/usr/share/pyshared/bimdp/inspection/tracer.py is in python-mdp 3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 | """
Module to trace and document the training and execution of a BiFlow.
This module supports (Bi)HiNet structures. Monkey patching is used to
inject the tracing code into the Flow.
InspectionHTMLTracer is the main class. It uses TraceDecorationVisitor to add
the tracing decoration to the flow and TraceHTMLConverter to create HTML view
of the flow state (which in turn uses TraceHTMLVisitor for the flow
representation).
Note that this module does not combine the trace views into a slideshow, this
is done in the seperate slideshow module.
"""
# TODO: wrap inner methods (e.g. _train) to document effective arguments?
from __future__ import with_statement
import os
import cPickle as pickle
import fnmatch
import copy
import traceback
import mdp
n = mdp.numx
import mdp.hinet as hinet
from bimdp import BiNode
from bimdp import BiFlow
from bimdp.hinet import BiFlowNode, CloneBiLayer
from bimdp.hinet import BiHiNetHTMLVisitor
from utils import robust_pickle
CLICKABLE_NODE_ID = "clickable_node_%d"
# standard css filename for the complete CSS:
STANDARD_CSS_FILENAME = "mdp.css"
NODE_TRACE_METHOD_NAMES = ["execute", "train", "stop_training"]
BINODE_TRACE_METHOD_NAMES = [] # methods that are only traced in binodes
TRACING_WRAP_FLAG = "_insp_is_wrapped_for_tracing_"
ORIGINAL_METHOD_PREFIX = "_insp_original_"
class TraceDebugException(Exception):
"""Exception for return the information when debug is True."""
def __init__(self, result):
"""Store the information necessary to finish the tracing.
result -- The result that would otherwise be returned by the method.
"""
super(TraceDebugException, self).__init__()
self.result = result
class InspectionHTMLTracer(object):
"""Class for inspecting a single pass through a provided flow.
This class is based on a visitor that decorates the flow elements with
tracing wrappers. It also provides a callback function for the tracers
and stores everything else needed for the inspection.
This class is already specialized for creating HTML slides in the callback
function.
Note that a flow decorated for tracing is not compatible with pickling
or parallel training and execution. Normally the decorated flow is
only used in trace_training or trace_execution anyway.
"""
def __init__(self, html_converter=None, css_filename=STANDARD_CSS_FILENAME):
"""Prepare for tracing and create the HTML translator.
html_converter -- TraceHTMLConverter instance, with a convert_flow
method to create the flow visualization for each slide.
css_filename -- CSS file used for all the slides
(default 'inspect.css').
"""
if html_converter is None:
self._html_converter = TraceHTMLConverter()
else:
self._html_converter = html_converter
self._css_filename = css_filename
self._tracing_decorator = TraceDecorationVisitor(
decorator=self._standard_tracer_decorate,
undecorator=self._standard_tracer_undecorate)
self._trace_path = None # path for the current trace
self._trace_name = None # name for the current trace
self._flow = None # needed for the callback HTML translation
# step counter used in the callback, is reset automatically
self._slide_index = None
self._slide_filenames = None
self._section_ids = None # can be used during execution
self._slide_node_ids = None # active node for each slide index
def _reset(self):
"""Reset the internal variables for a new tracing.
Should be called before 'train', 'stop_training' or 'execute' is called
on the flow.
"""
self._slide_index = 0
self._slide_filenames = []
self._section_ids = []
self._slide_node_ids = []
self._html_converter.reset()
def trace_training(self, path, flow, x, msg=None, stop_msg=None,
trace_name="training", debug=False, **kwargs):
"""Trace a single training phase and the stop_training.
Return a tuple containing a list of the training slide filenames, the
training node ids and the same for stop_training.
path -- Path were the inspection files will be stored.
trace_name -- Name prefix for this inspection (default is training).
**kwargs -- Additional arguments for flow.train can be specified
as keyword arguments.
"""
self._reset()
self._trace_path = path
# train and stop filenames must be different
self._trace_name = trace_name + "_t"
self._flow = flow
self._tracing_decorator.decorate_flow(flow)
biflownode = BiFlowNode(BiFlow(flow.flow))
try:
biflownode.train(x=x, msg=msg, **kwargs)
# reset is important for the following stop_training
biflownode.bi_reset()
# Note: this also catches legacy string exceptions (which are still
# used in numpy, e.g. np.core.multiarray.error)
except:
if debug:
# insert the error slide and encapsulate the exception
traceback.print_exc()
self._write_error_frame()
result = (self._slide_filenames, self._slide_node_ids,
None, None)
raise TraceDebugException(result=result)
else:
raise
train_filenames = self._slide_filenames
train_node_ids = self._slide_node_ids
self._reset()
self._trace_name = trace_name + "_s"
try:
biflownode.stop_training(stop_msg)
except:
if debug:
# insert the error slide and encapsulate the exception
traceback.print_exc()
self._write_error_frame()
result = (train_filenames, train_node_ids,
self._slide_filenames, self._slide_node_ids)
raise TraceDebugException(result=result)
else:
raise
stop_filenames = self._slide_filenames
stop_node_ids = self._slide_node_ids
# restore undecorated flow
self._tracing_decorator.decorate_flow(flow, undecorate_mode=True)
return train_filenames, train_node_ids, stop_filenames, stop_node_ids
def trace_execution(self, path, trace_name, flow, x, msg=None, target=None,
debug=False, **kwargs):
"""Trace a single execution.
The return value is a tuple containing a list of the slide filenames,
the node ids, the section_ids for a slideshow with sections
(or None if no section_ids were used) and the execution output value.
path -- Path were the inspection files will be stored.
trace_name -- Name prefix for this inspection.
**kwargs -- Additional arguments for flow.execute can be specified
as keyword arguments.
"""
self._reset()
self._trace_path = path
self._trace_name = trace_name
self._flow = flow
self._tracing_decorator.decorate_flow(flow)
if (not (isinstance(flow, BiFlow) or isinstance(flow, BiNode)) and
(msg is not None)):
# a msg would be interpreted as nodenr by a Flow, so check this
err = "A msg was given for a normal Flow (need BiFlow)."
raise Exception(err)
try:
if msg or target:
result = self._flow.execute(x, msg, target, **kwargs)
# this case also works for mdp.Flow
else:
result = self._flow.execute(x, **kwargs)
# Note: this also catches legacy string exceptions (which are still
# used in numpy, e.g. np.core.multiarray.error)
except:
if debug:
# insert the error slide and encapsulate the exception
traceback.print_exc()
self._write_error_frame()
if not self._section_ids:
self._section_ids = None
result = (self._slide_filenames, self._slide_node_ids,
self._section_ids)
raise TraceDebugException(result=result)
else:
raise
self._tracing_decorator.decorate_flow(flow, undecorate_mode=True)
if not self._section_ids:
self._section_ids = None
else:
if len(self._section_ids) != len(self._slide_filenames):
err = ("Mismatch between number of section_ids and number of "
"slides.")
raise Exception(err)
return (self._slide_filenames, self._slide_node_ids,
self._section_ids, result)
def _tracer_callback(self, node, method_name, method_result, method_args,
method_kwargs):
"""This method is called by the tracers.
The calling tracer also provides this method with the needed state
information and the method arguments.
node -- The node from which the callback was initiated.
method_name -- Name of the method from which the callback was initiated.
result -- Return value of the method.
args, kwargs -- The arguments of the method call.
"""
## write visualization to html_file
try:
html_file = self._begin_HTML_frame()
section_id, node_id = self._html_converter.write_html(
path=self._trace_path,
html_file=html_file,
flow=self._flow,
node=node,
method_name=method_name,
method_result=method_result,
method_args=method_args,
method_kwargs=method_kwargs)
self._slide_index += 1
if section_id is not None:
self._section_ids.append(section_id)
self._slide_node_ids.append(node_id)
finally:
self._end_HTML_frame(html_file)
## HTML decoration ##
def _begin_HTML_frame(self):
"""Return the HTML file for a trace frame including the header.
The file should then be finished via _end_HTML_frame.
"""
path = self._trace_path
filename = self._trace_name + "_%d.html" % self._slide_index
self._slide_filenames.append(filename)
html_file = open(os.path.join(path, filename), "w")
html_file = hinet.NewlineWriteFile(html_file)
html_file.write('<html>\n<head>\n<title>Inspection Slide</title>')
if self._css_filename:
html_file.write('<style type="text/css" media="screen">')
html_file.write('@import url("%s");' % self._css_filename)
html_file.write('</style>\n</head>\n<body>')
return html_file
def _end_HTML_frame(self, html_file):
"""Complete and close the HTML file for a trace frame.
The method should always be used after _begin_HTML_frame.
"""
html_file.write('</body>\n</html>')
def _write_error_frame(self):
with self._begin_HTML_frame() as html_file:
html_file.write('<div class="error">')
html_file.write('<h3>Encountered Exception</h3>')
traceback_html = traceback.format_exc().replace('\n', '<br>')
# get HTML traceback, didn't work due to legacy stuff
# TODO: retry this in the future
# import StringIO as stringio
# import cgitb
# import mdp
# exception_type, exception, tb = sys.exc_info()
# # Problem: only the text of the original exception is stored in
# # mdp.FlowExceptionCR, and the text is not even correctpy displayed.
## if exception_type is mdp.FlowExceptionCR:
## exception.args = tuple()
## exception.message = None
# buffer = stringio.StringIO()
# handler = cgitb.Hook(file=buffer)
# handler.handle((exception_type, exception, tb))
# traceback_html = buffer.getvalue()
html_file.write(traceback_html)
html_file.write('</div>')
self._end_HTML_frame(html_file)
## monkey patching tracing decorator wrapper methods ##
def _standard_tracer_decorate(self, node):
"""Adds a tracer wrapper to the node via monkey patching."""
# add a marker to show that this node is wrapped
setattr(node, TRACING_WRAP_FLAG, True)
trace_method_names = list(NODE_TRACE_METHOD_NAMES)
if isinstance(node, BiNode):
trace_method_names += BINODE_TRACE_METHOD_NAMES
for method_name in trace_method_names:
new_method_name = ORIGINAL_METHOD_PREFIX + method_name
# create a reference to the original method
setattr(node, new_method_name, getattr(node, method_name))
# use nested scopes lexical closure to get proper wrapper
def get_wrapper(_method_name, _inspector):
_new_method_name = ORIGINAL_METHOD_PREFIX + method_name
def wrapper(self, *args, **kwargs):
args_copy = copy.deepcopy(args)
kwargs_copy = copy.deepcopy(kwargs)
result = getattr(self, _new_method_name)(*args, **kwargs)
_inspector._tracer_callback(self, _method_name, result,
args_copy, kwargs_copy)
return result
return wrapper
# hide the original method in this instance behind the wrapper
setattr(node, method_name,
get_wrapper(method_name, self).__get__(node))
# modify getstate to enable pickling (get rid of the instance methods)
def wrapped_getstate(self):
result = self.__dict__.copy()
if not hasattr(node, TRACING_WRAP_FLAG):
return result
del result[TRACING_WRAP_FLAG]
# delete all instance methods
trace_method_names = list(NODE_TRACE_METHOD_NAMES)
if isinstance(self, BiNode):
trace_method_names += BINODE_TRACE_METHOD_NAMES
for method_name in trace_method_names:
del result[method_name]
old_method_name = ORIGINAL_METHOD_PREFIX + method_name
del result[old_method_name]
del result["__getstate__"]
return result
node.__getstate__ = wrapped_getstate.__get__(node)
def _standard_tracer_undecorate(self, node):
"""Remove a tracer wrapper from the node."""
if not hasattr(node, TRACING_WRAP_FLAG):
return
delattr(node, TRACING_WRAP_FLAG)
trace_method_names = list(NODE_TRACE_METHOD_NAMES)
if isinstance(node, BiNode):
trace_method_names += BINODE_TRACE_METHOD_NAMES
for method_name in trace_method_names:
# delete the wrapped method in the instance to unhide the original
delattr(node, method_name)
# delete the no longer used reference to the original method
old_method_name = ORIGINAL_METHOD_PREFIX + method_name
delattr(node, old_method_name)
# restore normal getstate
delattr(node, "__getstate__")
class TraceDecorationVisitor(object):
"""Class to add tracing wrappers to nodes in a flow."""
def __init__(self, decorator, undecorator):
"""Initialize.
decorator -- Callable decorator that wraps node methods.
undecorator -- Callable decorator that removes the wrapper from a
method.
"""
self._decorator = decorator
self._undecorator = undecorator
# note that _visit_clonelayer uses the undecorate mode
self._undecorate_mode = None
def decorate_flow(self, flow, undecorate_mode=False):
"""Adds or removes wrappers from the nodes in the given flow."""
self._undecorate_mode = undecorate_mode
for node in flow:
self._visit_node(node)
def _visit_node(self, node):
if hasattr(node, "flow"):
self._visit_flownode(node)
elif isinstance(node, mdp.hinet.CloneLayer):
self._visit_clonelayer(node)
elif isinstance(node, mdp.hinet.Layer):
self._visit_layer(node)
else:
self._visit_standard_node(node)
def _visit_standard_node(self, node):
"""Wrap the node."""
if not self._undecorate_mode:
self._decorator(node)
else:
self._undecorator(node)
def _visit_flownode(self, flownode):
for node in flownode.flow:
self._visit_node(node)
def _visit_layer(self, layer):
for node in layer:
self._visit_node(node)
def _visit_clonelayer(self, clonelayer):
# TODO: enable the use of a shallow copy to save memory,
# but this requires to implement __copy__ in Node etc. for recursive
# shallow copying
if self._undecorate_mode:
if isinstance(clonelayer, CloneBiLayer):
# check that clonelayer is actually decorated
if not hasattr(clonelayer, "_original_set_use_copies"):
return
del clonelayer._set_use_copies
del clonelayer._original_set_use_copies
del clonelayer.__getstate__
self._visit_node(clonelayer.nodes[0])
if not clonelayer.use_copies:
clonelayer.nodes = ((clonelayer.node,) *
len(clonelayer.nodes))
else:
self._visit_node(clonelayer.nodes[0])
clonelayer.nodes = (clonelayer.node,) * len(clonelayer.nodes)
# undecoration is complete
return
## decorate clonelayer
if ((not isinstance(clonelayer, CloneBiLayer)) or
(not clonelayer.use_copies)):
# use a decorated deep copy for the first node
clonelayer.node = clonelayer.nodes[0].copy()
clonelayer.nodes = (clonelayer.node,) + clonelayer.nodes[1:]
# only decorate the first node
self._visit_node(clonelayer.nodes[0])
if isinstance(clonelayer, CloneBiLayer):
# add a wrapper to _set_use_copies,
# otherwise all nodes in layer would get decorated
clonelayer._original_set_use_copies = clonelayer._set_use_copies
flow_decorator = self
def wrapped_use_copies(self, use_copies):
# undecorate internal nodes to allow copy operation
flow_decorator._undecorate_mode = True
flow_decorator._visit_node(clonelayer.nodes[0])
flow_decorator._undecorate_mode = False
if use_copies and not self.use_copies:
# switch to node copies, no problem
clonelayer._original_set_use_copies(use_copies)
elif not use_copies and self.use_copies:
# switch to a single node instance
# but use a (decorated) deep copy for first node
clonelayer._original_set_use_copies(use_copies)
clonelayer.node = clonelayer.nodes[0].copy()
clonelayer.nodes = ((clonelayer.node,) +
clonelayer.nodes[1:])
flow_decorator._visit_node(clonelayer.nodes[0])
clonelayer._set_use_copies = wrapped_use_copies.__get__(clonelayer)
# modify getstate to enable pickling
# (get rid of the instance methods)
def wrapped_getstate(self):
result = self.__dict__.copy()
# delete instance methods
del result["_original_set_use_copies"]
del result["_set_use_copies"]
del result["__getstate__"]
return result
clonelayer.__getstate__ = wrapped_getstate.__get__(clonelayer)
_INSPECTION_CSS_FILENAME = "trace.css"
def inspection_css():
"""Return the CSS for the inspection slides."""
css_filename = os.path.join(os.path.split(__file__)[0],
_INSPECTION_CSS_FILENAME)
with open(css_filename, 'r') as css_file:
css = css_file.read()
return BiHiNetHTMLVisitor.hinet_css() + css
class TraceHTMLVisitor(BiHiNetHTMLVisitor):
"""Special BiHiNetHTMLVisitor to take into account runtime info.
It highlights the currently active node.
"""
def __init__(self, html_file, show_size=False):
super(TraceHTMLVisitor, self).__init__(html_file,
show_size=show_size)
self._current_node = None
self._node_id_index = None
# this is the HTML node id, not the Node attribute
self._current_node_id = None
def convert_flow(self, flow, current_node=None):
self._current_node = current_node
self._node_id_index = 0
self._current_node_id = None
super(TraceHTMLVisitor, self).convert_flow(flow)
def _open_node_env(self, node, type_id="node"):
"""Open the HTML environment for the node internals.
This special version highlights the nodes involved in the trace.
node -- The node itself.
type_id -- The id string as used in the CSS.
"""
f = self._file
html_line = '<table class="'
trace_class = None
if node is self._current_node:
trace_class = "current_node"
elif type_id == "node" and node._train_phase_started:
trace_class = "training_node"
if trace_class:
html_line += ' %s' % trace_class
html_line += ' %s' % type_id
# assign id only to nodes which trigger a slide creation,
# i.e. only if the node can become active
if hasattr(node, TRACING_WRAP_FLAG):
node_id = CLICKABLE_NODE_ID % self._node_id_index
if node is self._current_node:
self._current_node_id = node_id
self._node_id_index += 1
html_line += ' clickable" id="%s">' % node_id
else:
html_line += '">'
f.write(html_line)
self._write_node_header(node, type_id)
class TraceHTMLConverter(object):
"""Class to visualize the state of a BiFlow during execution or training.
The single snapshot is a beefed up version of the standard HTML view.
Capturing the data to make this possible is not the responsibility of this
class.
"""
def __init__(self, flow_html_converter=None):
"""Initialize the internal variables."""
if flow_html_converter is None:
self.flow_html_converter = TraceHTMLVisitor(html_file=None)
else:
self.flow_html_converter= flow_html_converter
self._html_file = None
def reset(self):
"""Reset internal variables for a new trace.
It is called (by TraceHTMLInspector) before calling 'train',
'stop_training' or 'execute' on the flow.
This method can be overridden by derived that need to keep track of the
training or execution phase.
"""
pass
@staticmethod
def _array_pretty_html(ar):
"""Return a nice HTML representation of the given numpy array."""
ar_str = 'array with shape %s<br>\n' % str(ar.shape)
# TODO: use np.savetxt instead?
ar_str += (str(ar).replace(' [', '<br>\n[').
replace(']\n ...', ']<br>\n...'))
return ar_str
@classmethod
def _dict_pretty_html(cls, dic):
"""Return a nice HTML representation of the given numpy array."""
# TODO: use an stringio buffer for efficency
# put array keys last, because arrays are typically rather large
keys = [key for key, value in dic.items()
if not isinstance(value, n.ndarray)]
keys.sort()
ar_keys = [key for key, value in dic.items()
if isinstance(value, n.ndarray)]
ar_keys.sort()
keys += ar_keys
dic_strs = []
for key in keys:
value = dic[key]
dic_str = '<span class="keyword">' + repr(key) + '</span>: '
if isinstance(value, str):
dic_str += repr(value)
elif isinstance(value, n.ndarray):
dic_str += cls._array_pretty_html(value)
else:
dic_str += str(value)
dic_strs.append(dic_str)
return '{' + ',<br>\n'.join(dic_strs) + '}'
def write_html(self, path, html_file, flow, node, method_name,
method_result, method_args, method_kwargs):
"""Write the HTML translation of the flow into the provided file.
Return value is the section_id and the HTML/CSS id of the active node.
The section id is ignored during training.
path -- Path of the slide (e.h. to store additional images).
html_file -- File of current slide, where the translation is written.
flow -- The overall flow.
node -- The node that was called last.
method_name -- The method that was called on the last node.
method_result -- The result from the last call.
method_args -- args that were given to the method
method_kwargs -- kwargs that were given to the method
"""
self._html_file = hinet.NewlineWriteFile(html_file)
f = self._html_file
## create table, left side for the flow, right side for data
f.write('<br><br>')
f.write('<table><tr><td id="inspect_biflow_td">')
f.write("<h3>flow state</h3>")
self.flow_html_converter._file = f
self.flow_html_converter.convert_flow(flow, node)
# now the argument / result part of the table
f.write('</td><td id="inspect_result_td">')
section_id = self._write_data_html(
path=path, html_file=html_file, flow=flow,
node=node, method_name=method_name,
method_result=method_result,
method_args=method_args,
method_kwargs=method_kwargs)
f.write('</table>')
f.write('</td></tr>\n</table>')
self._html_file = None
return section_id, self.flow_html_converter._current_node_id
def _write_data_html(self, path, html_file, flow, node, method_name,
method_result, method_args, method_kwargs):
"""Write the data part (right side of the slide).
Return value can be a section_id or None. The section_id is ignored
during training (since the slideshow sections are used for the
training phases).
This method can be overriden for custom visualisations. Usually this
original method should still be called via super.
path -- Path of the slide (e.h. to store additional images).
html_file -- File of current slide, where the translation is written.
flow -- The overall flow.
node -- The node that was called last.
method_name -- The method that was called on the last node.
method_result -- The result from the last call.
method_args -- args that were given to the method
method_kwargs -- kwargs that were given to the method
"""
f = self._html_file
f.write('<h3>%s arguments</h3>' % method_name)
f.write('<table class="inspect_io_data">')
if method_name == "stop_training":
# first argument is not x,
# if no arguments were given method_args == (None,)
if method_args == (None,):
f.write('<tr><td><pre>None</pre></tr></td>')
else:
# deal and remove x part of arguments
x = method_args[0]
if isinstance(x, n.ndarray):
f.write('<tr><td><pre>x = </pre></td>' +
'<td>' + self._array_pretty_html(x) + '</td></tr>')
else:
f.write('<tr><td><pre>x = </pre></td><td>' + str(x) +
'</td></tr>')
# remaining arg is message
method_args = method_args[1:]
if method_args and method_args[0] is not None:
f.write('<tr><td><pre>msg = </pre></td><td>' +
self._dict_pretty_html(method_args[0]) + '</td></tr>')
# normally the kwargs should be empty
for arg_key in method_kwargs:
f.write('<tr><td><pre>' + arg_key + ' = </pre></td><td>' +
str(method_kwargs[arg_key]) + '</td></tr>')
f.write('</table>')
## print results
f.write("<h3>%s result</h3>" % method_name)
f.write('<table class="inspect_io_data">')
if method_result is None:
f.write('<tr><td><pre>None</pre></tr></td>')
elif isinstance(method_result, n.ndarray):
f.write('<tr><td><pre>x = </pre></td><td>' +
self._array_pretty_html(method_result) + '</td></tr>')
elif isinstance(method_result, tuple):
f.write('<tr><td><pre>x = </pre></td><td>')
if isinstance(method_result[0], n.ndarray):
f.write(self._array_pretty_html(method_result[0]) +
'</td></tr>')
else:
f.write(str(method_result[0]) + '</td></tr>')
# second value is msg
f.write('<tr><td><pre>msg = </pre></td><td>')
if isinstance(method_result[1], dict):
f.write(self._dict_pretty_html(method_result[1]) +
'</td></tr>')
else:
f.write(str(method_result[1]) + '</td></tr>')
# last value is target
if len(method_result) > 2:
f.write('<tr><td><pre>target = </pre></td><td>' +
str(method_result[2]) + '</td></tr>')
else:
f.write('<tr><td><pre>unknown result type: </pre></td><td>' +
str(method_result) + '</td></tr>')
## Functions to capture pickled biflow snapshots during training. ##
PICKLE_EXT = ".pckl"
PICKLE_PROTO = -1
SNAPSHOT_FILENAME = "snapshot"
def prepare_training_inspection(flow, path):
"""Use hook in the BiFlow to store a snapshot in each training phase.
path -- Path were the snapshots are stored.
This is done by wrapping the _stop_training_hook method of biflow.
Some attributes are added to the biflow which store all information needed
for the pickling (like filename). To enable pickling we use the
__getstate__ slot, since some attributes cannot be pickled.
"""
# add attributes to biflow which are used in wrapper_method
flow._snapshot_counter_ = 0
flow._snapshot_path_ = path
flow._snapshot_name_ = SNAPSHOT_FILENAME
flow._snapshot_instance_methods_ = []
### wrap _stop_training_hook to store biflow snapshots ###
def pickle_wrap_method(_flow, _method_name):
new_method_name = ORIGINAL_METHOD_PREFIX + _method_name
def wrapper(self, *args, **kwargs):
result = getattr(self, new_method_name)(*args, **kwargs)
# pickle biflow
filename = (self._snapshot_name_ + "_%d" % self._snapshot_counter_ +
PICKLE_EXT)
robust_pickle(self._snapshot_path_, filename, self)
self._snapshot_counter_ += 1
return result
# create a reference to the original method
setattr(_flow, new_method_name, getattr(_flow, _method_name))
# hide the original method in this instance behind the wrapper
setattr(_flow, _method_name, wrapper.__get__(_flow))
_flow._snapshot_instance_methods_.append(_method_name)
_flow._snapshot_instance_methods_.append(new_method_name)
pickle_wrap_method(flow, "_stop_training_hook")
### wrap __getstate__ to enable pickling ###
# note that in the pickled flow no trace of the wrapping remains
def wrapped_biflow_getstate(self):
result = self.__dict__.copy()
# delete all instancemethods
for method_name in self._snapshot_instance_methods_:
del result[method_name]
# delete the special attributes which were inserted by the wrapper
# (not really necessary)
del result["_snapshot_counter_"]
del result["_snapshot_path_"]
del result["_snapshot_name_"]
del result["_snapshot_instance_methods_"]
# remove data attributes (generators cannot be pickled)
# pop with default value also works when key is not present in dict
result.pop("_train_data_iterables", None)
result.pop("_train_data_iterator", None)
result.pop("_train_msg_iterables", None)
result.pop("_train_msg_iterator", None)
result.pop("_stop_messages", None)
result.pop("_exec_data_iterator", None)
result.pop("_exec_msg_iterator", None)
result.pop("_exec_target_iterator", None)
return result
flow.__getstate__ = wrapped_biflow_getstate.__get__(flow)
flow._snapshot_instance_methods_.append("__getstate__")
def remove_inspection_residues(flow):
"""Remove all the changes made by prepare_training_inspection."""
try:
for method_name in flow._snapshot_instance_methods_:
delattr(flow, method_name)
del flow._snapshot_counter_
del flow._snapshot_path_
del flow._snapshot_name_
del flow._snapshot_instance_methods_
except:
# probably the hooks were already removed, so do nothing
pass
def _trace_biflow_training(snapshot_path, inspection_path,
x_samples, msg_samples=None, stop_messages=None,
tracer=None,
debug=False, show_size=False, verbose=True,
**kwargs):
"""Load flow snapshots and perform the inspection with the given data.
The return value consists of the slide filenames, the slide node ids,
and an index table (index of last slide of section indexed by node,
phase, train and stop). If no snapshots were found the return value is
None.
snapshot_path -- Path were the flow training snapshots are stored.
inspection_path -- Path were the slides are stored.
css_filename -- Filename of the CSS file for the slides.
x_samples, msg_samples -- Lists with the input data for the training trace.
stop_messages -- The stop msg for the training trace.
tracer -- Instance of InspectionHTMLTracer, can be None for
default class.
debug -- If True (default is False) then any exception will be
caught and the gathered data up to that point is returned in the
normal way. This is useful for bimdp debugging.
show_size -- Show the approximate memory footprint of all nodes.
verbose -- If True (default value) a status message is printed for each
loaded snapshot.
**kwargs -- Additional arguments for flow.train can be specified
as keyword arguments.
"""
if not tracer:
tracer = InspectionHTMLTracer()
tracer._html_converter.flow_html_converter.show_size = show_size
i_train_node = 0 # index of the training node
i_snapshot = 0 # snapshot counter
index_table = [[]] # last slide indexed by [node, phase, train 0 or stop 1]
slide_filenames = []
slide_node_ids = []
try:
# search for the snapshot files
for file_path, dirs, files in os.walk(os.path.abspath(snapshot_path)):
dirs.sort()
files = fnmatch.filter(files, SNAPSHOT_FILENAME + "*" + PICKLE_EXT)
files.sort()
for filename in files:
filename = os.path.join(file_path, filename)
# load the flow snapshot
biflow = None # free memory
with open(filename, "rb") as pickle_file:
biflow = pickle.load(pickle_file)
# determine which node is training and set the indices
for node in biflow[i_train_node:]:
if node.get_remaining_train_phase() > 0:
break
else:
i_train_node += 1
index_table.append([])
# inspect the training
x = x_samples[i_train_node]
if msg_samples:
msg = msg_samples[i_train_node]
else:
msg = None
if stop_messages:
stop_msg = stop_messages[i_train_node]
else:
stop_msg = None
trace_name = "%d_%d" % (i_snapshot, i_train_node)
train_files, train_ids, stop_files, stop_ids = \
tracer.trace_training(trace_name=trace_name,
path=inspection_path,
flow=biflow,
x=x, msg=msg, stop_msg=stop_msg,
debug=debug,
**kwargs)
slide_filenames += train_files
train_index = len(slide_filenames) - 1
slide_filenames += stop_files
stop_index = len(slide_filenames) - 1
index_table[i_train_node].append((train_index, stop_index))
slide_node_ids += train_ids
slide_node_ids += stop_ids
if verbose:
print "got traces for snapshot %d" % (i_snapshot + 1)
i_snapshot += 1
except TraceDebugException, debug_exception:
train_files, train_ids, stop_files, stop_ids = debug_exception.result
slide_filenames += train_files
train_index = len(slide_filenames) - 1
if stop_files:
slide_filenames += stop_files
stop_index = len(slide_filenames) - 1
index_table[i_train_node].append((train_index, stop_index))
slide_node_ids += train_ids
if stop_ids:
slide_node_ids += stop_ids
debug_exception.result = (slide_filenames, slide_node_ids, index_table)
raise
return slide_filenames, slide_node_ids, index_table
|