/usr/share/pyshared/gsw/gibbs/conversions.py is in python-gsw 3.0.2-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 | # -*- coding: utf-8 -*-
from __future__ import division
import numpy as np
from .constants import SSO, cp0, Kelvin, sfac, uPS
from .constants import db2Pascal, gamma, P0, M_S, valence_factor
from .library import entropy_part, entropy_part_zerop, gibbs
from .library import gibbs_pt0_pt0, enthalpy_SSO_0_p, specvol_SSO_0_p
from ..utilities import match_args_return, strip_mask
__all__ = [
#'deltaSA_from_SP', TODO
#'SA_Sstar_from_SP', TODO
'SR_from_SP',
'SP_from_SR',
#'SP_from_SA', TODO: changed, check gsw_SAAR.m
#'Sstar_from_SA', TODO: changed, check gsw_SAAR.m
#'SA_from_Sstar', TODO: changed, check gsw_SAAR.m
#'SP_from_Sstar', TODO: changed, check gsw_SAAR.m
'pt_from_CT',
't_from_CT',
'CT_from_pt',
'pot_enthalpy_from_pt',
'pt0_from_t',
'pt_from_t',
't90_from_t48',
't90_from_t68',
'z_from_p', # TODO: New test case with geo_strf_dyn_height != None
'p_from_z',
'depth_from_z',
'z_from_depth',
'Abs_Pressure_from_p',
'p_from_Abs_Pressure',
'entropy_from_CT',
'CT_from_entropy',
'entropy_from_pt',
'pt_from_entropy',
'molality_from_SA',
'ionic_strength_from_SA'
]
DEG2RAD = np.pi / 180.0
n0, n1, n2 = 0, 1, 2
@match_args_return
def pt_from_entropy(SA, entropy):
r"""Calculates potential temperature with reference pressure p_ref = 0 dbar
and with entropy as an input variable.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
entropy : array_like
specific entropy [J kg :sup:`-1` K :sup:`-1`]
Returns
-------
pt : array_like
potential temperature [:math:`^\circ` C (ITS-90)]
with reference sea pressure (p_ref) = 0 dbar.
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import seawater.gibbs as gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> entropy = [400.3892, 395.4378, 319.8668, 146.7910, 98.6471, 62.7919]
>>> gsw.pt_from_entropy(SA, entropy)
array([ 28.78317983, 28.42095483, 22.78495274, 10.23053207,
6.82921333, 4.32453778])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See appendix A.10.
Modifications:
2011-04-03. Trevor McDougall and Paul Barker.
"""
SA = np.maximum(SA, 0)
part1 = 1 - SA / SSO
part2 = 1 - 0.05 * part1
ent_SA = (cp0 / Kelvin) * part1 * (1 - 1.01 * part1)
c = (entropy - ent_SA) * part2 / cp0
pt = Kelvin * (np.exp(c) - 1)
dentropy_dt = cp0 / ((Kelvin + pt) * part2) # Initial dentropy_dt.
for Number_of_iterations in range(0, 3):
pt_old = pt
dentropy = entropy_from_pt(SA, pt_old) - entropy
# This is half way through the modified method
# (McDougall and Wotherspoon, 2012)
pt = pt_old - dentropy / dentropy_dt
ptm = 0.5 * (pt + pt_old)
dentropy_dt = -gibbs_pt0_pt0(SA, ptm)
pt = pt_old - dentropy / dentropy_dt
"""maximum error of 2.2x10^-6 degrees C for one iteration. maximum error is
1.4x10^-14 degrees C for two iterations (two iterations is the default,
"for Number_of_iterations = 1:2")."""
return pt
@match_args_return
def t_from_CT(SA, CT, p):
r"""Calculates *in-situ* temperature from Conservative Temperature of
seawater.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
CT : array_like
Conservative Temperature [:math:`^\circ` C (ITS-90)]
p : array_like
pressure [dbar]
Returns
-------
t : array_like
in situ temperature [:math:`^\circ` C (ITS-90)]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> CT = [28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236]
>>> p = [10, 50, 125, 250, 600, 1000]
>>> gsw.t_from_CT(SA, CT, p)
array([ 28.78558023, 28.43287225, 22.81032309, 10.26001075,
6.8862863 , 4.40362445])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See sections 3.1 and 3.3.
Modifications:
2011-03-29. Trevor McDougall and Paul Barker
"""
pt0 = pt_from_CT(SA, CT)
return pt_from_t(SA, pt0, 0, p)
@match_args_return
def pt_from_t(SA, t, p, p_ref=0):
r"""Calculates potential temperature with the general reference pressure,
pr, from in situ temperature.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
t : array_like
in situ temperature [:math:`^\circ` C (ITS-90)]
p : array_like
pressure [dbar]
p_ref : int, float, optional
reference pressure, default = 0
Returns
-------
pt : array_like
potential temperature [:math:`^\circ` C (ITS-90)]
See Also
--------
TODO
Notes
-----
This function calls `entropy_part` which evaluates entropy except for the
parts which are a function of Absolute Salinity alone. A faster routine
exists pt0_from_t(SA,t,p) if p_ref is indeed zero dbar.
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
>>> p = [10, 50, 125, 250, 600, 1000]
>>> gsw.pt_from_t(SA, t, p)
array([ 28.78319682, 28.42098334, 22.7849304 , 10.23052366,
6.82923022, 4.32451057])
>>> gsw.pt_from_t(SA, t, p, pr = 1000)
array([ 29.02665528, 28.662375 , 22.99149634, 10.35341725,
6.92732954, 4.4036 ])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See section 3.1.
.. [2] McDougall T.J., P.M. Barker, R. Feistel and D.R. Jackett, 2011: A
computationally efficient 48-term expression for the density of seawater
in terms of Conservative Temperature, and related properties of seawater.
Modifications:
2011-03-29. Trevor McDougall, David Jackett, Claire Roberts-Thomson and
Paul Barker.
"""
p_ref = np.asanyarray(p_ref)
SA = np.maximum(SA, 0)
s1 = SA * 35. / SSO
pt = (t + (p - p_ref) * (8.65483913395442e-6 -
s1 * 1.41636299744881e-6 -
(p + p_ref) * 7.38286467135737e-9 +
t * (-8.38241357039698e-6 +
s1 * 2.83933368585534e-8 +
t * 1.77803965218656e-8 +
(p + p_ref) * 1.71155619208233e-10)))
dentropy_dt = cp0 / ((Kelvin + pt) * (1 - 0.05 *
(1 - SA / SSO)))
true_entropy_part = entropy_part(SA, t, p)
for Number_of_iterations in range(0, 2, 1):
pt_old = pt
dentropy = entropy_part(SA, pt_old, p_ref) - true_entropy_part
pt = pt_old - dentropy / dentropy_dt # half way through the method
ptm = 0.5 * (pt + pt_old)
dentropy_dt = -gibbs(n0, n2, n0, SA, ptm, p_ref)
pt = pt_old - dentropy / dentropy_dt
"""maximum error of 6.3x10^-9 degrees C for one iteration. maximum error
is 1.8x10^-14 degrees C for two iterations (two iterations is the default,
"for Number_of_iterations = 1:2). These errors are over the full
"oceanographic funnel" of McDougall et al. (2010), which reaches down to
p = 8000 dbar."""
return pt
@match_args_return
def CT_from_pt(SA, pt):
r"""Calculates Conservative Temperature of seawater from potential
temperature (whose reference sea pressure is zero dbar).
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
pt : array_like
potential temperature referenced to a sea pressure of zero dbar
[:math:`^\circ` C (ITS-90)]
Returns
-------
CT : array_like
Conservative Temperature [:math:`^\circ` C (ITS-90)]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> pt = [28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245]
>>> gsw.CT_from_pt(SA, pt)
array([ 28.80992302, 28.43914426, 22.78624661, 10.22616561,
6.82718342, 4.32356518])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See section 3.3.
Modifications:
2011-03-29. David Jackett, Trevor McDougall and Paul Barker.
"""
SA, pt, mask = strip_mask(SA, pt)
pot_enthalpy = pot_enthalpy_from_pt(SA, pt)
CT = pot_enthalpy / cp0
return np.ma.array(CT, mask=mask, copy=False)
@match_args_return
def pot_enthalpy_from_pt(SA, pt):
r"""Calculates the potential enthalpy of seawater from potential
temperature (whose reference sea pressure is zero dbar).
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
pt : array_like
potential temperature referenced to a sea pressure of zero dbar
[:math:`^\circ` C (ITS-90)]
Returns
-------
pot_enthalpy : array_like
potential enthalpy [J kg :sup:`-1`]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> pt = [28.7832, 28.4209, 22.7850, 10.2305, 6.8292, 4.3245]
>>> gsw.pot_enthalpy_from_pt(SA, pt)
array([ 115005.40853458, 113525.30870246, 90959.68769935,
40821.50280454, 27253.21472227, 17259.10131183])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See section 3.2.
Modifications:
2011-03-29. David Jackett, Trevor McDougall and Paul Barker
"""
SA, pt, mask = strip_mask(SA, pt)
SA = np.maximum(SA, 0)
x2 = sfac * SA
x = np.sqrt(x2)
y = pt * 0.025 # Normalize for F03 and F08
pot_enthalpy = (61.01362420681071 + y * (168776.46138048015 +
y * (-2735.2785605119625 + y * (2574.2164453821433 +
y * (-1536.6644434977543 + y * (545.7340497931629 +
(-50.91091728474331 - 18.30489878927802 * y) * y))))) +
x2 * (268.5520265845071 + y * (-12019.028203559312 +
y * (3734.858026725145 + y * (-2046.7671145057618 +
y * (465.28655623826234 + (-0.6370820302376359 -
10.650848542359153 * y) * y)))) +
x * (937.2099110620707 + y * (588.1802812170108 +
y * (248.39476522971285 + (-3.871557904936333 -
2.6268019854268356 * y) * y)) +
x * (-1687.914374187449 + x * (246.9598888781377 +
x * (123.59576582457964 - 48.5891069025409 * x)) +
y * (936.3206544460336 +
y * (-942.7827304544439 + y * (369.4389437509002 +
(-33.83664947895248 - 9.987880382780322 * y) * y)))))))
"""The above polynomial for pot_enthalpy is the full expression for
potential enthalpy in terms of SA and pt, obtained from the Gibbs function
as below. It has simply collected like powers of x and y so that it is
computationally faster than calling the Gibbs function twice as is done in
the commented code below. When this code below is run, the results are
identical to calculating pot_enthalpy as above, to machine precision.
g000 = gibbs(n0, n0, n0, SA, pt, 0)
g010 = gibbs(n0, n1, n0, SA, pt, 0)
pot_enthalpy = g000 - (Kelvin + pt) * g010
This is the end of the alternative code
%timeit gsw.CT_from_pt(SA, pt)
1000 loops, best of 3: 1.34 ms per loop <- calling gibbs
1000 loops, best of 3: 254 us per loop <- standard
"""
return np.ma.array(pot_enthalpy, mask=mask, copy=False)
@match_args_return
def pt0_from_t(SA, t, p):
r"""Calculates potential temperature with reference pressure, pr = 0 dbar.
The present routine is computationally faster than the more general
function "pt_from_t(SA, t, p, pr)" which can be used for any reference
pressure value.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
t : array_like
in situ temperature [:math:`^\circ` C (ITS-90)]
p : array_like
pressure [dbar]
Returns
-------
pt0 : array_like
potential temperature relative to 0 dbar [:math:`^\circ` C (ITS-90)]
See Also
--------
entropy_part, gibbs_pt0_pt0, entropy_part_zerop
Notes
-----
pt_from_t has the same result (only slower)
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> t = [28.7856, 28.4329, 22.8103, 10.2600, 6.8863, 4.4036]
>>> p = [10, 50, 125, 250, 600, 1000]
>>> gsw.pt0_from_t(SA, t, p)
array([ 28.78319682, 28.42098334, 22.7849304 , 10.23052366,
6.82923022, 4.32451057])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See section 3.1.
.. [2] McDougall T. J., D. R. Jackett, P. M. Barker, C. Roberts-Thomson,
R. Feistel and R. W. Hallberg, 2010: A computationally efficient 25-term
expression for the density of seawater in terms of Conservative
Temperature, and related properties of seawater.
Modifications:
2011-03-29. Trevor McDougall, David Jackett, Claire Roberts-Thomson and
Paul Barker.
"""
SA = np.maximum(SA, 0)
s1 = SA * (35. / SSO)
pt0 = t + p * (8.65483913395442e-6 -
s1 * 1.41636299744881e-6 -
p * 7.38286467135737e-9 +
t * (-8.38241357039698e-6 +
s1 * 2.83933368585534e-8 +
t * 1.77803965218656e-8 +
p * 1.71155619208233e-10))
dentropy_dt = cp0 / ((Kelvin + pt0) * (1 - 0.05 * (1 - SA / SSO)))
true_entropy_part = entropy_part(SA, t, p)
for Number_of_iterations in range(0, 2, 1):
pt0_old = pt0
dentropy = entropy_part_zerop(SA, pt0_old) - true_entropy_part
# Half way the mod. method (McDougall and Wotherspoon, 2012).
pt0 = pt0_old - dentropy / dentropy_dt
pt0m = 0.5 * (pt0 + pt0_old)
dentropy_dt = -gibbs_pt0_pt0(SA, pt0m)
pt0 = pt0_old - dentropy / dentropy_dt
"""maximum error of 6.3x10^-9 degrees C for one iteration. maximum error is
1.8x10^-14 degrees C for two iterations (two iterations is the default,
"for Number_of_iterations = 1:2"). These errors are over the full
"oceanographic funnel" of McDougall et al. (2010), which reaches down to
p = 8000 dbar."""
return pt0
@match_args_return
def pt_from_CT(SA, CT):
r"""Calculates potential temperature (with a reference sea pressure of zero
dbar) from Conservative Temperature.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
CT : array_like
Conservative Temperature [:math:`^\circ` C (ITS-90)]
Returns
-------
pt : array_like
potential temperature referenced to a sea pressure of zero dbar
[:math:`^\circ` C (ITS-90)]
See Also
--------
specvol_anom
Notes
-----
This function uses 1.5 iterations through a modified Newton-Raphson (N-R)
iterative solution procedure, starting from a rational-function-based
initial condition for both pt and dCT_dpt.
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> CT = [28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236]
>>> gsw.pt_from_CT(SA, CT)
array([ 28.78317705, 28.4209556 , 22.78495347, 10.23053439,
6.82921659, 4.32453484])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See sections 3.1 and 3.3.
.. [2] McDougall T. J., D. R. Jackett, P. M. Barker, C. Roberts-Thomson,
R. Feistel and R. W. Hallberg, 2010: A computationally efficient 25-term
expression for the density of seawater in terms of Conservative
Temperature, and related properties of seawater.
Modifications:
2011-03-29. Trevor McDougall, David Jackett, Claire Roberts-Thomson and
Paul Barker.
"""
SA, CT, mask = strip_mask(SA, CT)
SA = np.maximum(SA, 0)
s1 = SA * 35. / SSO
a0 = -1.446013646344788e-2
a1 = -3.305308995852924e-3
a2 = 1.062415929128982e-4
a3 = 9.477566673794488e-1
a4 = 2.166591947736613e-3
a5 = 3.828842955039902e-3
b0 = 1.000000000000000e+0
b1 = 6.506097115635800e-4
b2 = 3.830289486850898e-3
b3 = 1.247811760368034e-6
a5CT = a5 * CT
b3CT = b3 * CT
CT_factor = (a3 + a4 * s1 + a5CT)
pt_num = a0 + s1 * (a1 + a2 * s1) + CT * CT_factor
pt_den = b0 + b1 * s1 + CT * (b2 + b3CT)
pt = pt_num / pt_den
dCT_dpt = pt_den / (CT_factor + a5CT - (b2 + b3CT + b3CT) * pt)
# 1.5 iterations through the modified Newton-Rapshon iterative method
CT_diff = CT_from_pt(SA, pt) - CT
pt_old = pt
pt = pt_old - CT_diff / dCT_dpt # 1/2-way through the 1st modified N-R.
ptm = 0.5 * (pt + pt_old)
# This routine calls gibbs_pt0_pt0(SA, pt0) to get the second derivative of
# the Gibbs function with respect to temperature at zero sea pressure.
dCT_dpt = -(ptm + Kelvin) * gibbs_pt0_pt0(SA, ptm) / cp0
pt = pt_old - CT_diff / dCT_dpt # End of 1st full modified N-R iteration.
CT_diff = CT_from_pt(SA, pt) - CT
pt_old = pt
pt = pt_old - CT_diff / dCT_dpt # 1.5 iterations of the modified N-R.
# Abs max error of result is 1.42e-14 deg C.
return np.ma.array(pt, mask=mask, copy=False)
@match_args_return
def z_from_p(p, lat, geo_strf_dyn_height=None):
r"""Calculates height from sea pressure using the computationally-efficient
48-term expression for density in terms of SA, CT and p (McDougall et
al., 2011). Dynamic height anomaly, geo_strf_dyn_height, if provided, must
be computed with its pr=0 (the surface.)
Parameters
----------
p : array_like
pressure [dbar]
lat : array_like
latitude in decimal degrees north [-90..+90]
geo_strf_dyn_height : float, optional
dynamic height anomaly [ m :sup:`2` s :sup:`-2` ]
Returns
-------
z : array_like
height [m]
See Also
--------
# FIXME: enthalpy_SSO_0_CT25, changed!
Examples
--------
>>> import gsw
>>> p = [10, 50, 125, 250, 600, 1000]
>>> lat = 4
>>> gsw.z_from_p(p, lat)
array([ -9.94460074, -49.71817465, -124.2728275 , -248.47044828,
-595.82618014, -992.0931748 ])
Notes
-----
At sea level z = 0, and since z (HEIGHT) is defined to be positive upwards,
it follows that while z is positive in the atmosphere, it is NEGATIVE in
the ocean.
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
.. [2] McDougall T.J., P.M. Barker, R. Feistel and D.R. Jackett, 2011: A
computationally efficient 48-term expression for the density of seawater
in terms of Conservative Temperature, and related properties of seawater.
.. [3] Moritz (2000) Goedetic reference system 1980. J. Geodesy, 74,
128-133.
Modifications:
2011-03-26. Trevor McDougall, Claire Roberts-Thomson and Paul Barker.
"""
if not geo_strf_dyn_height:
geo_strf_dyn_height = np.zeros_like(p)
X = np.sin(lat * DEG2RAD)
sin2 = X ** 2
B = 9.780327 * (1.0 + (5.2792e-3 + (2.32e-5 * sin2)) * sin2)
A = -0.5 * gamma * B
C = enthalpy_SSO_0_p(p) - geo_strf_dyn_height
return -2 * C / (B + np.sqrt(B ** 2 - 4 * A * C))
@match_args_return
def p_from_z(z, lat, geo_strf_dyn_height=0):
r"""Calculates sea pressure from height using computationally-efficient
48-term expression for density, in terms of SA, CT and p (McDougall et al.,
2011). Dynamic height anomaly, geo_strf_dyn_height, if provided, must be
computed with its pr=0 (the surface.)
Parameters
----------
z : array_like
height [m]
lat : array_like
latitude in decimal degrees north [-90..+90]
geo_strf_dyn_height : float, optional
dynamic height anomaly [ m :sup:`2` s :sup:`-2` ]
The reference pressure (p_ref) of geo_strf_dyn_height
must be zero (0) dbar.
Returns
-------
p : array_like
pressure [dbar]
See Also
--------
#FIXME: specvol_SSO_0_CT25, enthalpy_SSO_0_CT25, changed!
Examples
--------
>>> import gsw
>>> z = [-10., -50., -125., -250., -600., -1000.]
>>> lat = 4.
>>> gsw.p_from_z(z, lat)
array([ 10.05521794, 50.2711751, 125.6548857, 251.23284504,
602.44050752, 1003.07609807])
>>> z = [9.94460074, 49.71817465, 124.2728275, 248.47044828, 595.82618014,
... 992.0931748]
>>> gsw.p_from_z(z, lat)
array([ 10., 50., 125., 250., 600., 1000.])
Notes
-----
Height (z) is NEGATIVE in the ocean. Depth is -z. Depth is not used in the
gibbs library.
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
.. [2] McDougall T.J., P.M. Barker, R. Feistel and D.R. Jackett, 2011: A
computationally efficient 48-term expression for the density of seawater
in terms of Conservative Temperature, and related properties of seawater.
.. [3] Moritz (2000) Goedetic reference system 1980. J. Geodesy, 74,
128-133.
.. [4] Saunders, P. M., 1981: Practical conversion of pressure to depth.
Journal of Physical Oceanography, 11, 573-574.
Modifications:
2010-08-26. Trevor McDougall, Claire Roberts-Thomson and Paul Barker.
2011-03-26. Trevor McDougall, Claire Roberts-Thomson and Paul Barker
"""
X = np.sin(lat * DEG2RAD)
sin2 = X ** 2
gs = 9.780327 * (1.0 + (5.2792e-3 + (2.32e-5 * sin2)) * sin2)
# get the first estimate of p from Saunders (1981)
c1 = 5.25e-3 * sin2 + 5.92e-3
p = -2 * z / ((1 - c1) + np.sqrt((1 - c1) * (1 - c1) + 8.84e-6 * z))
df_dp = db2Pascal * specvol_SSO_0_p(p) # Initial value for f derivative.
f = (enthalpy_SSO_0_p(p) + gs * (z - 0.5 * gamma * (z ** 2)) -
geo_strf_dyn_height)
p_old = p
p = p_old - f / df_dp
p_mid = 0.5 * (p + p_old)
df_dp = db2Pascal * specvol_SSO_0_p(p_mid)
p = p_old - f / df_dp
# After this one iteration through this modified Newton-Raphson iterative
# procedure, the remaining error in p is at computer machine precision,
# being no more than 1.6e-10 dbar.
return p
@match_args_return
def t90_from_t48(t48):
r"""Converts IPTS-48 temperature to International Temperature Scale 1990
(ITS-90) temperature. This conversion should be applied to all in-situ
data collected prior to 31/12/1967.
Parameters
---------
t48 : array_like
in-situ temperature [:math:`^\circ` C (ITPS-48)]
Returns
-------
t90 : array_like
in-situ temperature [:math:`^\circ` C (ITS-90)]
References
----------
.. [1] International Temperature Scales of 1948, 1968 and 1990, an ICES
note, available from http://www.ices.dk/ocean/procedures/its.htm
Modifications:
2011-03-29. Paul Barker and Trevor McDougall.
"""
return (t48 - (4.4e-6) * t48 * (100 - t48)) / 1.00024
@match_args_return
def t90_from_t68(t68):
r"""Converts IPTS-68 temperature to International Temperature Scale 1990
(ITS-90) temperature. This conversion should be applied to all in-situ
data collected between 1/1/1968 and 31/12/1989.
Parameters
---------
t68 : array_like
in-situ temperature [:math:`^\circ` C (ITPS-68)]
Returns
-------
t90 : array_like
in-situ temperature [:math:`^\circ` C (ITS-90)]
References
----------
.. [1] International Temperature Scales of 1948, 1968 and 1990, an ICES
note, available from http://www.ices.dk/ocean/procedures/its.htm
Modifications:
2011-03-29. Paul Barker and Trevor McDougall.
"""
# t90 = t68 / 1.00024
return t68 * 0.999760057586179
def depth_from_z(z):
r"""Calculates depth from height, z. Note that in general height is
negative in the ocean.
Parameters
---------
z : array_like
height [m]
Returns
-------
depth : array_like
depth [m]
Modifications:
2011-03-26. Winston.
"""
return -z
def z_from_depth(depth):
r"""Calculates height, z, from depth. Note that in general height is
negative in the ocean.
Parameters
---------
depth : array_like
depth [m]
Returns
-------
z : array_like
height [m]
Modifications:
2011-03-26. Winston.
"""
return -depth
@match_args_return
def Abs_Pressure_from_p(p):
r"""Calculates Absolute Pressure from sea pressure. Note that Absolute
Pressure is in Pa NOT dbar.
Parameters
---------
p : array_like
sea pressure [dbar]
Returns
-------
Absolute_Pressure : array_like
Absolute Pressure [Pa]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
TODO
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See Eqn. (2.2.1).
Modifications:
2011-03-29. Trevor McDougall & Paul Barker
"""
return p * db2Pascal + P0
@match_args_return
def p_from_Abs_Pressure(Absolute_Pressure):
r"""Calculates sea pressure from Absolute Pressure. Note that Absolute
Pressure is in Pa NOT dbar.
Parameters
---------
Absolute_Pressure : array_like
Absolute Pressure [Pa]
Returns
-------
p : array_like
sea pressure [dbar]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
TODO
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See Eqn. (2.2.1).
Modifications:
2011-03-29. Trevor McDougall & Paul Barker
"""
return (Absolute_Pressure - P0) * 1. / db2Pascal
@match_args_return
def SR_from_SP(SP):
r"""Calculates Reference Salinity from Practical Salinity.
Parameters
---------
SP : array_like
Practical Salinity (PSS-78) [unitless]
Returns
-------
SR : array_like
Reference Salinity [g kg :sup:`-1`]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
TODO
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
Modifications:
2011-03-27. Trevor McDougall & Paul Barker
"""
return uPS * SP
@match_args_return
def SP_from_SR(SR):
r"""Calculates Practical Salinity from Reference Salinity.
Parameters
---------
SR : array_like
Reference Salinity [g kg :sup:`-1`]
Returns
-------
SP : array_like
Practical Salinity (PSS-78) [unitless]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
TODO
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
Modifications:
2011-03-27. Trevor McDougall & Paul Barker
"""
return 1. / uPS * SR
@match_args_return
def ionic_strength_from_SA(SA):
r"""Calculates the ionic strength of seawater from Absolute Salinity.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
Returns
-------
ionic_strength : array_like
ionic strength of seawater [mol kg :sup:`-1`]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> gsw.ionic_strength_from_SA(SA)
array([ 0.71298118, 0.71680567, 0.71966059, 0.71586272, 0.71350891,
0.71341953])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See Table L.1.
.. [2] Millero, F. J., R. Feistel, D. G. Wright, and T. J. McDougall, 2008:
The composition of Standard Seawater and the definition of the
Reference-Composition Salinity Scale, Deep-Sea Res. I, 55, 50-72.
See Eqns. 5.9 and 5.12.
Modifications:
2011-03-29. Trevor McDougall and Paul Barker
"""
# Molality of seawater in mol kg :sup:`-1`
molality = molality_from_SA(SA)
return 0.5 * valence_factor * molality
@match_args_return
def molality_from_SA(SA):
r"""Calculates the molality of seawater from Absolute Salinity.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
Returns
-------
molality : array_like
seawater molality [mol kg :sup:`-1`]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> gsw.molality(SA)
array([ 1.14508476, 1.15122708, 1.15581223, 1.14971265, 1.14593231,
1.14578877])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp.
Modifications:
2011-03-29. Trevor McDougall & Paul Barker
"""
# Molality of seawater in mol kg :sup:`-1`.
SA = np.maximum(SA, 0)
molality = SA / (M_S * (1000 - SA))
return molality
@match_args_return
def entropy_from_pt(SA, pt):
r"""Calculates specific entropy of seawater.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
pt : array_like
potential temperature [:math:`^\circ` C (ITS-90)]
Returns
-------
entropy : array_like
specific entropy [J kg :sup:`-1` K :sup:`-1`]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> pt = [28.7832, 28.4210, 22.7850, 10.2305, 6.8292, 4.3245]
>>> gsw.entropy_from_pt(SA, pt)
array([ 400.38946744, 395.43839949, 319.86743859, 146.79054828,
98.64691006, 62.79135672])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See appendix A.10.
Modifications:
2011-04-03. Trevor McDougall & Paul Barker
"""
SA = np.maximum(SA, 0)
return -gibbs(n0, n1, n0, SA, pt, 0)
@match_args_return
def entropy_from_CT(SA, CT):
r"""Calculates specific entropy of seawater.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
CT : array_like
Conservative Temperature [:math:`^\circ` C (ITS-90)]
Returns
-------
entropy : array_like
specific entropy [J kg :sup:`-1` K :sup:`-1`]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> CT = [28.8099, 28.4392, 22.7862, 10.2262, 6.8272, 4.3236]
>>> gsw.entropy_from_CT(SA, CT)
array([ 400.38916315, 395.43781023, 319.86680989, 146.79103279,
98.64714648, 62.79185763])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See appendix A.10.
Modifications:
2011-04-04. Trevor McDougall & Paul Barker
"""
SA = np.maximum(SA, 0)
pt0 = pt_from_CT(SA, CT)
return -gibbs(n0, n1, n0, SA, pt0, 0)
@match_args_return
def CT_from_entropy(SA, entropy):
r"""Calculates Conservative Temperature with entropy as an input variable.
Parameters
----------
SA : array_like
Absolute salinity [g kg :sup:`-1`]
entropy : array_like
specific entropy [J kg :sup:`-1` K :sup:`-1`]
Returns
-------
CT : array_like
Conservative Temperature [:math:`^\circ` C (ITS-90)]
See Also
--------
TODO
Notes
-----
TODO
Examples
--------
>>> import gsw
>>> SA = [34.7118, 34.8915, 35.0256, 34.8472, 34.7366, 34.7324]
>>> entropy = [400.3892, 395.4378, 319.8668, 146.7910, 98.6471, 62.7919]
>>> gsw.CT_from_entropy(SA, entropy)
array([ 28.80990279, 28.43919923, 22.78619927, 10.22619767,
6.82719674, 4.32360295])
References
----------
.. [1] IOC, SCOR and IAPSO, 2010: The international thermodynamic equation
of seawater - 2010: Calculation and use of thermodynamic properties.
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO (English), 196 pp. See appendix A.10.
Modifications:
2011-03-03. Trevor McDougall and Paul Barker.
"""
SA = np.maximum(SA, 0)
pt = pt_from_entropy(SA, entropy)
return CT_from_pt(SA, pt)
if __name__ == '__main__':
import doctest
doctest.testmod()
|