This file is indexed.

/usr/share/pyshared/mdp/test/test_contrib.py is in python-mdp 3.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
"""These are test functions for MDP contributed nodes.
"""

from _tools import *
from test_ICANode import verify_ICANode, verify_ICANodeMatrices

requires_joblib = skip_on_condition(
    "not mdp.config.has_caching",
    "This test requires the 'joblib' module.")

def _s_shape(theta):
    """
    returns x,y
      a 2-dimensional S-shaped function
      for theta ranging from 0 to 1
    """
    t = 3*numx.pi * (theta-0.5)
    x = numx.sin(t)
    y = numx.sign(t)*(numx.cos(t)-1)
    return x,y

def _s_shape_1D(n):
    t = numx.linspace(0., 1., n)
    x, z = _s_shape(t)
    y = numx.linspace(0., 5., n)
    return x, y, z, t

def _s_shape_2D(nt, ny):
    t, y = numx.meshgrid(numx.linspace(0., 1., nt),
                         numx.linspace(0., 2., ny))
    t = t.flatten()
    y = y.flatten()
    x, z = _s_shape(t)
    return x, y, z, t

def _compare_neighbors(orig, proj, k):
    n = orig.shape[0]
    err = numx.zeros((n,))
    # compare neighbors indices
    for i in xrange(n):
        # neighbors in original space
        dist = orig - orig[i,:]
        orig_nbrs = numx.argsort((dist**2).sum(1))[1:k+1]
        orig_nbrs.sort()
        # neighbors in projected space
        dist = proj - proj[i,:]
        proj_nbrs = numx.argsort((dist**2).sum(1))[1:k+1]
        proj_nbrs.sort()
        for idx in orig_nbrs:
            if idx not in proj_nbrs:
                err[i] += 1
    return err

def test_JADENode():
    trials = 3
    for i in xrange(trials):
        try:
            ica = mdp.nodes.JADENode(limit = 10**(-decimal))
            ica2 = ica.copy()
            verify_ICANode(ica, rand_func=numx_rand.exponential)
            verify_ICANodeMatrices(ica2)
            return
        except Exception:
            if i == trials - 1:
                raise

def test_NIPALSNode():
    line_x = numx.zeros((1000,2),"d")
    line_y = numx.zeros((1000,2),"d")
    line_x[:,0] = numx.linspace(-1,1,num=1000,endpoint=1)
    line_y[:,1] = numx.linspace(-0.2,0.2,num=1000,endpoint=1)
    mat = numx.concatenate((line_x,line_y))
    des_var = std(mat,axis=0)
    utils.rotate(mat,uniform()*2*numx.pi)
    mat += uniform(2)
    pca = mdp.nodes.NIPALSNode(conv=1E-15, max_it=1000)
    pca.train(mat)
    act_mat = pca.execute(mat)
    assert_array_almost_equal(mean(act_mat,axis=0),\
                              [0,0],decimal)
    assert_array_almost_equal(std(act_mat,axis=0),\
                              des_var,decimal)
    # test a bug in v.1.1.1, should not crash
    pca.inverse(act_mat[:,:1])
    # try standard PCA on the same data and compare the eigenvalues
    pca2 = mdp.nodes.PCANode()
    pca2.train(mat)
    pca2.stop_training()
    assert_array_almost_equal(pca2.d, pca.d, decimal)

def test_NIPALSNode_desired_variance():
    mat, mix, inp = get_random_mix(mat_dim=(1000, 3))
    # first make them white
    pca = mdp.nodes.WhiteningNode()
    pca.train(mat)
    mat = pca.execute(mat)
    # set the variances
    mat *= [0.6,0.3,0.1]
    #mat -= mat.mean(axis=0)
    pca = mdp.nodes.NIPALSNode(output_dim=0.8)
    pca.train(mat)
    out = pca.execute(mat)
    # check that we got exactly two output_dim:
    assert pca.output_dim == 2
    assert out.shape[1] == 2
    # check that explained variance is > 0.8 and < 1
    assert (pca.explained_variance > 0.8 and pca.explained_variance < 1)

def test_LLENode():
    # 1D S-shape in 3D
    n, k = 50, 2
    x, y, z, t = _s_shape_1D(n)
    data = numx.asarray([x,y,z]).T

    res = mdp.nodes.LLENode(k, output_dim=1, svd=False)(data)
    # check that the neighbors are the same
    err = _compare_neighbors(data, res, k)
    assert err.max() == 0

    # with svd=True
    res = mdp.nodes.LLENode(k, output_dim=1, svd=True)(data)
    err = _compare_neighbors(data, res, k)
    assert err.max() == 0
    return

    #TODO: fix this test!
    # 2D S-shape in 3D
    nt, ny = 40, 15
    n, k = nt*ny, 8
    x, y, z, t = _s_shape_2D(nt, ny)
    data = numx.asarray([x,y,z]).T
    res = mdp.nodes.LLENode(k, output_dim=2, svd=True)(data)
    res[:,0] /= res[:,0].std()
    res[:,1] /= res[:,1].std()

    # test alignment
    yval = y[::nt]
    tval = t[:ny]
    for yv in yval:
        idx = numx.nonzero(y==yv)[0]
        err = abs(res[idx,1]-res[idx[0],1]).max()
        assert err<0.01,\
               'Projection should be aligned as original space: %s'%(str(err))
    for tv in tval:
        idx = numx.nonzero(t==tv)[0]
        err = abs(res[idx,0]-res[idx[0],0]).max()
        assert err<0.01,\
               'Projection should be aligned as original space: %s'%(str(err))

def test_LLENode_outputdim_float_bug():
    # 1D S-shape in 3D, output_dim
    n, k = 50, 2
    x, y, z, t = _s_shape_1D(n)
    data = numx.asarray([x,y,z]).T

    res = mdp.nodes.LLENode(k, output_dim=0.9, svd=True)(data)
    # check that the neighbors are the same
    err = _compare_neighbors(data, res, k)
    assert err.max() == 0

def test_HLLENode():
    # 1D S-shape in 3D
    n, k = 250, 4
    x, y, z, t = _s_shape_1D(n)
    data = numx.asarray([x,y,z]).T

    res = mdp.nodes.HLLENode(k, r=0.001, output_dim=1, svd=False)(data)
    # check that the neighbors are the same
    err = _compare_neighbors(data, res, k)
    assert err.max() == 0

    # with svd=True
    res = mdp.nodes.HLLENode(k, r=0.001, output_dim=1, svd=True)(data)
    err = _compare_neighbors(data, res, k)
    assert err.max() == 0

    # 2D S-shape in 3D
    nt, ny = 40, 15
    n, k = nt*ny, 8
    x, y, z, t = _s_shape_2D(nt, ny)
    data = numx.asarray([x,y,z]).T
    res = mdp.nodes.HLLENode(k, r=0.001, output_dim=2, svd=False)(data)
    res[:,0] /= res[:,0].std()
    res[:,1] /= res[:,1].std()

    # test alignment
    yval = y[::nt]
    tval = t[:ny]
    for yv in yval:
        idx = numx.nonzero(y==yv)[0]
        assert numx.all(res[idx,1]-res[idx[0],1]<1e-2),\
               'Projection should be aligned as original space'
    for tv in tval:
        idx = numx.nonzero(t==tv)[0]
        assert numx.all(res[idx,0]-res[idx[0],0]<1e-2),\
               'Projection should be aligned as original space'

def test_XSFANode():
    T = 5000
    N = 3
    src = numx_rand.random((T, N))*2-1
    # create three souces with different speeds
    fsrc = numx_fft.rfft(src, axis=0)

    for i in xrange(N):
        fsrc[(i+1)*(T/10):, i] = 0.

    src = numx_fft.irfft(fsrc,axis=0)
    src -= src.mean(axis=0)
    src /= src.std(axis=0)

    #mix = sigmoid(numx.dot(src, mdp.utils.random_rot(3)))
    mix = src

    flow = mdp.Flow([mdp.nodes.XSFANode()])
    # let's test also chunk-mode training
    flow.train([[mix[:T/2, :], mix[T/2:, :]]])

    out = flow(mix)
    #import bimdp
    #tr_filename = bimdp.show_training(flow=flow,
    #                                  data_iterators=[[mix[:T/2, :], mix[T/2:, :]]])
    #ex_filename, out = bimdp.show_execution(flow, x=mix)

    corrs = mdp.utils.cov_maxima(mdp.utils.cov2(out, src))
    assert min(corrs) > 0.8, ('source/estimate minimal'
                              ' covariance: %g' % min(corrs))