This file is indexed.

/usr/share/pyshared/joblib-0.7.1.egg-info/PKG-INFO is in python-joblib 0.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
Metadata-Version: 1.1
Name: joblib
Version: 0.7.1
Summary: 
Lightweight pipelining: using Python functions as pipeline jobs.

Home-page: http://packages.python.org/joblib/
Author: Gael Varoquaux
Author-email: gael.varoquaux@normalesup.org
License: BSD
Description:  Joblib is a set of tools to provide **lightweight pipelining in
        Python**. In particular, joblib offers:
        
          1. transparent disk-caching of the output values and lazy re-evaluation
             (memoize pattern)
        
          2. easy simple parallel computing
        
          3. logging and tracing of the execution
        
        Joblib is optimized to be **fast** and **robust** in particular on large
        data and has specific optimizations for `numpy` arrays. It is
        **BSD-licensed**.
        
        
            ============================== ============================================
            **User documentation**:        http://packages.python.org/joblib
        
            **Download packages**:         http://pypi.python.org/pypi/joblib#downloads
        
            **Source code**:               http://github.com/joblib/joblib
        
            **Report issues**:             http://github.com/joblib/joblib/issues
            ============================== ============================================
        
        
        Vision
        --------
        
        The vision is to provide tools to easily achieve better performance and
        reproducibility when working with long running jobs. In addition, Joblib
        can also be used to provide a light-weight make replacement or caching
        solution.
        
         *  **Avoid computing twice the same thing**: code is rerun over an
            over, for instance when prototyping computational-heavy jobs (as in
            scientific development), but hand-crafted solution to alleviate this
            issue is error-prone and often leads to unreproducible results
        
         *  **Persist to disk transparently**: persisting in an efficient way
            arbitrary objects containing large data is hard. Using
            joblib's caching mechanism avoids hand-written persistence and
            implicitly links the file on disk to the execution context of
            the original Python object. As a result, joblib's persistence is
            good for resuming an application status or computational job, eg
            after a crash.
        
        Joblib strives to address these problems while **leaving your code and
        your flow control as unmodified as possible** (no framework, no new
        paradigms).
        
        Main features
        ------------------
        
        1) **Transparent and fast disk-caching of output value:** a memoize or
           make-like functionality for Python functions that works well for
           arbitrary Python objects, including very large numpy arrays. Separate
           persistence and flow-execution logic from domain logic or algorithmic
           code by writing the operations as a set of steps with well-defined
           inputs and  outputs: Python functions. Joblib can save their
           computation to disk and rerun it only if necessary::
        
              >>> import numpy as np
              >>> from joblib import Memory
              >>> mem = Memory(cachedir='/tmp/joblib')
              >>> import numpy as np
              >>> a = np.vander(np.arange(3)).astype(np.float)
              >>> square = mem.cache(np.square)
              >>> b = square(a)                                   # doctest: +ELLIPSIS
              ________________________________________________________________________________
              [Memory] Calling square...
              square(array([[ 0.,  0.,  1.],
                     [ 1.,  1.,  1.],
                     [ 4.,  2.,  1.]]))
              ___________________________________________________________square - 0...s, 0.0min
        
              >>> c = square(a)
              >>> # The above call did not trigger an evaluation
        
        2) **Embarrassingly parallel helper:** to make is easy to write readable
           parallel code and debug it quickly::
        
              >>> from joblib import Parallel, delayed
              >>> from math import sqrt
              >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10))
              [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]
        
        
        3) **Logging/tracing:** The different functionalities will
           progressively acquire better logging mechanism to help track what
           has been ran, and capture I/O easily. In addition, Joblib will
           provide a few I/O primitives, to easily define define logging and
           display streams, and provide a way of compiling a report.
           We want to be able to quickly inspect what has been run.
        
        4) **Fast compressed Persistence**: a replacement for pickle to work
           efficiently on Python objects containing large data (
           *joblib.dump* & *joblib.load* ).
        
        ..
            >>> import shutil ; shutil.rmtree('/tmp/joblib/')
        
        
Platform: any
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Education
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.0
Classifier: Programming Language :: Python :: 3.1
Classifier: Programming Language :: Python :: 3.2
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Utilities
Classifier: Topic :: Software Development :: Libraries