This file is indexed.

/usr/share/pyshared/mlpy/_imputing.py is in python-mlpy 2.2.0~dfsg1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
## This file is part of mlpy.
## Imputing.
    
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2009 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ['purify', 'knn_imputing']


import numpy as np


def purify(x, th0=0.1, th1=0.1):
    """
    Return the matrix x without rows and cols
    containing respectively more than
    th0 * x.shape[1] and th1 * x.shape[0] NaNs.

    :Returns:

      (xout, v0, v1) : (2d ndarray, 1d ndarray int, 1d ndarray int)
                     v0 are the valid index at dimension 0 and
                     v1 are the valid index at dimension 1

    Example:

    >>> import numpy as np
    >>> import mlpy
    >>> x = np.array([[1,      4,      4     ],
    ...               [2,      9,      np.NaN],
    ...               [2,      5,      8     ],
    ...               [8,      np.NaN, np.NaN],
    ...               [np.NaN, 4,      4     ]])
    >>> y = np.array([1, -1, 1, -1, -1])
    >>> x, v0, v1 = mlpy.purify(x, 0.4, 0.4)
    >>> x
    array([[  1.,   4.,   4.],
           [  2.,   9.,  NaN],
           [  2.,   5.,   8.],
           [ NaN,   4.,   4.]])
    >>> v0
    array([0, 1, 2, 4])
    >>> v1
    array([0, 1, 2])
    """

    missing = np.where(np.isnan(x))

    # dim0 purifying
    if missing[0].shape[0] != 0:
        nm0tmp =  np.bincount(missing[0]) / float(x.shape[1])
        nm0 = np.zeros(x.shape[0])
        nm0[0:nm0tmp.shape[0]] = nm0tmp
        valid0 = np.where(nm0 <= th0)[0]
    else:
        valid0 = np.arange(x.shape[0])

    # dim1 purifying
    if missing[0].shape[0] != 0:
        nm1tmp = np.bincount(missing[1]) / float(x.shape[0])
        nm1 = np.zeros(x.shape[1])
        nm1[0:nm1tmp.shape[0]] = nm1tmp
        valid1 = np.where(nm1 <= th1)[0]
    else:
        valid1 = np.arange(x.shape[1])

    # rebuild matrix
    xout = x[valid0][:, valid1].copy()

    return xout, valid0, valid1


def euclidean_distance(x1, x2):
    """
    Euclidean Distance.

    Compute the Euclidean distance between points
    x1=(x1_1, x1_2, ..., x1_n) and x2=(x2_1, x2_2, ..., x2_n)   
    """

    d  = x1 - x2
    du = d[np.logical_not(np.isnan(d))]

    if du.shape[0] != 0:
        return np.linalg.norm(du) 
    else:
        return np.inf


def euclidean_squared_distance(x1, x2):
    """
    Euclidean Distance.

    Compute the Euclidean squared distance between points
    x1=(x1_1, x1_2, ..., x1_n) and x2=(x2_1, x2_2, ..., x2_n)   
    """
    
    d  = x1 - x2
    du = d[np.logical_not(np.isnan(d))]

    if du.shape[0] != 0:
        return np.linalg.norm(du)**2
    else:
        return np.inf
   

def knn_core(x, k, dist='se', method='mean'): 
    
    if dist == 'se':
        distfunc = euclidean_distance
    elif dist == 'e':
        distfunc = euclidean_squared_distance
    else:
        raise ValueError("dist %s is not valid" % dist)

    if method == 'mean':
        methodfunc = np.mean
    elif method == 'median':
        methodfunc = np.median
    else:
        raise ValueError("method %s is not valid" % method)
    
    midx = np.where(np.isnan(x))
    distance = np.empty(x.shape[0], dtype=float)
    midx0u = np.unique(midx[0])
    mv = []
    
    for i in midx0u:
        
        midx1 = midx[1][midx[0] == i]
        
        for s in np.arange(x.shape[0]):
            distance[s] = distfunc(x[i], x[s])
            idxsort = np.argsort(distance)

        for j in midx1:
            idx = idxsort[np.logical_not(np.isnan(x[idxsort, j]))][0:k]
            mv.append(methodfunc(x[idx, j]))

    xout = x.copy()
    for m, (i, j) in enumerate(zip(midx[0], midx[1])):
        xout[i, j] = mv[m]

    return xout
    

def knn_imputing(x, k, dist='e', method='mean', y=None, ldep=False):
    """
    Knn imputing

    :Parameters:
      x : 2d ndarray float (samples x feats)
        data to impute
      k : integer
        number of nearest neighbor
      dist : string ('se' = SQUARED EUCLIDEAN, 'e' = EUCLIDEAN)
           adopted distance 
      method : string ('mean', 'median')
             method to compute the missing values
      y : 1d ndarray
        labels
      ldep : bool
           label depended (if y != None)

    :Returns:
      xout : 2d ndarray float (samples x feats)
           data imputed

    >>> import numpy as np
    >>> import mlpy
    >>> x = np.array([[1,      4,      4     ],
    ...               [2,      9,      np.NaN],
    ...               [2,      5,      8     ],
    ...               [8,      np.NaN, np.NaN],
    ...               [np.NaN, 4,      4     ]])
    >>> y = np.array([1, -1, 1, -1, -1])
    >>> x, v0, v1 = mlpy.purify(x, 0.4, 0.4)
    >>> x
    array([[  1.,   4.,   4.],
           [  2.,   9.,  NaN],
           [  2.,   5.,   8.],
           [ NaN,   4.,   4.]])
    >>> v0
    array([0, 1, 2, 4])
    >>> v1
    array([0, 1, 2])
    >>> y = y[v0]
    >>> x = mlpy.knn_imputing(x, 2, dist='e', method='median')
    >>> x
    array([[ 1. ,  4. ,  4. ],
           [ 2. ,  9. ,  6. ],
	   [ 2. ,  5. ,  8. ],
	   [ 1.5,  4. ,  4. ]])
    """

    xout = x.copy()

    if ldep and y != None:
        classes = np.unique(y)

        for c in classes:
            xtmp = knn_core(x=x[y == c], k=k, dist=dist, method=method)           
            xout[y == c, :] = xtmp
    else:
        xout = knn_core(x=x, k=k, dist=dist, method=method)

    return xout