This file is indexed.

/usr/share/pyshared/guppy/etc/RE.py is in python-guppy 0.1.9-2ubuntu4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
#._cv_part guppy.etc.RE

from guppy.etc.RE_Rect import chooserects
from guppy.etc.IterPermute import iterpermute

class InfiniteError(Exception):
    pass

class WordsMemo:
    def __init__(self, re, ch):
	self.re = re
	self.ch = ch
	self.xs = {}
	self.N = 0

    def get_words_of_length(self, N):
	# Return a list of words of length up to N
	if N not in self.xs:
	    self.xs[N] = self.re.get_words_of_length_memoized(N, self)
	return self.xs[N]
    

    def get_words_of_length_upto(self, N):
	# Return all words of length up to N, in the form
	# [(0, <list of words of length 0>),
	#  (1, <list of words of length 0>),
	#  ...]
	xsu = []
	for i in range(N+1):
	    xs = self.get_words_of_length(i)
	    if xs:
		xsu.append((i, xs))
	return xsu

REBASE = tuple

class RE(REBASE):
    # Regular expression nodes
    # The operators are choosen to be compatible with Pythonic standards:
    #	o sets     	     : using | for union
    #   o strings, sequences : using + for concatenation.
    #
    # This differs from mathematical presentations of regular
    # expressions where + is the union, but it seemed more important
    # to not confuse the Python usage.

    # There are also operators for closure x*, x+ that can not be
    # represented directly in Python expressions and these were choosen
    # to use a function call syntax.
    # The following table summarizes the operators.

    #   RE node expr	re lib		mathematical	name

    #   x + y		x y		x y		Concatenation
    #	x | y		x | y		x + y		Union
    #	x('*')		x*		x*		Kleene closure
    #	x('+')		x+		x+		Positive closure
    #	x('?')		x?				

    _re_special = r'.^$*+?{}\[]|()'
    def __add__(a, b):
	if isinstance(b, RE):
	    return concat(a, b)
	else:
	    return Concatenation(a, Single(b))

    def __call__(a, *args, **kwds):
	if not kwds:
	    if args == ('*',):
		return KleeneClosure(a)
	    elif args == ('+',):
		return PositiveClosure(a)
	    elif args == ('?',):
		return EpsilonOrOne(a)
	raise ValueError, "Argument to regular expression must be '*' or '+' or '?'"

    def __eq__(a, b):
	return (a._name == b._name and
		tuple(a) == tuple(b))
	    
    def __lt__(a, b):
	if a._name == b._name:
	    return tuple(a) < tuple(b)
	else:
	    return a._name < b._name
	    
    def __or__(a, b):
	return Union(a, b)

    def get_num_closures(self):
	ns = 0
	for ch in self:
	    ns += ch.get_num_closures()
	return ns

    def get_num_syms(self):
	ns = 0
	for ch in self:
	    ns += ch.get_num_syms()
	return ns

    def get_sum_sym_lengths(self):
	ns = 0
	for ch in self:
	    ns += ch.get_sum_sym_lengths()
	return ns

    def get_words_memo(self):
	ch = [x.get_words_memo() for x in self]
	return WordsMemo(self, ch)

    def get_words_of_length(self, N):
	xs = self.get_words_memo()
	return xs.get_words_of_length(N)

    def mapchildren(self, f):
	return self.__class__(*[f(x) for x in self])

    def regexpform(self):
	return self.mappedrepr(regexpname)

    def reversed(self):
	return self.mapchildren(lambda x:x.reversed())

    def rempretup(self):
	def f(x):
	    if isinstance(x, Seq):
		if x is not Epsilon and isinstance(x[0], tuple):
		    ws = x[1:]
		    return Seq(*ws)
		else:
		    return x
	    return x.mapchildren(f)

	return f(self)

    def seqatoms(self):
	sa = []
	self.apseqatoms(sa.append)
	return sa

    def sequni(self):
	d = {}
	us = []
	def ap(x):
	    if x not in d:
		d[x] = 1
		us.append(x)
	self.apseq(ap)
	return Union(*us)

    def shform(self, conc = ' '):
	r = self.mappedrepr(regexpname)
	if conc != ' ':
	    r = conc.join(r.split(' '))
	return r

    def simplified(self, *a, **k):
	return self

    def simulform(self):
	def f(x):
	    if x == '':
		return '()'
	    return str(x)
	return self.mappedrepr(f)


def regexpname(s):
    if s == '':
	return '()'
    special = RE._re_special
    ren = []
    for c in str(s):
	if c in special+"', ":
	    #c = r'\%s'%c
	    c = ''
	ren.append(c)
    return ''.join(ren)


def re_compare(a, b):
    return a.__cmp__(b)

class Seq(RE):
    _priority = 0
    _name = 'Seq'

    def __new__(clas, *symbols):
	if not symbols:
	    return Epsilon
	return REBASE.__new__(clas, symbols)

    def __repr__(self):
	return '%s(%s)'%(self.__class__.__name__, ', '.join(['%r'%(x,) for x in self]))

    def __hash__(self):
        return hash(repr(self))

    def apseq(self, ap):
	ap(self)

    def apseqatoms(self, ap):
	for x in self:
	    ap(Single(x))

    def get_num_closures(self):
	return 0

    def get_num_syms(self):
	return len(self)

    def get_sum_sym_lengths(self):
	s = 0
	for x in self:
	    s += len(str(x))
	return s

    def get_words_memo(self):
	return WordsMemo(self, ())

    def get_words_of_length_memoized(self, N, memo):
	if N == len(self):
	    return [self]
	else:
	    return []

    def limited(self, N):
	return self

    def mappedrepr(self, f):
	if not self:
	    return f('')
	return ' '.join(['%s'%(f(x),) for x in self])

    def reversed(self):
	r = list(self)
	r.reverse()
	return self.__class__(*r)

    def unionsplitted(self):
	return [self]

def Single(symbol):
    return REBASE.__new__(Seq, (symbol,))

Epsilon = REBASE.__new__(Seq, ())

def concat(*args):
    args = [x for x in args if x is not Epsilon]
    if len(args) < 2:
	if not args:
	    return Epsilon
	return args[0]
    return REBASE.__new__(Concatenation, args)
    

class Concatenation(RE):
    _priority = 2
    _name = 'Concat'

    def __new__(clas, *args):
	#assert Epsilon not in args
	if len(args) < 2:
	    if not args:
		return Epsilon
	    return args[0]
	return REBASE.__new__(clas, args)

    def __repr__(self):
	rs = []
	for ch in self:
	    r = '%r'%(ch,)
	    if ch._priority > self._priority:
		r = '(%s)'%(r,)
	    rs.append(r)
	return ' + '.join(rs)

    def apseq(self, ap):
	uns = [x.sequni() for x in self]
	ixs = [0]*len(uns)
	while 1:
	    xs = []
	    for (i, us) in enumerate(uns):
		for x in us[ixs[i]]:
		    if x is not Epsilon:
			xs.append(x)
	    ap(Seq(*xs))
	    j = 0
	    for j, ix in enumerate(ixs):
		ix += 1
		if ix >= len(uns[j]):
		    ix = 0
		ixs[j] = ix
		if ix != 0:
		    break
	    else:
		break

    def apseqatoms(self, ap):
	for x in self:
	    x.apseqatoms(ap)

    def get_words_of_length_memoized(self, N, memo):
	chxs = []
	for ch in memo.ch:
	    chxs.append(ch.get_words_of_length_upto(N))
	xs = []
	seen = {}

	def ads(xx, i, n):
	    if i == len(chxs):
		if n == N:
		    for toconc in iterpermute(*xx):
			conc = simple_Concatenation(toconc)
			if conc not in seen:
			    xs.append(conc)
			    seen[conc] = 1
	    else:
		for m, x in chxs[i]:
		    if n + m <= N:
			ads(xx + [x], i + 1, n + m)
		
        ads([], 0, 0)
	return xs
			  

    def limited(self, N):
	return Concatenation(*[x.limited(N) for x in self])

    def mappedrepr(self, f):
	rs = []
	for ch in self:
	    r = ch.mappedrepr(f)
	    if ch._priority > self._priority:
		r = '(%s)'%(r,)
	    rs.append(r)
	return ' '.join(rs)

    def reversed(self):
	r = [x.reversed() for x in self]
	r.reverse()
	return self.__class__(*r)

    def simplified(self, *a, **k):
	conc = [x.simplified(*a, **k) for x in self]
	sa = []
	for c in conc:
	    for a in c.seqatoms():
		sa.append(a)
	return simple_Concatenation(sa)

    def unionsplitted(self):
	runs = []
	uns = []
	for (i, x) in enumerate(self):
	    us = x.unionsplitted()
	    if len(us) > 1:
		uns.append((i, us))
	if not uns:
	    return [self]
	ixs = [0]*len(uns)
	ch = list(self)
	while 1:
	    xs = []
	    i0 = 0
	    for j, (i, us) in enumerate(uns):
		xs.extend(ch[i0:i])
		ix = ixs[j]
		xs.append(us[ix])
		i0 = i + 1
	    xs.extend(ch[i0:])
	    runs.append( concat(*xs) )

	    j = 0
	    for j, ix in enumerate(ixs):
		ix += 1
		if ix >= len(uns[j][1]):
		    ix = 0
		ixs[j] = ix
		if ix != 0:
		    break
	    else:
		return runs


class SimplifiedConcatenation(Concatenation):    
    def simplified(self, *a, **k):
	# pdb.set_trace()
	return self


def conclosure(conc):
    # Simplification noted Mar 5 2005
    # Simplify ... b b* ... or ... b* b ... to ... b+ ...
    # conc is a sequence of regular expressions

    seen = {}
    nconc = []
    w0 = None
    for w in conc:
	if w0 is not None:
	    if (w._name == '*' and	# Not isinstance(KleeneClosure), would catch PositiveClosure
		w[0] == w0):
		w = PositiveClosure(w0)
	    elif (w0._name == '*' and
		  w0[0] == w):
		w = PositiveClosure(w)
	    else:
		if w0 is not None:
		    nconc.append(w0)
	w0 = w
    if w0 is not None:
	nconc.append(w0)
    return nconc


def simple_Concatenation(conc):
    if len(conc) > 1:
	conc0 = conc
	conc = conclosure(conc)
    nconc = []
    i = 0
    j = 0
    while i < len(conc):
	e = conc[i]
	if not isinstance(e, Seq):
	    i += 1
	    nconc.append(e)
	    continue
	j = i
	while j < len(conc):
	    if not isinstance(conc[j], Seq):
		break
	    j += 1
	if j == i + 1:
	    nconc.append(e)
	else:
	    syms = []
	    for k in range(i, j):
		e = conc[k]
		syms.extend(list(e))
	    nconc.append(Seq(*syms))
	i = j
    if len(nconc) > 1:
	return Concatenation(*nconc)
    elif nconc:
	return nconc[0]
    else:
	return Epsilon

gauges = [
    lambda x:x.get_num_syms(),
    lambda x:x.get_num_closures(),
    lambda x:x.get_sum_sym_lengths()
    ]


def simpleunion(lines, trace=''):
    choosen = chooserects(lines, gauges, trace)
    have_epsilon = 0
    while 1:
	if len(choosen) == 1 and (choosen[0].width == 0 or len(choosen[0].lines) == 1):
	    us = []
	    for line in choosen[0].lines:
		if line:
		    us.append(line)
		else:
		    have_epsilon = 1
	    break
	us = []
	for r in choosen:
	    conc = r.get_common_part()
	    olines = r.get_uncommons()
	    u = simpleunion(olines)
	    if u is not Epsilon:
		if r.dir == -1:
		    conc = [u]+conc
		else:
		    conc = conc + [u]
	    if conc:
		us.append(conc)
	    else:
		have_epsilon = 1
	    assert not isinstance(us[-1], str)

	choosen = chooserects(us, gauges, trace)

    if len(us) > 1:
	nus = [simple_Concatenation(line) for line in us]
	u = SimplifiedUnion(*nus)
    elif us:
	u = simple_Concatenation(us[0])
    else:
	u = None
    if have_epsilon:
	if u is not None:
	    u = simple_EpsilonOrOne(u)
	else:
	    u = Epsilon

    return u



class Union(RE):
    _priority = 3
    _name = 'Union'

    def __new__(clas, *args):
	return REBASE.__new__(clas, args)

    def __repr__(self):
	rs = []
	for ch in self:
	    r = '%r'%(ch,)
	    if ch._priority > self._priority:
		r = '(%s)'%r
	    rs.append(r)
	return ' | '.join(rs)

    def apseq(self, ap):
	for c in self:
	    c.apseq(ap)

    def apseqatoms(self, ap):
	for x in self:
	    x.apseqatoms(ap)

    def get_words_of_length_memoized(self, N, memo):
	xs = []
	seen = {}
	for ch in memo.ch:
	    for x in ch.get_words_of_length(N):
		if x not in seen:
		    seen[x] = 1
		    xs.append(x)
	return xs

    def limited(self, N):
	uni = [x.limited(N) for x in self]
	for i, x in enumerate(uni):
	    if x is not self[i]:
		return self.__class__(*uni)
	return self

    def mappedrepr(self, f):
	rs = []
	for ch in self:
	    r = '%s'%(ch.mappedrepr(f),)
	    if ch._priority > self._priority:
		r = '(%s)'%r
	    rs.append(r)
	return ' | '.join(rs)

    def simplified(self, args=None, trace='', *a, **k):
	if args is None:
	    args = [x.simplified() for x in self.unionsplitted()]
	    #args = [x for x in self.unionsplitted()]

	# Create a simplfied union
	# Assuming args are simplified, non-unions

	ch = [a.seqatoms() for a in args]
	return simpleunion(ch, trace)

    def unionsplitted(self):
	us = []
	for x in self:
	    us.extend(list(x.unionsplitted()))
	return us

class SimplifiedUnion(Union):
    def simplified(self, *a, **k):
	return self

class Called(RE):
    _priority = 1

    def __new__(clas, arg):
	return REBASE.__new__(clas, (arg,))

    def __repr__(self):
	ch = self[0]
	r = '%r'%(ch,)
	if ch._priority > self._priority:
	    r = '(%s)'%r
	return "%s(%r)"%(r, self._name)

    def apseqatoms(self, ap):
	ap(self)

    def get_num_closures(self):
	return 1 + self[0].get_num_closures()

    def mappedrepr(self, f):
	ch = self[0]
	r = ch.mappedrepr(f)
	if (ch._priority > self._priority
	    or isinstance(ch, Seq) and len(ch) > 1):
	    r = '(%s)'%r
	return "%s%s"%(r, self._name)

    def simplified(self, *a, **k):
	return self.__class__(self[0].simplified(*a, **k))

class Closure(Called):
    def get_words_of_length_memoized(self, N, memo):
	if N == 0:
	    return [Epsilon]
	if N == 1:
	    return memo.ch[0].get_words_of_length(1)
	xs = []
	seen = {}
	for i in range(1, N):
	    a = memo.get_words_of_length(i)
	    b = memo.get_words_of_length(N-i)
	    for ai in a:
		for bi in b:
		    aibi = simple_Concatenation((ai, bi))
		    if aibi not in seen:
			xs.append(aibi)
			seen[aibi] = 1
	for x in memo.ch[0].get_words_of_length(N):
	    if x not in seen:
		xs.append(x)
		seen[x] = 1
	return xs

    def unionsplitted(self):
	return [self]

class KleeneClosure(Closure):
    _name = '*'

    def apseq(self, ap):
	raise InfiniteError, 'apseq: Regular expression is infinite: contains a Kleene Closure'

    def limited(self, N):
	if N == 0:
	    return Epsilon
	cl = self[0].limited(N)
	uni = []
	for i in range(N+1):
	    toconc = [cl]*i
	    uni.append(Concatenation(*toconc))
	return Union(*uni)

    def simplified(self, *a, **k):
	return simple_KleeneClosure(self[0].simplified(*a, **k))


def simple_KleeneClosure(x):
    # (b+)* -> b*
    if x._name == '+':
	return simple_KleeneClosure(x[0])
    return KleeneClosure(x)

class PositiveClosure(Closure):
    _name = '+'

    def apseq(self, ap):
	raise InfiniteError, 'apseq: Regular expression is infinite: contains a Positive Closure'

    def apseqatoms(self, ap):
	self[0].apseqatoms(ap)
	simple_KleeneClosure(self[0]).apseqatoms(ap)

    def get_words_of_length_memoized(self, N, memo):
	if N <= 1:
	    return memo.ch[0].get_words_of_length(N)
	return Closure.get_words_of_length_memoized(self, N, memo)

    def limited(self, N):
	a = self[0].limited(N)
	b = KleeneClosure(self[0]).limited(N)
	return Concatenation(a, b)
	

class EpsilonOrOne(Called):
    _name = '?'

    def apseq(self, ap):
	ap(Epsilon)
	self[0].apseq(ap)

    def get_words_of_length_memoized(self, N, memo):
	if N == 0:
	    return [Epsilon]
	return memo.ch[0].get_words_of_length(N)

    def limited(self, N):
	x = self[0].limited(N)
	if x is not self[0]:
	    self = self.__class__(x)
	return self

    def simplified(self, *a, **k):
	return simple_EpsilonOrOne(self[0].simplified(*a, **k))

    def unionsplitted(self):
	return [Epsilon] + list(self[0].unionsplitted())

def simple_EpsilonOrOne(x):
    # (a+)? -> a*
    
    if x._name == '+':
	return simple_KleeneClosure(x)

    # (a*)? -> a*
    if x._name == '*':
	return x

    return EpsilonOrOne(x)

class RegularSystem:

    def __init__(self, table, Start, final_states):
	self.table = table
	self.Start = Start
	self.Final = '358f0eca5c34bacdfbf6a8ac0ccf84bc'
	self.final_states = final_states

    def pp(self):

	def statename(state):
	    try:
		name = self.names[state]
	    except KeyError:
		name = str(state)
	    return name

	def transname(trans):
	    name = trans.simulform()
	    if trans._priority > 1:
		name = '(%s)'%(name,)
	    return name
	    
	self.setup_names()

	X = self.X
	
	xs = [self.Start]+self.order
	xs.append(self.Final)
	for Xk in xs:
	    if Xk not in X:
		continue
	    print '%3s = '%(statename(Xk),),
	    Tk = X[Xk]
	    es = []
	    for Xj in xs:
		if Xj in Tk:
		    es.append('%s %s'%(transname(Tk[Xj]), statename(Xj)))
	    if es:
		print ' | '.join(es)
	    else:
		print

    def setup_equations(self):
	table = self.table
	final_states = self.final_states
	Final = self.Final
	self.X = X = {Final:{}}
	for Xi, transitions in table.items():
	    X[Xi] = Ti = {}
	    for (symbol, Xj) in transitions.items():
		Ti.setdefault(Xj, []).append(Single(symbol))
	    for Xj, Aij in Ti.items():
		if len(Aij) > 1:
		    Aij.sort()
		    Aij = Union(*Aij)
		else:
		    Aij = Aij[0]
		Ti[Xj] = Aij
	    if Xi in final_states:
		Ti[Final] = Epsilon

    def setup_order(self):
	def dists(X, start):
	    i = 0
	    S = {start:i}
	    news = [start]
	    while news:
		oldnews = news
		news = []
		i += 1
		for s in oldnews:
		    if s not in X:
			continue
		    for t in X[s]:
			if t not in S:
			    news.append(t)
			    S[t] = i
	    return S

	def start_distance(x):
	    return start_dists[x]

	def sumt(f):
	    memo = {}
	    def g(x):
		if x in memo:
		    return memo[x]
		s = 0.0
		for y in X[x]:
		    s += f(y)
		memo[x] = s
		return s
	    return g
	    
	def cmp3(x, y):
	    # Comparison for the sorting of equation solving order
	    # First in list = solved last

	    if x is y:
		return 0

	    c = cmp(len(X[y]), len(X[x])) # Equations with more terms are resolved later
	    if c:
		return c

	    # The equations with terms more distant from start node will be resolved earlier
	    i = 0
	    while i < 10: # 4 was enough with tests so far at Feb 24 2005
		try:
		    f = sumdists[i]
		except:
		    f = sumt(sumdists[i-1])
		    sumdists.append(f)
		c = cmp(f(x), f(y))
		if c:
		    return c
		i += 1

	    #pdb.set_trace()
	    return cmp(x, y)

	sumdists = [start_distance]
	X = self.X
	Start = self.Start
	Final = self.Final
	start_dists = dists(X, Start)
	order = [x for x in start_dists if x is not Start and x is not Final]
	order.sort(cmp3)
	self.order = order

    def setup_names(self):
	try:
	    self.order
	except AttributeError:
	    self.setup_order()
	self.names = {}
	self.names[self.Start] = 'X0'

	for i, s in enumerate(self.order):
	    self.names[s] = 'X%d'%(i+1)
	self.names[self.Final] = 'Final'


    def solve(self):
	# Set up equation system

	self.setup_equations()
	self.setup_order()

	X = self.X
	Start = self.Start
	Final = self.Final
	todo = list(self.order)

	# Solve equation system

	while todo:
	    Xk = todo.pop()
	    Tk = X[Xk]

	    if Xk in Tk:
		# Recursive equation
		# Eliminate Akk Xk, using Adler's theorem
		# Given:
		# Xk = Ak0 X0 | ... Akk Xk |.. Akn Xkn
		# we get:
		# Xk = Akk* (Ak0 X0 | ... <no Xk> ... | Akn Xn)
		# which we evaluate to:
		# Xk = Bk0 X0 | ... Bkn Xn
		# where coefficients get the new values
		# Bki := Akk* Aki
		
		Akk = Tk[Xk]
		del Tk[Xk]

		AkkStar = Akk('*')
		for Xi, Aki in Tk.items():
		    Bki = AkkStar + Aki
		    Tk[Xi] = Bki


	    # Substitute Xk in each other equation in X
	    # containing Xk, except eqv. Xk itself, which will not be used any more..

	    del X[Xk]

	    for Xj, Tj in X.items():
		Bjk = Tj.get(Xk)
		if Bjk is None:
		    continue
		del Tj[Xk]
		for Xji, Tk_Xji in Tk.items():
		    Cji = (Bjk + Tk_Xji)
		    Bji = Tj.get(Xji)
		    if Bji is not None:
			Cji = Bji | Cji
		    Tj[Xji] = Cji

	# The equation system is now solved
	# The result is in Final term of Start equation

	return X[Start][Final]

Nothing = Union()

def SolveFSA(fsa):
    RS = RegularSystem(fsa.table, fsa.start_state, fsa.final_states)
    return RS.solve()