This file is indexed.

/usr/share/pyshared/mdp/graph/graph.py is in python-mdp 3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# inspired by some code by Nathan Denny (1999)
# see http://www.ece.arizona.edu/~denny/python_nest/graph_lib_1.0.1.html

try:
    # use reduce against BDFL's will even on python > 2.6
    from functools import reduce
except ImportError:
    pass

class GraphException(Exception):
    """Base class for exception in the graph package."""
    pass

class GraphTopologicalException(GraphException):
    """Exception thrown during a topological sort if the graph is cyclical."""
    pass



def is_sequence(x):
    return isinstance(x, (list, tuple))

def recursive_map(func, seq):
    """Apply a function recursively on a sequence and all subsequences."""
    def _func(x):
        if is_sequence(x):
            return recursive_map(func, x)
        else:
            return func(x)
    return map(_func, seq)

def recursive_reduce(func, seq, *argv):
    """Apply reduce(func, seq) recursively to a sequence and all its
    subsequences."""
    def _func(x, y):
        if is_sequence(y):
            return func(x, recursive_reduce(func, y))
        else:
            return func(x, y)
    return reduce(_func, seq, *argv)



class GraphNode(object):
    """Represent a graph node and all information attached to it."""

    def __init__(self, data=None):
        self.data = data
        # edges in
        self.ein = []
        # edges out
        self.eout = []

    def add_edge_in(self, edge):
        self.ein.append(edge)

    def add_edge_out(self, edge):
        self.eout.append(edge)

    def remove_edge_in(self, edge):
        self.ein.remove(edge)

    def remove_edge_out(self, edge):
        self.eout.remove(edge)

    def get_edges_in(self, from_ = None):
        """Return a copy of the list of the entering edges. If from_
        is specified, return only the nodes coming from that node."""
        inedges = self.ein[:]
        if from_:
            inedges = [edge for edge in inedges if edge.head == from_]
        return inedges

    def get_edges_out(self, to_ = None):
        """Return a copy of the list of the outgoing edges. If to_
        is specified, return only the nodes going to that node."""
        outedges = self.eout[:]
        if to_:
            outedges = [edge for edge in outedges if edge.tail == to_]
        return outedges

    def get_edges(self, neighbor = None):
        """Return a copy of all edges. If neighbor is specified, return
        only the edges connected to that node."""
        return ( self.get_edges_in(from_=neighbor) +
                 self.get_edges_out(to_=neighbor) )

    def in_degree(self):
        """Return the number of entering edges."""
        return len(self.ein)

    def out_degree(self):
        """Return the number of outgoing edges."""
        return len(self.eout)

    def degree(self):
        """Return the number of edges."""
        return self.in_degree()+self.out_degree()

    def in_neighbors(self):
        """Return the neighbors down in-edges (i.e. the parents nodes)."""
        return map(lambda x: x.get_head(), self.ein)

    def out_neighbors(self):
        """Return the neighbors down in-edges (i.e. the parents nodes)."""
        return map(lambda x: x.get_tail(), self.eout)

    def neighbors(self):
        return self.in_neighbors() + self.out_neighbors()

class GraphEdge(object):
    """Represent a graph edge and all information attached to it."""

    def __init__(self, head, tail, data=None):
        # head node
        self.head = head
        # neighbors out
        self.tail = tail
        # arbitrary data slot
        self.data = data

    def get_ends(self):
        """Return the tuple (head_id, tail_id)."""
        return (self.head, self.tail)

    def get_tail(self):
        return self.tail

    def get_head(self):
        return self.head

class Graph(object):
    """Represent a directed graph."""

    def __init__(self):
        # list of nodes
        self.nodes = []
        # list of edges
        self.edges = []

    # node functions
    def add_node(self, data=None):
        node = GraphNode(data=data)
        self.nodes.append(node)
        return node

    def remove_node(self, node):
        # the node is not in this graph
        if node not in self.nodes:
            errstr = 'This node is not part of the graph (%s)' % node
            raise GraphException(errstr)

        # remove all edges containing this node
        for edge in node.get_edges():
            self.remove_edge(edge)
        # remove the node
        self.nodes.remove(node)

    # edge functions
    def add_edge(self, head, tail, data=None):
        """Add an edge going from head to tail.
        head : head node
        tail : tail node
        """
        # create edge
        edge = GraphEdge(head, tail, data=data)
        # add edge to head and tail node
        head.add_edge_out(edge)
        tail.add_edge_in(edge)
        # add to the edges dictionary
        self.edges.append(edge)
        return edge

    def remove_edge(self, edge):
        head, tail = edge.get_ends()
        # remove from head
        head.remove_edge_out(edge)
        # remove from tail
        tail.remove_edge_in(edge)
        # remove the edge
        self.edges.remove(edge)

    ### populate functions

    def add_nodes(self, data):
        """Add many nodes at once.

        data -- number of nodes to add or sequence of data values, one for
                each new node"""
        if not is_sequence(data):
            data = [None]*data
        return map(self.add_node, data)

    def add_tree(self, tree):
        """Add a tree to the graph.

        The tree is specified with a nested list of tuple, in a LISP-like
        notation. The values specified in the list become the values of
        the single nodes.

        Return an equivalent nested list with the nodes instead of the values.

        Example:
        >>> a=b=c=d=e=None
        >>> g.add_tree( (a, b, (c, d ,e)) )
        corresponds to this tree structure, with all node values set to None:

                a
               / \
              b   c
                 / \
                d   e
        """

        def _add_edge(root, son):
            self.add_edge(root, son)
            return root

        nodes = recursive_map(self.add_node, tree)
        recursive_reduce(_add_edge, nodes)
        return nodes

    def add_full_connectivity(self, from_nodes, to_nodes):
        """Add full connectivity from a group of nodes to another one.
        Return a list of lists of edges, one for each node in 'from_nodes'.

        Example: create a two-layer graph with full connectivity.
        >>> g = Graph()
        >>> layer1 = g.add_nodes(10)
        >>> layer2 = g.add_nodes(5)
        >>> g.add_full_connectivity(layer1, layer2)
        """
        edges = []
        for from_ in from_nodes:
            edges.append(map(lambda x: self.add_edge(from_, x), to_nodes))
        return edges

    ###### graph algorithms

    def topological_sort(self):
        """Perform a topological sort of the nodes. If the graph has a cycle,
        throw a GraphTopologicalException with the list of successfully
        ordered nodes."""
        # topologically sorted list of the nodes (result)
        topological_list = []
        # queue (fifo list) of the nodes with in_degree 0
        topological_queue = []
        # {node: in_degree} for the remaining nodes (those with in_degree>0)
        remaining_indegree = {}

        # init queues and lists
        for node in self.nodes:
            indegree = node.in_degree()
            if indegree == 0:
                topological_queue.append(node)
            else:
                remaining_indegree[node] = indegree

        # remove nodes with in_degree 0 and decrease the in_degree of their sons
        while len(topological_queue):
            # remove the first node with degree 0
            node = topological_queue.pop(0)
            topological_list.append(node)
            # decrease the in_degree of the sons
            for son in node.out_neighbors():
                remaining_indegree[son] -= 1
                if remaining_indegree[son] == 0:
                    topological_queue.append(son)

        # if not all nodes were covered, the graph must have a cycle
        # raise a GraphTopographicalException
        if len(topological_list)!=len(self.nodes):
            raise GraphTopologicalException(topological_list)

        return topological_list

    ### Depth-First sort

    def _dfs(self, neighbors_fct, root, visit_fct=None):
        # core depth-first sort function
        # changing the neighbors function to return the sons of a node,
        # its parents, or both one gets normal dfs, reverse dfs, or
        # dfs on the equivalent undirected graph, respectively

        # result list containing the nodes in Depth-First order
        dfs_list = []
        # keep track of all already visited nodes
        visited_nodes = { root: None }

        # stack (lifo) list
        dfs_stack = []
        dfs_stack.append(root)

        while len(dfs_stack):
            # consider the next node on the stack
            node = dfs_stack.pop()
            dfs_list.append(node)
            # visit the node
            if visit_fct != None:
                visit_fct(node)
            # add all sons to the stack (if not already visited)
            for son in neighbors_fct(node):
                if son not in visited_nodes:
                    visited_nodes[son] = None
                    dfs_stack.append(son)

        return dfs_list

    def dfs(self, root, visit_fct=None):
        """Return a list of nodes in some Depth First order starting from
        a root node. If defined, visit_fct is applied on each visited node.

        The returned list does not have to contain all nodes in the
        graph, but only the ones reachable from the root.
        """

        neighbors_fct = lambda node: node.out_neighbors()
        return self._dfs(neighbors_fct, root, visit_fct=visit_fct)

    def undirected_dfs(self, root, visit_fct=None):
        """Perform Depth First sort.

        This function is identical to dfs, but the sort is performed on
        the equivalent undirected version of the graph."""
        neighbors_fct = lambda node: node.neighbors()
        return self._dfs(neighbors_fct, root, visit_fct=visit_fct)

    ### Connected components

    def connected_components(self):
        """Return a list of lists containing the nodes of all connected
        components of the graph."""

        visited = {}
        def visit_fct(node, visited=visited):
            visited[node] = None

        components = []
        nodes = self.nodes
        for node in nodes:
            if node in visited:
                continue
            components.append(self.undirected_dfs(node, visit_fct))
        return components

    def is_weakly_connected(self):
        """Return True if the graph is weakly connected."""
        return len(self.undirected_dfs(self.nodes[0]))==len(self.nodes)

    ### Breadth-First Sort
    # BFS and DFS could be generalized to one function. I leave them
    # distinct for clarity.

    def _bfs(self, neighbors_fct, root, visit_fct=None):
        # core breadth-first sort function
        # changing the neighbors function to return the sons of a node,
        # its parents, or both one gets normal bfs, reverse bfs, or
        # bfs on the equivalent undirected graph, respectively

        # result list containing the nodes in Breadth-First order
        bfs_list = []
        # keep track of all already visited nodes
        visited_nodes = { root: None }

        # queue (fifo) list
        bfs_queue = []
        bfs_queue.append(root)

        while len(bfs_queue):
            # consider the next node in the queue
            node = bfs_queue.pop(0)
            bfs_list.append(node)
            # visit the node
            if visit_fct != None:
                visit_fct(node)
            # add all sons to the queue (if not already visited)
            for son in neighbors_fct(node):
                if son not in visited_nodes:
                    visited_nodes[son] = None
                    bfs_queue.append(son)

        return bfs_list

    def bfs(self, root, visit_fct=None):
        """Return a list of nodes in some Breadth First order starting from
        a root node. If defined, visit_fct is applied on each visited node.

        Note the returned list does not have to contain all nodes in the
        graph, but only the ones reachable from the root."""

        neighbors_fct = lambda node: node.out_neighbors()
        return self._bfs(neighbors_fct, root, visit_fct=visit_fct)

    def undirected_bfs(self, root, visit_fct=None):
        """Perform Breadth First sort.

        This function is identical to bfs, but the sort is performed on
        the equivalent undirected version of the graph."""

        neighbors_fct = lambda node: node.neighbors()
        return self._bfs(neighbors_fct, root, visit_fct=visit_fct)