/usr/share/pyshared/mpmath/ctx_iv.py is in python-mpmath 0.18-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | import operator
from . import libmp
from .libmp.backend import basestring
from .libmp import (
int_types, MPZ_ONE,
prec_to_dps, dps_to_prec, repr_dps,
round_floor, round_ceiling,
fzero, finf, fninf, fnan,
mpf_le, mpf_neg,
from_int, from_float, from_str, from_rational,
mpi_mid, mpi_delta, mpi_str,
mpi_abs, mpi_pos, mpi_neg, mpi_add, mpi_sub,
mpi_mul, mpi_div, mpi_pow_int, mpi_pow,
mpi_from_str,
mpci_pos, mpci_neg, mpci_add, mpci_sub, mpci_mul, mpci_div, mpci_pow,
mpci_abs, mpci_pow, mpci_exp, mpci_log,
ComplexResult,
mpf_hash, mpc_hash)
mpi_zero = (fzero, fzero)
from .ctx_base import StandardBaseContext
new = object.__new__
def convert_mpf_(x, prec, rounding):
if hasattr(x, "_mpf_"): return x._mpf_
if isinstance(x, int_types): return from_int(x, prec, rounding)
if isinstance(x, float): return from_float(x, prec, rounding)
if isinstance(x, basestring): return from_str(x, prec, rounding)
class ivmpf(object):
"""
Interval arithmetic class. Precision is controlled by iv.prec.
"""
def __new__(cls, x=0):
return cls.ctx.convert(x)
def __int__(self):
a, b = self._mpi_
if a == b:
return int(libmp.to_int(a))
raise ValueError
def __hash__(self):
a, b = self._mpi_
if a == b:
return mpf_hash(a)
else:
return hash(self._mpi_)
@property
def real(self): return self
@property
def imag(self): return self.ctx.zero
def conjugate(self): return self
@property
def a(self):
a, b = self._mpi_
return self.ctx.make_mpf((a, a))
@property
def b(self):
a, b = self._mpi_
return self.ctx.make_mpf((b, b))
@property
def mid(self):
ctx = self.ctx
v = mpi_mid(self._mpi_, ctx.prec)
return ctx.make_mpf((v, v))
@property
def delta(self):
ctx = self.ctx
v = mpi_delta(self._mpi_, ctx.prec)
return ctx.make_mpf((v,v))
@property
def _mpci_(self):
return self._mpi_, mpi_zero
def _compare(*args):
raise TypeError("no ordering relation is defined for intervals")
__gt__ = _compare
__le__ = _compare
__gt__ = _compare
__ge__ = _compare
def __contains__(self, t):
t = self.ctx.mpf(t)
return (self.a <= t.a) and (t.b <= self.b)
def __str__(self):
return mpi_str(self._mpi_, self.ctx.prec)
def __repr__(self):
if self.ctx.pretty:
return str(self)
a, b = self._mpi_
n = repr_dps(self.ctx.prec)
a = libmp.to_str(a, n)
b = libmp.to_str(b, n)
return "mpi(%r, %r)" % (a, b)
def _compare(s, t, cmpfun):
if not hasattr(t, "_mpi_"):
try:
t = s.ctx.convert(t)
except:
return NotImplemented
return cmpfun(s._mpi_, t._mpi_)
def __eq__(s, t): return s._compare(t, libmp.mpi_eq)
def __ne__(s, t): return s._compare(t, libmp.mpi_ne)
def __lt__(s, t): return s._compare(t, libmp.mpi_lt)
def __le__(s, t): return s._compare(t, libmp.mpi_le)
def __gt__(s, t): return s._compare(t, libmp.mpi_gt)
def __ge__(s, t): return s._compare(t, libmp.mpi_ge)
def __abs__(self):
return self.ctx.make_mpf(mpi_abs(self._mpi_, self.ctx.prec))
def __pos__(self):
return self.ctx.make_mpf(mpi_pos(self._mpi_, self.ctx.prec))
def __neg__(self):
return self.ctx.make_mpf(mpi_neg(self._mpi_, self.ctx.prec))
def ae(s, t, rel_eps=None, abs_eps=None):
return s.ctx.almosteq(s, t, rel_eps, abs_eps)
class ivmpc(object):
def __new__(cls, re=0, im=0):
re = cls.ctx.convert(re)
im = cls.ctx.convert(im)
y = new(cls)
y._mpci_ = re._mpi_, im._mpi_
return y
def __hash__(self):
(a, b), (c,d) = self._mpci_
if a == b and c == d:
return mpc_hash((a, c))
else:
return hash(self._mpci_)
def __repr__(s):
if s.ctx.pretty:
return str(s)
return "iv.mpc(%s, %s)" % (repr(s.real), repr(s.imag))
def __str__(s):
return "(%s + %s*j)" % (str(s.real), str(s.imag))
@property
def a(self):
(a, b), (c,d) = self._mpci_
return self.ctx.make_mpf((a, a))
@property
def b(self):
(a, b), (c,d) = self._mpci_
return self.ctx.make_mpf((b, b))
@property
def c(self):
(a, b), (c,d) = self._mpci_
return self.ctx.make_mpf((c, c))
@property
def d(self):
(a, b), (c,d) = self._mpci_
return self.ctx.make_mpf((d, d))
@property
def real(s):
return s.ctx.make_mpf(s._mpci_[0])
@property
def imag(s):
return s.ctx.make_mpf(s._mpci_[1])
def conjugate(s):
a, b = s._mpci_
return s.ctx.make_mpc((a, mpf_neg(b)))
def overlap(s, t):
t = s.ctx.convert(t)
real_overlap = (s.a <= t.a <= s.b) or (s.a <= t.b <= s.b) or (t.a <= s.a <= t.b) or (t.a <= s.b <= t.b)
imag_overlap = (s.c <= t.c <= s.d) or (s.c <= t.d <= s.d) or (t.c <= s.c <= t.d) or (t.c <= s.d <= t.d)
return real_overlap and imag_overlap
def __contains__(s, t):
t = s.ctx.convert(t)
return t.real in s.real and t.imag in s.imag
def _compare(s, t, ne=False):
if not isinstance(t, s.ctx._types):
try:
t = s.ctx.convert(t)
except:
return NotImplemented
if hasattr(t, '_mpi_'):
tval = t._mpi_, mpi_zero
elif hasattr(t, '_mpci_'):
tval = t._mpci_
if ne:
return s._mpci_ != tval
return s._mpci_ == tval
def __eq__(s, t): return s._compare(t)
def __ne__(s, t): return s._compare(t, True)
def __lt__(s, t): raise TypeError("complex intervals cannot be ordered")
__le__ = __gt__ = __ge__ = __lt__
def __neg__(s): return s.ctx.make_mpc(mpci_neg(s._mpci_, s.ctx.prec))
def __pos__(s): return s.ctx.make_mpc(mpci_pos(s._mpci_, s.ctx.prec))
def __abs__(s): return s.ctx.make_mpf(mpci_abs(s._mpci_, s.ctx.prec))
def ae(s, t, rel_eps=None, abs_eps=None):
return s.ctx.almosteq(s, t, rel_eps, abs_eps)
def _binary_op(f_real, f_complex):
def g_complex(ctx, sval, tval):
return ctx.make_mpc(f_complex(sval, tval, ctx.prec))
def g_real(ctx, sval, tval):
try:
return ctx.make_mpf(f_real(sval, tval, ctx.prec))
except ComplexResult:
sval = (sval, mpi_zero)
tval = (tval, mpi_zero)
return g_complex(ctx, sval, tval)
def lop_real(s, t):
ctx = s.ctx
if not isinstance(t, ctx._types): t = ctx.convert(t)
if hasattr(t, "_mpi_"): return g_real(ctx, s._mpi_, t._mpi_)
if hasattr(t, "_mpci_"): return g_complex(ctx, (s._mpi_, mpi_zero), t._mpci_)
return NotImplemented
def rop_real(s, t):
ctx = s.ctx
if not isinstance(t, ctx._types): t = ctx.convert(t)
if hasattr(t, "_mpi_"): return g_real(ctx, t._mpi_, s._mpi_)
if hasattr(t, "_mpci_"): return g_complex(ctx, t._mpci_, (s._mpi_, mpi_zero))
return NotImplemented
def lop_complex(s, t):
ctx = s.ctx
if not isinstance(t, s.ctx._types):
try:
t = s.ctx.convert(t)
except (ValueError, TypeError):
return NotImplemented
return g_complex(ctx, s._mpci_, t._mpci_)
def rop_complex(s, t):
ctx = s.ctx
if not isinstance(t, s.ctx._types):
t = s.ctx.convert(t)
return g_complex(ctx, t._mpci_, s._mpci_)
return lop_real, rop_real, lop_complex, rop_complex
ivmpf.__add__, ivmpf.__radd__, ivmpc.__add__, ivmpc.__radd__ = _binary_op(mpi_add, mpci_add)
ivmpf.__sub__, ivmpf.__rsub__, ivmpc.__sub__, ivmpc.__rsub__ = _binary_op(mpi_sub, mpci_sub)
ivmpf.__mul__, ivmpf.__rmul__, ivmpc.__mul__, ivmpc.__rmul__ = _binary_op(mpi_mul, mpci_mul)
ivmpf.__div__, ivmpf.__rdiv__, ivmpc.__div__, ivmpc.__rdiv__ = _binary_op(mpi_div, mpci_div)
ivmpf.__pow__, ivmpf.__rpow__, ivmpc.__pow__, ivmpc.__rpow__ = _binary_op(mpi_pow, mpci_pow)
ivmpf.__truediv__ = ivmpf.__div__; ivmpf.__rtruediv__ = ivmpf.__rdiv__
ivmpc.__truediv__ = ivmpc.__div__; ivmpc.__rtruediv__ = ivmpc.__rdiv__
class ivmpf_constant(ivmpf):
def __new__(cls, f):
self = new(cls)
self._f = f
return self
def _get_mpi_(self):
prec = self.ctx._prec[0]
a = self._f(prec, round_floor)
b = self._f(prec, round_ceiling)
return a, b
_mpi_ = property(_get_mpi_)
class MPIntervalContext(StandardBaseContext):
def __init__(ctx):
ctx.mpf = type('ivmpf', (ivmpf,), {})
ctx.mpc = type('ivmpc', (ivmpc,), {})
ctx._types = (ctx.mpf, ctx.mpc)
ctx._constant = type('ivmpf_constant', (ivmpf_constant,), {})
ctx._prec = [53]
ctx._set_prec(53)
ctx._constant._ctxdata = ctx.mpf._ctxdata = ctx.mpc._ctxdata = [ctx.mpf, new, ctx._prec]
ctx._constant.ctx = ctx.mpf.ctx = ctx.mpc.ctx = ctx
ctx.pretty = False
StandardBaseContext.__init__(ctx)
ctx._init_builtins()
def _mpi(ctx, a, b=None):
if b is None:
return ctx.mpf(a)
return ctx.mpf((a,b))
def _init_builtins(ctx):
ctx.one = ctx.mpf(1)
ctx.zero = ctx.mpf(0)
ctx.inf = ctx.mpf('inf')
ctx.ninf = -ctx.inf
ctx.nan = ctx.mpf('nan')
ctx.j = ctx.mpc(0,1)
ctx.exp = ctx._wrap_mpi_function(libmp.mpi_exp, libmp.mpci_exp)
ctx.sqrt = ctx._wrap_mpi_function(libmp.mpi_sqrt)
ctx.ln = ctx._wrap_mpi_function(libmp.mpi_log, libmp.mpci_log)
ctx.cos = ctx._wrap_mpi_function(libmp.mpi_cos, libmp.mpci_cos)
ctx.sin = ctx._wrap_mpi_function(libmp.mpi_sin, libmp.mpci_sin)
ctx.tan = ctx._wrap_mpi_function(libmp.mpi_tan)
ctx.gamma = ctx._wrap_mpi_function(libmp.mpi_gamma, libmp.mpci_gamma)
ctx.loggamma = ctx._wrap_mpi_function(libmp.mpi_loggamma, libmp.mpci_loggamma)
ctx.rgamma = ctx._wrap_mpi_function(libmp.mpi_rgamma, libmp.mpci_rgamma)
ctx.factorial = ctx._wrap_mpi_function(libmp.mpi_factorial, libmp.mpci_factorial)
ctx.fac = ctx.factorial
ctx.eps = ctx._constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1))
ctx.pi = ctx._constant(libmp.mpf_pi)
ctx.e = ctx._constant(libmp.mpf_e)
ctx.ln2 = ctx._constant(libmp.mpf_ln2)
ctx.ln10 = ctx._constant(libmp.mpf_ln10)
ctx.phi = ctx._constant(libmp.mpf_phi)
ctx.euler = ctx._constant(libmp.mpf_euler)
ctx.catalan = ctx._constant(libmp.mpf_catalan)
ctx.glaisher = ctx._constant(libmp.mpf_glaisher)
ctx.khinchin = ctx._constant(libmp.mpf_khinchin)
ctx.twinprime = ctx._constant(libmp.mpf_twinprime)
def _wrap_mpi_function(ctx, f_real, f_complex=None):
def g(x, **kwargs):
if kwargs:
prec = kwargs.get('prec', ctx._prec[0])
else:
prec = ctx._prec[0]
x = ctx.convert(x)
if hasattr(x, "_mpi_"):
return ctx.make_mpf(f_real(x._mpi_, prec))
if hasattr(x, "_mpci_"):
return ctx.make_mpc(f_complex(x._mpci_, prec))
raise ValueError
return g
@classmethod
def _wrap_specfun(cls, name, f, wrap):
if wrap:
def f_wrapped(ctx, *args, **kwargs):
convert = ctx.convert
args = [convert(a) for a in args]
prec = ctx.prec
try:
ctx.prec += 10
retval = f(ctx, *args, **kwargs)
finally:
ctx.prec = prec
return +retval
else:
f_wrapped = f
setattr(cls, name, f_wrapped)
def _set_prec(ctx, n):
ctx._prec[0] = max(1, int(n))
ctx._dps = prec_to_dps(n)
def _set_dps(ctx, n):
ctx._prec[0] = dps_to_prec(n)
ctx._dps = max(1, int(n))
prec = property(lambda ctx: ctx._prec[0], _set_prec)
dps = property(lambda ctx: ctx._dps, _set_dps)
def make_mpf(ctx, v):
a = new(ctx.mpf)
a._mpi_ = v
return a
def make_mpc(ctx, v):
a = new(ctx.mpc)
a._mpci_ = v
return a
def _mpq(ctx, pq):
p, q = pq
a = libmp.from_rational(p, q, ctx.prec, round_floor)
b = libmp.from_rational(p, q, ctx.prec, round_ceiling)
return ctx.make_mpf((a, b))
def convert(ctx, x):
if isinstance(x, (ctx.mpf, ctx.mpc)):
return x
if isinstance(x, ctx._constant):
return +x
if isinstance(x, complex) or hasattr(x, "_mpc_"):
re = ctx.convert(x.real)
im = ctx.convert(x.imag)
return ctx.mpc(re,im)
if isinstance(x, basestring):
v = mpi_from_str(x, ctx.prec)
return ctx.make_mpf(v)
if hasattr(x, "_mpi_"):
a, b = x._mpi_
else:
try:
a, b = x
except (TypeError, ValueError):
a = b = x
if hasattr(a, "_mpi_"):
a = a._mpi_[0]
else:
a = convert_mpf_(a, ctx.prec, round_floor)
if hasattr(b, "_mpi_"):
b = b._mpi_[1]
else:
b = convert_mpf_(b, ctx.prec, round_ceiling)
if a == fnan or b == fnan:
a = fninf
b = finf
assert mpf_le(a, b), "endpoints must be properly ordered"
return ctx.make_mpf((a, b))
def nstr(ctx, x, n=5, **kwargs):
x = ctx.convert(x)
if hasattr(x, "_mpi_"):
return libmp.mpi_to_str(x._mpi_, n, **kwargs)
if hasattr(x, "_mpci_"):
re = libmp.mpi_to_str(x._mpci_[0], n, **kwargs)
im = libmp.mpi_to_str(x._mpci_[1], n, **kwargs)
return "(%s + %s*j)" % (re, im)
def mag(ctx, x):
x = ctx.convert(x)
if isinstance(x, ctx.mpc):
return max(ctx.mag(x.real), ctx.mag(x.imag)) + 1
a, b = libmp.mpi_abs(x._mpi_)
sign, man, exp, bc = b
if man:
return exp+bc
if b == fzero:
return ctx.ninf
if b == fnan:
return ctx.nan
return ctx.inf
def isnan(ctx, x):
return False
def isinf(ctx, x):
return x == ctx.inf
def isint(ctx, x):
x = ctx.convert(x)
a, b = x._mpi_
if a == b:
sign, man, exp, bc = a
if man:
return exp >= 0
return a == fzero
return None
def ldexp(ctx, x, n):
a, b = ctx.convert(x)._mpi_
a = libmp.mpf_shift(a, n)
b = libmp.mpf_shift(b, n)
return ctx.make_mpf((a,b))
def absmin(ctx, x):
return abs(ctx.convert(x)).a
def absmax(ctx, x):
return abs(ctx.convert(x)).b
def atan2(ctx, y, x):
y = ctx.convert(y)._mpi_
x = ctx.convert(x)._mpi_
return ctx.make_mpf(libmp.mpi_atan2(y,x,ctx.prec))
def _convert_param(ctx, x):
if isinstance(x, libmp.int_types):
return x, 'Z'
if isinstance(x, tuple):
p, q = x
return (ctx.mpf(p) / ctx.mpf(q), 'R')
x = ctx.convert(x)
if isinstance(x, ctx.mpf):
return x, 'R'
if isinstance(x, ctx.mpc):
return x, 'C'
raise ValueError
def _is_real_type(ctx, z):
return isinstance(z, ctx.mpf) or isinstance(z, int_types)
def _is_complex_type(ctx, z):
return isinstance(z, ctx.mpc)
def hypsum(ctx, p, q, types, coeffs, z, maxterms=6000, **kwargs):
coeffs = list(coeffs)
num = range(p)
den = range(p,p+q)
#tol = ctx.eps
s = t = ctx.one
k = 0
while 1:
for i in num: t *= (coeffs[i]+k)
for i in den: t /= (coeffs[i]+k)
k += 1; t /= k; t *= z; s += t
if t == 0:
return s
#if abs(t) < tol:
# return s
if k > maxterms:
raise ctx.NoConvergence
# Register with "numbers" ABC
# We do not subclass, hence we do not use the @abstractmethod checks. While
# this is less invasive it may turn out that we do not actually support
# parts of the expected interfaces. See
# http://docs.python.org/2/library/numbers.html for list of abstract
# methods.
try:
import numbers
numbers.Complex.register(ivmpc)
numbers.Real.register(ivmpf)
except ImportError:
pass
|