/usr/share/pyshared/mlpy/_imputing.py is in python-mlpy 2.2.0~dfsg1-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | ## This file is part of mlpy.
## Imputing.
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2009 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
__all__ = ['purify', 'knn_imputing']
import numpy as np
def purify(x, th0=0.1, th1=0.1):
"""
Return the matrix x without rows and cols
containing respectively more than
th0 * x.shape[1] and th1 * x.shape[0] NaNs.
:Returns:
(xout, v0, v1) : (2d ndarray, 1d ndarray int, 1d ndarray int)
v0 are the valid index at dimension 0 and
v1 are the valid index at dimension 1
Example:
>>> import numpy as np
>>> import mlpy
>>> x = np.array([[1, 4, 4 ],
... [2, 9, np.NaN],
... [2, 5, 8 ],
... [8, np.NaN, np.NaN],
... [np.NaN, 4, 4 ]])
>>> y = np.array([1, -1, 1, -1, -1])
>>> x, v0, v1 = mlpy.purify(x, 0.4, 0.4)
>>> x
array([[ 1., 4., 4.],
[ 2., 9., NaN],
[ 2., 5., 8.],
[ NaN, 4., 4.]])
>>> v0
array([0, 1, 2, 4])
>>> v1
array([0, 1, 2])
"""
missing = np.where(np.isnan(x))
# dim0 purifying
if missing[0].shape[0] != 0:
nm0tmp = np.bincount(missing[0]) / float(x.shape[1])
nm0 = np.zeros(x.shape[0])
nm0[0:nm0tmp.shape[0]] = nm0tmp
valid0 = np.where(nm0 <= th0)[0]
else:
valid0 = np.arange(x.shape[0])
# dim1 purifying
if missing[0].shape[0] != 0:
nm1tmp = np.bincount(missing[1]) / float(x.shape[0])
nm1 = np.zeros(x.shape[1])
nm1[0:nm1tmp.shape[0]] = nm1tmp
valid1 = np.where(nm1 <= th1)[0]
else:
valid1 = np.arange(x.shape[1])
# rebuild matrix
xout = x[valid0][:, valid1].copy()
return xout, valid0, valid1
def euclidean_distance(x1, x2):
"""
Euclidean Distance.
Compute the Euclidean distance between points
x1=(x1_1, x1_2, ..., x1_n) and x2=(x2_1, x2_2, ..., x2_n)
"""
d = x1 - x2
du = d[np.logical_not(np.isnan(d))]
if du.shape[0] != 0:
return np.linalg.norm(du)
else:
return np.inf
def euclidean_squared_distance(x1, x2):
"""
Euclidean Distance.
Compute the Euclidean squared distance between points
x1=(x1_1, x1_2, ..., x1_n) and x2=(x2_1, x2_2, ..., x2_n)
"""
d = x1 - x2
du = d[np.logical_not(np.isnan(d))]
if du.shape[0] != 0:
return np.linalg.norm(du)**2
else:
return np.inf
def knn_core(x, k, dist='se', method='mean'):
if dist == 'se':
distfunc = euclidean_distance
elif dist == 'e':
distfunc = euclidean_squared_distance
else:
raise ValueError("dist %s is not valid" % dist)
if method == 'mean':
methodfunc = np.mean
elif method == 'median':
methodfunc = np.median
else:
raise ValueError("method %s is not valid" % method)
midx = np.where(np.isnan(x))
distance = np.empty(x.shape[0], dtype=float)
midx0u = np.unique(midx[0])
mv = []
for i in midx0u:
midx1 = midx[1][midx[0] == i]
for s in np.arange(x.shape[0]):
distance[s] = distfunc(x[i], x[s])
idxsort = np.argsort(distance)
for j in midx1:
idx = idxsort[np.logical_not(np.isnan(x[idxsort, j]))][0:k]
mv.append(methodfunc(x[idx, j]))
xout = x.copy()
for m, (i, j) in enumerate(zip(midx[0], midx[1])):
xout[i, j] = mv[m]
return xout
def knn_imputing(x, k, dist='e', method='mean', y=None, ldep=False):
"""
Knn imputing
:Parameters:
x : 2d ndarray float (samples x feats)
data to impute
k : integer
number of nearest neighbor
dist : string ('se' = SQUARED EUCLIDEAN, 'e' = EUCLIDEAN)
adopted distance
method : string ('mean', 'median')
method to compute the missing values
y : 1d ndarray
labels
ldep : bool
label depended (if y != None)
:Returns:
xout : 2d ndarray float (samples x feats)
data imputed
>>> import numpy as np
>>> import mlpy
>>> x = np.array([[1, 4, 4 ],
... [2, 9, np.NaN],
... [2, 5, 8 ],
... [8, np.NaN, np.NaN],
... [np.NaN, 4, 4 ]])
>>> y = np.array([1, -1, 1, -1, -1])
>>> x, v0, v1 = mlpy.purify(x, 0.4, 0.4)
>>> x
array([[ 1., 4., 4.],
[ 2., 9., NaN],
[ 2., 5., 8.],
[ NaN, 4., 4.]])
>>> v0
array([0, 1, 2, 4])
>>> v1
array([0, 1, 2])
>>> y = y[v0]
>>> x = mlpy.knn_imputing(x, 2, dist='e', method='median')
>>> x
array([[ 1. , 4. , 4. ],
[ 2. , 9. , 6. ],
[ 2. , 5. , 8. ],
[ 1.5, 4. , 4. ]])
"""
xout = x.copy()
if ldep and y != None:
classes = np.unique(y)
for c in classes:
xtmp = knn_core(x=x[y == c], k=k, dist=dist, method=method)
xout[y == c, :] = xtmp
else:
xout = knn_core(x=x, k=k, dist=dist, method=method)
return xout
|