")
            Tofile.write(IND+"return "+VarName+"\n")

        Tofile.write("\n\n"+IND+"# WARNINGS ****************************** \n")
        Tofile.write(IND+"# You must bind the following rule names \n")
        Tofile.write(IND+"# to reduction interpretation functions \n")
        for R in RuleL:
            Tofile.write(IND+"# "+VarName+".Bind("+`R.Name`+", ??function??)\n")
        Tofile.write(IND+"#(last rule)\n")

        Tofile.write("\n\n"+IND+"# WARNINGS ****************************** \n")
        Tofile.write(IND+"# You must bind the following terminals \n")
        Tofile.write(IND+"# to regular expressions and interpretation functions \n")
        warningPrinted = 0
        for tok in tokens:
            (kind, name) = tok
            if kind == TERMFLAG and tok != ENDOFFILETOKEN:
                Tofile.write(IND+"# "+VarName+\
                  ".Addterm("+`name`+", ??regularExp??, ??function??)\n")
                warningPrinted = 1
        if not warningPrinted:
            Tofile.write(IND+"#  ***NONE** \n")
        Tofile.write(IND+"#(last terminal)\n")
        Tofile.write(IND+"# ******************************END RECONSTRUCTION\n")
    #enddef
#endclass


class marshalReconstruct(Reconstruct):
    ''' Reconstruction using marshalling to a file encodes internal structures
        for grammar using marshal-able objects. Final marshalling to the file
        is done at CleanUp() storing one big list.
    '''
    def __init__(self, Grammar, Tofile):
        self.Gram = Grammar
        self.File = Tofile
        # should archive self.tokens structure
        self.MakeTokenArchives()
        # archive this
        self.CaseSensitivity = Grammar.LexD.isCaseSensitive()

    def PutLex(self):
        LexD = self.Gram.LexD
        # archive these
        self.punct = LexD.punctuationlist
        self.comments = LexD.commentstrings

    def PutRules(self):
        # archive this
        self.Root = self.Gram.DFA.root_nonTerminal
        # make a list of tuples that can be used with
        # rule = apply(ParseRule, tuple[1])
        # rule.Name = tuple[0]
        Rules = self.Gram.RuleL
        nrules = len(Rules)
        RuleTuples = [None] * nrules
        for i in range(nrules):
            rule = Rules[i]
            RuleTuples[i] = (rule.Name, rule.components())
        #archive this
        self.RuleTups = RuleTuples

    def PutTransitions(self):
        keys = self.keys
        tokenToInt = self.tokInt
        StateTokenMap = self.Gram.DFA.StateTokenMap

        # archive this
        self.MaxStates = self.Gram.DFA.maxState

        # create two lists,
        #   one for reductions with contents (fromState, tokennumber, rulenum)
        #   one for movetos with contents (fromstate, tokennumber, tostate)
        #      (note: token number not token itself to allow sharing)
        # to allow arbitrary growing, first use dicts:
        reductDict = {}
        nreducts = 0
        moveToDict = {}
        nmoveTos = 0
        for key in self.keys:
            (fromState, TokenRep) = key
            TokenIndex  = tokenToInt[TokenRep]
            TMap = StateTokenMap[key]
            TMaptype = TMap[0][0]
            if TMaptype == REDUCEFLAG:
                rulenum = TMap[0][1]
                reductDict[nreducts] = (fromState, TokenIndex, rulenum)
                nreducts = nreducts + 1
            elif TMaptype == MOVETOFLAG:
                ToState = TMap[0][1]
                moveToDict[nmoveTos] = (fromState, TokenIndex, ToState)
                nmoveTos = nmoveTos + 1
            else:
                raise FlowError, "unexpected else"
        #endfor
        # translate dicts to lists
        reducts = [None] * nreducts
        for i in range(nreducts):
            reducts[i] = reductDict[i]
        moveTos = [None] * nmoveTos
        for i in range(nmoveTos):
            moveTos[i] = moveToDict[i]

        # archive these
        self.reducts = reducts
        self.moveTos = moveTos

    # TODO: document this new marshalling method in the docco!
    def Cleanup(self):
        ''' this is the function that does the marshalling
        '''
        # dump the info
        self.File.write('tokens = %s\n'%`self.tokens`)
        self.File.write('punct = %s\n'%`self.punct`)
        self.File.write('comments = %s\n'%`self.comments`)
        self.File.write('RuleTups = %s\n'%`self.RuleTups`)
        self.File.write('MaxStates = %s\n'%`self.MaxStates`)
        self.File.write('reducts = %s\n'%`self.reducts`)
        self.File.write('moveTos = %s\n'%`self.moveTos`)
        self.File.write('Root = %s\n'%`self.Root`)
        self.File.write('CaseSensitivity = %s\n'%`self.CaseSensitivity`)

#
# $Log: kjParseBuild.py,v $
# Revision 1.6  2002/05/11 02:59:04  richard
# Added info into module docstrings.
# Fixed docco of kwParsing to reflect new grammar "marshalling".
# Fixed bug in gadfly.open - most likely introduced during sql loading
# re-work (though looking back at the diff from back then, I can't see how it
# wasn't different before, but it musta been ;)
# A buncha new unit test stuff.
#
# Revision 1.5  2002/05/08 00:49:00  anthonybaxter
# El Grande Grande reindente! Ran reindent.py over the whole thing.
# Gosh, what a lot of checkins. Tests still pass with 2.1 and 2.2.
#
# Revision 1.4  2002/05/07 07:06:11  richard
# Cleaned up sql grammar compilation some more.
# Split up the BigList into its components too.
#
# Revision 1.3  2002/05/07 04:03:14  richard
# . major cleanup of test_gadfly
#
# Revision 1.2  2002/05/06 23:27:09  richard
# . made the installation docco easier to find
# . fixed a "select *" test - column ordering is different for py 2.2
# . some cleanup in gadfly/kjParseBuild.py
# . made the test modules runnable (remembering that run_tests can take a
#   name argument to run a single module)
# . fixed the module name in gadfly/kjParser.py
#
# Revision 1.1.1.1  2002/05/06 07:31:09  richard
#
#
#