This file is indexed.

/usr/share/pyshared/mlpy/_ridgeregression.py is in python-mlpy 2.2.0~dfsg1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
## Ridge Regression
   
## This code is written by Davide Albanese, <albanese@fbk.eu>.
## (C) 2010 Fondazione Bruno Kessler - Via Santa Croce 77, 38100 Trento, ITALY.

## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.

## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.

## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

__all__ = ["RidgeRegression", "KernelRidgeRegression"]

import numpy as np

class RidgeRegression(object):
    """Ridge Regression and Ordinary Least Squares (OLS).
    """
    
    def __init__(self, alpha=0.0):
        """Initialization.

        :Parameters:
          alpha : float (>= 0.0)
                regularization (0.0: OLS)
        """

        self.alpha = alpha
        self.__beta = None
        self.__beta0 = None
                
    def learn(self, x, y):
        """Compute the regression coefficients.

        :Parameters:
          x : numpy 2d array (n x p)
            matrix of regressors
          y : numpy 1d array (n)
            response
        """
        
        if not isinstance(x, np.ndarray):
            raise ValueError("x must be an numpy 2d array")

        if not isinstance(y, np.ndarray):
            raise ValueError("y must be an numpy 1d array")

        if x.ndim > 2:
            raise ValueError("x must be an 2d array")
        
        if x.shape[0] != y.shape[0]:
            raise ValueError("x and y are not aligned")

        xm = x - np.mean(x)
        
        n = x.shape[0]
        p = x.shape[1]

        if n < p:
            xd = np.dot(xm, xm.T)
            if self.alpha:
                xd += self.alpha * np.eye(n)
            xdi = np.linalg.pinv(xd)
            self.__beta = np.dot(np.dot(xm.T, xdi), y)
        else:
            xd = np.dot(xm.T, xm)
            if self.alpha:
                xd += self.alpha * np.eye(p)
            xdi = np.linalg.pinv(xd)
            self.__beta = np.dot(xdi, np.dot(xm.T, y))
        
        self.__beta0 = np.mean(y) - np.dot(self.__beta, np.mean(x, axis=0))
   
    def pred(self, x):
        """Compute the predicted response.
        
        :Parameters:
          x : numpy 2d array (nxp)
            matrix of regressors
        
        :Returns:
          yp : 1d ndarray
             predicted response
        """

        if not isinstance(x, np.ndarray):
            raise ValueError("x must be an numpy 2d array")
        
        if x.ndim > 2:
            raise ValueError("x must be an 2d array")
        
        if x.shape[1] != self.__beta.shape[0]:
            raise ValueError("x and beta are not aligned")
        
        p = np.dot(x, self.__beta) + self.__beta0
        
        return p
    
    def selected(self):
        """Returns the regressors ranking.
        """
        
        if self.__beta == None:
            raise ValueError("regression coefficients are not computed. "
                             "Run RidgeRegression.learn(x, y)")

        sel = np.argsort(np.abs(self.__beta))[::-1]
        
        return sel

    def beta(self):
        """Return b_1, ..., b_p.
        """

        return self.__beta

    def beta0(self):
        """Return b_0.
        """

        return self.__beta0


class KernelRidgeRegression(object):
    """Ridge Regression and Ordinary Least Squares (OLS).
    """
    
    def __init__(self, kernel, alpha):
        """Initialization.

        :Parameters:
          alpha : float (> 0.0)
        """

        self.alpha = alpha
        self.__kernel = kernel
        self.__x = None
        self.__c = None
        
    def learn(self, x, y):
        """Compute the regression coefficients.
        
        :Parameters:
          x : numpy 2d array (n x p)
            matrix of regressors
          y : numpy 1d array (n)
            response
        """
        
        if not isinstance(x, np.ndarray):
            raise ValueError("x must be an numpy 2d array")

        if not isinstance(y, np.ndarray):
            raise ValueError("y must be an numpy 1d array")

        if x.ndim > 2:
            raise ValueError("x must be an 2d array")
        
        if x.shape[0] != y.shape[0]:
            raise ValueError("x and y are not aligned")
       
        n = x.shape[0]
        p = x.shape[1]
        
        K = self.__kernel.matrix(x)
        
        tmp = np.linalg.inv(K + (self.alpha * np.eye(n)))
        self.__c = np.dot(y, tmp)
        self.__x = x.copy()        
   
    def pred(self, x):
        """Compute the predicted response.
        
        :Parameters:
          x : numpy 2d array (n x p)
            matrix of regressors
        
        :Returns:
          yp : 1d ndarray
             predicted response
        """

        if not isinstance(x, np.ndarray):
            raise ValueError("x must be an numpy 2d array")

        if x.ndim > 2:
            raise ValueError("x must be an 2d array")
       
        if x.shape[1] != self.__x.shape[1]:
            raise ValueError("x is not aligned")
        
        y = np.empty(x.shape[0])
        
        for i in range(x.shape[0]):
            k =  self.__kernel.vector(x[i], self.__x)
            y[i] = np.sum(self.__c * k)
            
        return y