This file is indexed.

/usr/share/pyshared/mpmath/functions/bessel.py is in python-mpmath 0.18-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
from .functions import defun, defun_wrapped

@defun
def j0(ctx, x):
    """Computes the Bessel function `J_0(x)`. See :func:`~mpmath.besselj`."""
    return ctx.besselj(0, x)

@defun
def j1(ctx, x):
    """Computes the Bessel function `J_1(x)`.  See :func:`~mpmath.besselj`."""
    return ctx.besselj(1, x)

@defun
def besselj(ctx, n, z, derivative=0, **kwargs):
    if type(n) is int:
        n_isint = True
    else:
        n = ctx.convert(n)
        n_isint = ctx.isint(n)
        if n_isint:
            n = int(ctx._re(n))
    if n_isint and n < 0:
        return (-1)**n * ctx.besselj(-n, z, derivative, **kwargs)
    z = ctx.convert(z)
    M = ctx.mag(z)
    if derivative:
        d = ctx.convert(derivative)
        # TODO: the integer special-casing shouldn't be necessary.
        # However, the hypergeometric series gets inaccurate for large d
        # because of inaccurate pole cancellation at a pole far from
        # zero (needs to be fixed in hypercomb or hypsum)
        if ctx.isint(d) and d >= 0:
            d = int(d)
            orig = ctx.prec
            try:
                ctx.prec += 15
                v = ctx.fsum((-1)**k * ctx.binomial(d,k) * ctx.besselj(2*k+n-d,z)
                    for k in range(d+1))
            finally:
                ctx.prec = orig
            v *= ctx.mpf(2)**(-d)
        else:
            def h(n,d):
                r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), -0.25, exact=True)
                B = [0.5*(n-d+1), 0.5*(n-d+2)]
                T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[],B,[(n+1)*0.5,(n+2)*0.5],B+[n+1],r)]
                return T
            v = ctx.hypercomb(h, [n,d], **kwargs)
    else:
    # Fast case: J_n(x), n int, appropriate magnitude for fixed-point calculation
        if (not derivative) and n_isint and abs(M) < 10 and abs(n) < 20:
            try:
                return ctx._besselj(n, z)
            except NotImplementedError:
                pass
        if not z:
            if not n:
                v = ctx.one + n+z
            elif ctx.re(n) > 0:
                v = n*z
            else:
                v = ctx.inf + z + n
        else:
            #v = 0
            orig = ctx.prec
            try:
                # XXX: workaround for accuracy in low level hypergeometric series
                # when alternating, large arguments
                ctx.prec += min(3*abs(M), ctx.prec)
                w = ctx.fmul(z, 0.5, exact=True)
                def h(n):
                    r = ctx.fneg(ctx.fmul(w, w, prec=max(0,ctx.prec+M)), exact=True)
                    return [([w], [n], [], [n+1], [], [n+1], r)]
                v = ctx.hypercomb(h, [n], **kwargs)
            finally:
                ctx.prec = orig
        v = +v
    return v

@defun
def besseli(ctx, n, z, derivative=0, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    if not z:
        if derivative:
            raise ValueError
        if not n:
            # I(0,0) = 1
            return 1+n+z
        if ctx.isint(n):
            return 0*(n+z)
        r = ctx.re(n)
        if r == 0:
            return ctx.nan*(n+z)
        elif r > 0:
            return 0*(n+z)
        else:
            return ctx.inf+(n+z)
    M = ctx.mag(z)
    if derivative:
        d = ctx.convert(derivative)
        def h(n,d):
            r = ctx.fmul(ctx.fmul(z, z, prec=ctx.prec+M), 0.25, exact=True)
            B = [0.5*(n-d+1), 0.5*(n-d+2), n+1]
            T = [([2,ctx.pi,z],[d-2*n,0.5,n-d],[n+1],B,[(n+1)*0.5,(n+2)*0.5],B,r)]
            return T
        v = ctx.hypercomb(h, [n,d], **kwargs)
    else:
        def h(n):
            w = ctx.fmul(z, 0.5, exact=True)
            r = ctx.fmul(w, w, prec=max(0,ctx.prec+M))
            return [([w], [n], [], [n+1], [], [n+1], r)]
        v = ctx.hypercomb(h, [n], **kwargs)
    return v

@defun_wrapped
def bessely(ctx, n, z, derivative=0, **kwargs):
    if not z:
        if derivative:
            # Not implemented
            raise ValueError
        if not n:
            # ~ log(z/2)
            return -ctx.inf + (n+z)
        if ctx.im(n):
            return nan * (n+z)
        r = ctx.re(n)
        q = n+0.5
        if ctx.isint(q):
            if n > 0:
                return -ctx.inf + (n+z)
            else:
                return 0 * (n+z)
        if r < 0 and int(ctx.floor(q)) % 2:
            return ctx.inf + (n+z)
        else:
            return ctx.ninf + (n+z)
    # XXX: use hypercomb
    ctx.prec += 10
    m, d = ctx.nint_distance(n)
    if d < -ctx.prec:
        h = +ctx.eps
        ctx.prec *= 2
        n += h
    elif d < 0:
        ctx.prec -= d
    # TODO: avoid cancellation for imaginary arguments
    cos, sin = ctx.cospi_sinpi(n)
    return (ctx.besselj(n,z,derivative,**kwargs)*cos - \
        ctx.besselj(-n,z,derivative,**kwargs))/sin

@defun_wrapped
def besselk(ctx, n, z, **kwargs):
    if not z:
        return ctx.inf
    M = ctx.mag(z)
    if M < 1:
        # Represent as limit definition
        def h(n):
            r = (z/2)**2
            T1 = [z, 2], [-n, n-1], [n], [], [], [1-n], r
            T2 = [z, 2], [n, -n-1], [-n], [], [], [1+n], r
            return T1, T2
    # We could use the limit definition always, but it leads
    # to very bad cancellation (of exponentially large terms)
    # for large real z
    # Instead represent in terms of 2F0
    else:
        ctx.prec += M
        def h(n):
            return [([ctx.pi/2, z, ctx.exp(-z)], [0.5,-0.5,1], [], [], \
                [n+0.5, 0.5-n], [], -1/(2*z))]
    return ctx.hypercomb(h, [n], **kwargs)

@defun_wrapped
def hankel1(ctx,n,x,**kwargs):
    return ctx.besselj(n,x,**kwargs) + ctx.j*ctx.bessely(n,x,**kwargs)

@defun_wrapped
def hankel2(ctx,n,x,**kwargs):
    return ctx.besselj(n,x,**kwargs) - ctx.j*ctx.bessely(n,x,**kwargs)

@defun_wrapped
def whitm(ctx,k,m,z,**kwargs):
    if z == 0:
        # M(k,m,z) = 0^(1/2+m)
        if ctx.re(m) > -0.5:
            return z
        elif ctx.re(m) < -0.5:
            return ctx.inf + z
        else:
            return ctx.nan * z
    x = ctx.fmul(-0.5, z, exact=True)
    y = 0.5+m
    return ctx.exp(x) * z**y * ctx.hyp1f1(y-k, 1+2*m, z, **kwargs)

@defun_wrapped
def whitw(ctx,k,m,z,**kwargs):
    if z == 0:
        g = abs(ctx.re(m))
        if g < 0.5:
            return z
        elif g > 0.5:
            return ctx.inf + z
        else:
            return ctx.nan * z
    x = ctx.fmul(-0.5, z, exact=True)
    y = 0.5+m
    return ctx.exp(x) * z**y * ctx.hyperu(y-k, 1+2*m, z, **kwargs)

@defun
def hyperu(ctx, a, b, z, **kwargs):
    a, atype = ctx._convert_param(a)
    b, btype = ctx._convert_param(b)
    z = ctx.convert(z)
    if not z:
        if ctx.re(b) <= 1:
            return ctx.gammaprod([1-b],[a-b+1])
        else:
            return ctx.inf + z
    bb = 1+a-b
    bb, bbtype = ctx._convert_param(bb)
    try:
        orig = ctx.prec
        try:
            ctx.prec += 10
            v = ctx.hypsum(2, 0, (atype, bbtype), [a, bb], -1/z, maxterms=ctx.prec)
            return v / z**a
        finally:
            ctx.prec = orig
    except ctx.NoConvergence:
        pass
    def h(a,b):
        w = ctx.sinpi(b)
        T1 = ([ctx.pi,w],[1,-1],[],[a-b+1,b],[a],[b],z)
        T2 = ([-ctx.pi,w,z],[1,-1,1-b],[],[a,2-b],[a-b+1],[2-b],z)
        return T1, T2
    return ctx.hypercomb(h, [a,b], **kwargs)

@defun
def struveh(ctx,n,z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/StruveH/26/01/02/
    def h(n):
        return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], -(z/2)**2)]
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def struvel(ctx,n,z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/StruveL/26/01/02/
    def h(n):
        return [([z/2, 0.5*ctx.sqrt(ctx.pi)], [n+1, -1], [], [n+1.5], [1], [1.5, n+1.5], (z/2)**2)]
    return ctx.hypercomb(h, [n], **kwargs)

def _anger(ctx,which,v,z,**kwargs):
    v = ctx._convert_param(v)[0]
    z = ctx.convert(z)
    def h(v):
        b = ctx.mpq_1_2
        u = v*b
        m = b*3
        a1,a2,b1,b2 = m-u, m+u, 1-u, 1+u
        c, s = ctx.cospi_sinpi(u)
        if which == 0:
            A, B = [b*z, s], [c]
        if which == 1:
            A, B = [b*z, -c], [s]
        w = ctx.square_exp_arg(z, mult=-0.25)
        T1 = A, [1, 1], [], [a1,a2], [1], [a1,a2], w
        T2 = B, [1], [], [b1,b2], [1], [b1,b2], w
        return T1, T2
    return ctx.hypercomb(h, [v], **kwargs)

@defun
def angerj(ctx, v, z, **kwargs):
    return _anger(ctx, 0, v, z, **kwargs)

@defun
def webere(ctx, v, z, **kwargs):
    return _anger(ctx, 1, v, z, **kwargs)

@defun
def lommels1(ctx, u, v, z, **kwargs):
    u = ctx._convert_param(u)[0]
    v = ctx._convert_param(v)[0]
    z = ctx.convert(z)
    def h(u,v):
        b = ctx.mpq_1_2
        w = ctx.square_exp_arg(z, mult=-0.25)
        return ([u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], \
            [b*(u-v+3),b*(u+v+3)], w),
    return ctx.hypercomb(h, [u,v], **kwargs)

@defun
def lommels2(ctx, u, v, z, **kwargs):
    u = ctx._convert_param(u)[0]
    v = ctx._convert_param(v)[0]
    z = ctx.convert(z)
    # Asymptotic expansion (GR p. 947) -- need to be careful
    # not to use for small arguments
    # def h(u,v):
    #    b = ctx.mpq_1_2
    #    w = -(z/2)**(-2)
    #    return ([z], [u-1], [], [], [b*(1-u+v)], [b*(1-u-v)], w),
    def h(u,v):
        b = ctx.mpq_1_2
        w = ctx.square_exp_arg(z, mult=-0.25)
        T1 = [u-v+1, u+v+1, z], [-1, -1, u+1], [], [], [1], [b*(u-v+3),b*(u+v+3)], w
        T2 = [2, z], [u+v-1, -v], [v, b*(u+v+1)], [b*(v-u+1)], [], [1-v], w
        T3 = [2, z], [u-v-1, v], [-v, b*(u-v+1)], [b*(1-u-v)], [], [1+v], w
        #c1 = ctx.cospi((u-v)*b)
        #c2 = ctx.cospi((u+v)*b)
        #s = ctx.sinpi(v)
        #r1 = (u-v+1)*b
        #r2 = (u+v+1)*b
        #T2 = [c1, s, z, 2], [1, -1, -v, v], [], [-v+1], [], [-v+1], w
        #T3 = [-c2, s, z, 2], [1, -1, v, -v], [], [v+1], [], [v+1], w
        #T2 = [c1, s, z, 2], [1, -1, -v, v+u-1], [r1, r2], [-v+1], [], [-v+1], w
        #T3 = [-c2, s, z, 2], [1, -1, v, -v+u-1], [r1, r2], [v+1], [], [v+1], w
        return T1, T2, T3
    return ctx.hypercomb(h, [u,v], **kwargs)

@defun
def ber(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBer2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos, sin = ctx.cospi_sinpi(-0.75*n)
        T1 = [cos, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
        T2 = [sin, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
        return T1, T2
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def bei(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinBei2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos, sin = ctx.cospi_sinpi(0.75*n)
        T1 = [cos, z/2], [1, n+2], [], [n+2], [], [1.5, 0.5*(n+3), 0.5*n+1], r
        T2 = [sin, z/2], [1, n], [], [n+1], [], [0.5, 0.5*(n+1), 0.5*n+1], r
        return T1, T2
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def ker(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKer2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos1, sin1 = ctx.cospi_sinpi(0.25*n)
        cos2, sin2 = ctx.cospi_sinpi(0.75*n)
        T1 = [2, z, 4*cos1], [-n-3, n, 1], [-n], [], [], [0.5, 0.5*(1+n), 0.5*(n+2)], r
        T2 = [2, z, -sin1], [-n-3, 2+n, 1], [-n-1], [], [], [1.5, 0.5*(3+n), 0.5*(n+2)], r
        T3 = [2, z, 4*cos2], [n-3, -n, 1], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
        T4 = [2, z, -sin2], [n-3, 2-n, 1], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
        return T1, T2, T3, T4
    return ctx.hypercomb(h, [n], **kwargs)

@defun
def kei(ctx, n, z, **kwargs):
    n = ctx.convert(n)
    z = ctx.convert(z)
    # http://functions.wolfram.com/Bessel-TypeFunctions/KelvinKei2/26/01/02/0001/
    def h(n):
        r = -(z/4)**4
        cos1, sin1 = ctx.cospi_sinpi(0.75*n)
        cos2, sin2 = ctx.cospi_sinpi(0.25*n)
        T1 = [-cos1, 2, z], [1, n-3, 2-n], [n-1], [], [], [1.5, 0.5*(3-n), 1-0.5*n], r
        T2 = [-sin1, 2, z], [1, n-1, -n], [n], [], [], [0.5, 0.5*(1-n), 1-0.5*n], r
        T3 = [-sin2, 2, z], [1, -n-1, n], [-n], [], [], [0.5, 0.5*(n+1), 0.5*(n+2)], r
        T4 = [-cos2, 2, z], [1, -n-3, n+2], [-n-1], [], [], [1.5, 0.5*(n+3), 0.5*(n+2)], r
        return T1, T2, T3, T4
    return ctx.hypercomb(h, [n], **kwargs)

# TODO: do this more generically?
def c_memo(f):
    name = f.__name__
    def f_wrapped(ctx):
        cache = ctx._misc_const_cache
        prec = ctx.prec
        p,v = cache.get(name, (-1,0))
        if p >= prec:
            return +v
        else:
            cache[name] = (prec, f(ctx))
            return cache[name][1]
    return f_wrapped

@c_memo
def _airyai_C1(ctx):
    return 1 / (ctx.cbrt(9) * ctx.gamma(ctx.mpf(2)/3))

@c_memo
def _airyai_C2(ctx):
    return -1 / (ctx.cbrt(3) * ctx.gamma(ctx.mpf(1)/3))

@c_memo
def _airybi_C1(ctx):
    return 1 / (ctx.nthroot(3,6) * ctx.gamma(ctx.mpf(2)/3))

@c_memo
def _airybi_C2(ctx):
    return ctx.nthroot(3,6) / ctx.gamma(ctx.mpf(1)/3)

def _airybi_n2_inf(ctx):
    prec = ctx.prec
    try:
        v = ctx.power(3,'2/3')*ctx.gamma('2/3')/(2*ctx.pi)
    finally:
        ctx.prec = prec
    return +v

# Derivatives at z = 0
# TODO: could be expressed more elegantly using triple factorials
def _airyderiv_0(ctx, z, n, ntype, which):
    if ntype == 'Z':
        if n < 0:
            return z
        r = ctx.mpq_1_3
        prec = ctx.prec
        try:
            ctx.prec += 10
            v = ctx.gamma((n+1)*r) * ctx.power(3,n*r) / ctx.pi
            if which == 0:
                v *= ctx.sinpi(2*(n+1)*r)
                v /= ctx.power(3,'2/3')
            else:
                v *= abs(ctx.sinpi(2*(n+1)*r))
                v /= ctx.power(3,'1/6')
        finally:
            ctx.prec = prec
        return +v + z
    else:
        # singular (does the limit exist?)
        raise NotImplementedError

@defun
def airyai(ctx, z, derivative=0, **kwargs):
    z = ctx.convert(z)
    if derivative:
        n, ntype = ctx._convert_param(derivative)
    else:
        n = 0
    # Values at infinities
    if not ctx.isnormal(z) and z:
        if n and ntype == 'Z':
            if n == -1:
                if z == ctx.inf:
                    return ctx.mpf(1)/3 + 1/z
                if z == ctx.ninf:
                    return ctx.mpf(-2)/3 + 1/z
            if n < -1:
                if z == ctx.inf:
                    return z
                if z == ctx.ninf:
                    return (-1)**n * (-z)
        if (not n) and z == ctx.inf or z == ctx.ninf:
            return 1/z
        # TODO: limits
        raise ValueError("essential singularity of Ai(z)")
    # Account for exponential scaling
    if z:
        extraprec = max(0, int(1.5*ctx.mag(z)))
    else:
        extraprec = 0
    if n:
        if n == 1:
            def h():
                # http://functions.wolfram.com/03.07.06.0005.01
                if ctx._re(z) > 4:
                    ctx.prec += extraprec
                    w = z**1.5; r = -0.75/w; u = -2*w/3
                    ctx.prec -= extraprec
                    C = -ctx.exp(u)/(2*ctx.sqrt(ctx.pi))*ctx.nthroot(z,4)
                    return ([C],[1],[],[],[(-1,6),(7,6)],[],r),
                # http://functions.wolfram.com/03.07.26.0001.01
                else:
                    ctx.prec += extraprec
                    w = z**3 / 9
                    ctx.prec -= extraprec
                    C1 = _airyai_C1(ctx) * 0.5
                    C2 = _airyai_C2(ctx)
                    T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
                    T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
                    return T1, T2
            return ctx.hypercomb(h, [], **kwargs)
        else:
            if z == 0:
                return _airyderiv_0(ctx, z, n, ntype, 0)
            # http://functions.wolfram.com/03.05.20.0004.01
            def h(n):
                ctx.prec += extraprec
                w = z**3/9
                ctx.prec -= extraprec
                q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
                a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
                T1 = [3, z], [n-q23, -n], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
                T2 = [3, z, -z], [n-q43, -n, 1], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                return T1, T2
            v = ctx.hypercomb(h, [n], **kwargs)
            if ctx._is_real_type(z) and ctx.isint(n):
                v = ctx._re(v)
            return v
    else:
        def h():
            if ctx._re(z) > 4:
                # We could use 1F1, but it results in huge cancellation;
                # the following expansion is better.
                # TODO: asymptotic series for derivatives
                ctx.prec += extraprec
                w = z**1.5; r = -0.75/w; u = -2*w/3
                ctx.prec -= extraprec
                C = ctx.exp(u)/(2*ctx.sqrt(ctx.pi)*ctx.nthroot(z,4))
                return ([C],[1],[],[],[(1,6),(5,6)],[],r),
            else:
                ctx.prec += extraprec
                w = z**3 / 9
                ctx.prec -= extraprec
                C1 = _airyai_C1(ctx)
                C2 = _airyai_C2(ctx)
                T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
                T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
                return T1, T2
        return ctx.hypercomb(h, [], **kwargs)

@defun
def airybi(ctx, z, derivative=0, **kwargs):
    z = ctx.convert(z)
    if derivative:
        n, ntype = ctx._convert_param(derivative)
    else:
        n = 0
    # Values at infinities
    if not ctx.isnormal(z) and z:
        if n and ntype == 'Z':
            if z == ctx.inf:
                return z
            if z == ctx.ninf:
                if n == -1:
                    return 1/z
                if n == -2:
                    return _airybi_n2_inf(ctx)
                if n < -2:
                    return (-1)**n * (-z)
        if not n:
            if z == ctx.inf:
                return z
            if z == ctx.ninf:
                return 1/z
        # TODO: limits
        raise ValueError("essential singularity of Bi(z)")
    if z:
        extraprec = max(0, int(1.5*ctx.mag(z)))
    else:
        extraprec = 0
    if n:
        if n == 1:
            # http://functions.wolfram.com/03.08.26.0001.01
            def h():
                ctx.prec += extraprec
                w = z**3 / 9
                ctx.prec -= extraprec
                C1 = _airybi_C1(ctx)*0.5
                C2 = _airybi_C2(ctx)
                T1 = [C1,z],[1,2],[],[],[],[ctx.mpq_5_3],w
                T2 = [C2],[1],[],[],[],[ctx.mpq_1_3],w
                return T1, T2
            return ctx.hypercomb(h, [], **kwargs)
        else:
            if z == 0:
                return _airyderiv_0(ctx, z, n, ntype, 1)
            def h(n):
                ctx.prec += extraprec
                w = z**3/9
                ctx.prec -= extraprec
                q13,q23,q43 = ctx.mpq_1_3, ctx.mpq_2_3, ctx.mpq_4_3
                q16 = ctx.mpq_1_6
                q56 = ctx.mpq_5_6
                a1=q13; a2=1; b1=(1-n)*q13; b2=(2-n)*q13; b3=1-n*q13
                T1 = [3, z], [n-q16, -n], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                a1=q23; b1=(2-n)*q13; b2=1-n*q13; b3=(4-n)*q13
                T2 = [3, z], [n-q56, 1-n], [a1], [b1,b2,b3], \
                    [a1,a2], [b1,b2,b3], w
                return T1, T2
            v = ctx.hypercomb(h, [n], **kwargs)
            if ctx._is_real_type(z) and ctx.isint(n):
                v = ctx._re(v)
            return v
    else:
        def h():
            ctx.prec += extraprec
            w = z**3 / 9
            ctx.prec -= extraprec
            C1 = _airybi_C1(ctx)
            C2 = _airybi_C2(ctx)
            T1 = [C1],[1],[],[],[],[ctx.mpq_2_3],w
            T2 = [z*C2],[1],[],[],[],[ctx.mpq_4_3],w
            return T1, T2
        return ctx.hypercomb(h, [], **kwargs)

def _airy_zero(ctx, which, k, derivative, complex=False):
    # Asymptotic formulas are given in DLMF section 9.9
    def U(t): return t**(2/3.)*(1-7/(t**2*48))
    def T(t): return t**(2/3.)*(1+5/(t**2*48))
    k = int(k)
    assert k >= 1
    assert derivative in (0,1)
    if which == 0:
        if derivative:
            return ctx.findroot(lambda z: ctx.airyai(z,1),
                -U(3*ctx.pi*(4*k-3)/8))
        return ctx.findroot(ctx.airyai, -T(3*ctx.pi*(4*k-1)/8))
    if which == 1 and complex == False:
        if derivative:
            return ctx.findroot(lambda z: ctx.airybi(z,1),
                -U(3*ctx.pi*(4*k-1)/8))
        return ctx.findroot(ctx.airybi, -T(3*ctx.pi*(4*k-3)/8))
    if which == 1 and complex == True:
        if derivative:
            t = 3*ctx.pi*(4*k-3)/8 + 0.75j*ctx.ln2
            s = ctx.expjpi(ctx.mpf(1)/3) * T(t)
            return ctx.findroot(lambda z: ctx.airybi(z,1), s)
        t = 3*ctx.pi*(4*k-1)/8 + 0.75j*ctx.ln2
        s = ctx.expjpi(ctx.mpf(1)/3) * U(t)
        return ctx.findroot(ctx.airybi, s)

@defun
def airyaizero(ctx, k, derivative=0):
    return _airy_zero(ctx, 0, k, derivative, False)

@defun
def airybizero(ctx, k, derivative=0, complex=False):
    return _airy_zero(ctx, 1, k, derivative, complex)

def _scorer(ctx, z, which, kwargs):
    z = ctx.convert(z)
    if ctx.isinf(z):
        if z == ctx.inf:
            if which == 0: return 1/z
            if which == 1: return z
        if z == ctx.ninf:
            return 1/z
        raise ValueError("essential singularity")
    if z:
        extraprec = max(0, int(1.5*ctx.mag(z)))
    else:
        extraprec = 0
    if kwargs.get('derivative'):
        raise NotImplementedError
    # Direct asymptotic expansions, to avoid
    # exponentially large cancellation
    try:
        if ctx.mag(z) > 3:
            if which == 0 and abs(ctx.arg(z)) < ctx.pi/3 * 0.999:
                def h():
                    return (([ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
                return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
            if which == 1 and abs(ctx.arg(-z)) < 2*ctx.pi/3 * 0.999:
                def h():
                    return (([-ctx.pi,z],[-1,-1],[],[],[(1,3),(2,3),1],[],9/z**3),)
                return ctx.hypercomb(h, [], maxterms=ctx.prec, force_series=True)
    except ctx.NoConvergence:
        pass
    def h():
        A = ctx.airybi(z, **kwargs)/3
        B = -2*ctx.pi
        if which == 1:
            A *= 2
            B *= -1
        ctx.prec += extraprec
        w = z**3/9
        ctx.prec -= extraprec
        T1 = [A], [1], [], [], [], [], 0
        T2 = [B,z], [-1,2], [], [], [1], [ctx.mpq_4_3,ctx.mpq_5_3], w
        return T1, T2
    return ctx.hypercomb(h, [], **kwargs)

@defun
def scorergi(ctx, z, **kwargs):
    return _scorer(ctx, z, 0, kwargs)

@defun
def scorerhi(ctx, z, **kwargs):
    return _scorer(ctx, z, 1, kwargs)

@defun_wrapped
def coulombc(ctx, l, eta, _cache={}):
    if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
        return +_cache[l,eta][1]
    G3 = ctx.loggamma(2*l+2)
    G1 = ctx.loggamma(1+l+ctx.j*eta)
    G2 = ctx.loggamma(1+l-ctx.j*eta)
    v = 2**l * ctx.exp((-ctx.pi*eta+G1+G2)/2 - G3)
    if not (ctx.im(l) or ctx.im(eta)):
        v = ctx.re(v)
    _cache[l,eta] = (ctx.prec, v)
    return v

@defun_wrapped
def coulombf(ctx, l, eta, z, w=1, chop=True, **kwargs):
    # Regular Coulomb wave function
    # Note: w can be either 1 or -1; the other may be better in some cases
    # TODO: check that chop=True chops when and only when it should
    #ctx.prec += 10
    def h(l, eta):
        try:
            jw = ctx.j*w
            jwz = ctx.fmul(jw, z, exact=True)
            jwz2 = ctx.fmul(jwz, -2, exact=True)
            C = ctx.coulombc(l, eta)
            T1 = [C, z, ctx.exp(jwz)], [1, l+1, 1], [], [], [1+l+jw*eta], \
                [2*l+2], jwz2
        except ValueError:
            T1 = [0], [-1], [], [], [], [], 0
        return (T1,)
    v = ctx.hypercomb(h, [l,eta], **kwargs)
    if chop and (not ctx.im(l)) and (not ctx.im(eta)) and (not ctx.im(z)) and \
        (ctx.re(z) >= 0):
        v = ctx.re(v)
    return v

@defun_wrapped
def _coulomb_chi(ctx, l, eta, _cache={}):
    if (l, eta) in _cache and _cache[l,eta][0] >= ctx.prec:
        return _cache[l,eta][1]
    def terms():
        l2 = -l-1
        jeta = ctx.j*eta
        return [ctx.loggamma(1+l+jeta) * (-0.5j),
            ctx.loggamma(1+l-jeta) * (0.5j),
            ctx.loggamma(1+l2+jeta) * (0.5j),
            ctx.loggamma(1+l2-jeta) * (-0.5j),
            -(l+0.5)*ctx.pi]
    v = ctx.sum_accurately(terms, 1)
    _cache[l,eta] = (ctx.prec, v)
    return v

@defun_wrapped
def coulombg(ctx, l, eta, z, w=1, chop=True, **kwargs):
    # Irregular Coulomb wave function
    # Note: w can be either 1 or -1; the other may be better in some cases
    # TODO: check that chop=True chops when and only when it should
    if not ctx._im(l):
        l = ctx._re(l)  # XXX: for isint
    def h(l, eta):
        # Force perturbation for integers and half-integers
        if ctx.isint(l*2):
            T1 = [0], [-1], [], [], [], [], 0
            return (T1,)
        l2 = -l-1
        try:
            chi = ctx._coulomb_chi(l, eta)
            jw = ctx.j*w
            s = ctx.sin(chi); c = ctx.cos(chi)
            C1 = ctx.coulombc(l,eta)
            C2 = ctx.coulombc(l2,eta)
            u = ctx.exp(jw*z)
            x = -2*jw*z
            T1 = [s, C1, z, u, c], [-1, 1, l+1, 1, 1], [], [], \
                [1+l+jw*eta], [2*l+2], x
            T2 = [-s, C2, z, u],   [-1, 1, l2+1, 1],    [], [], \
                [1+l2+jw*eta], [2*l2+2], x
            return T1, T2
        except ValueError:
            T1 = [0], [-1], [], [], [], [], 0
            return (T1,)
    v = ctx.hypercomb(h, [l,eta], **kwargs)
    if chop and (not ctx._im(l)) and (not ctx._im(eta)) and (not ctx._im(z)) and \
        (ctx._re(z) >= 0):
        v = ctx._re(v)
    return v

def mcmahon(ctx,kind,prime,v,m):
    """
    Computes an estimate for the location of the Bessel function zero
    j_{v,m}, y_{v,m}, j'_{v,m} or y'_{v,m} using McMahon's asymptotic
    expansion (Abramowitz & Stegun 9.5.12-13, DLMF 20.21(vi)).

    Returns (r,err) where r is the estimated location of the root
    and err is a positive number estimating the error of the
    asymptotic expansion.
    """
    u = 4*v**2
    if kind == 1 and not prime: b = (4*m+2*v-1)*ctx.pi/4
    if kind == 2 and not prime: b = (4*m+2*v-3)*ctx.pi/4
    if kind == 1 and prime: b = (4*m+2*v-3)*ctx.pi/4
    if kind == 2 and prime: b = (4*m+2*v-1)*ctx.pi/4
    if not prime:
        s1 = b
        s2 = -(u-1)/(8*b)
        s3 = -4*(u-1)*(7*u-31)/(3*(8*b)**3)
        s4 = -32*(u-1)*(83*u**2-982*u+3779)/(15*(8*b)**5)
        s5 = -64*(u-1)*(6949*u**3-153855*u**2+1585743*u-6277237)/(105*(8*b)**7)
    if prime:
        s1 = b
        s2 = -(u+3)/(8*b)
        s3 = -4*(7*u**2+82*u-9)/(3*(8*b)**3)
        s4 = -32*(83*u**3+2075*u**2-3039*u+3537)/(15*(8*b)**5)
        s5 = -64*(6949*u**4+296492*u**3-1248002*u**2+7414380*u-5853627)/(105*(8*b)**7)
    terms = [s1,s2,s3,s4,s5]
    s = s1
    err = 0.0
    for i in range(1,len(terms)):
        if abs(terms[i]) < abs(terms[i-1]):
            s += terms[i]
        else:
            err = abs(terms[i])
    if i == len(terms)-1:
        err = abs(terms[-1])
    return s, err

def generalized_bisection(ctx,f,a,b,n):
    """
    Given f known to have exactly n simple roots within [a,b],
    return a list of n intervals isolating the roots
    and having opposite signs at the endpoints.

    TODO: this can be optimized, e.g. by reusing evaluation points.
    """
    assert n >= 1
    N = n+1
    points = []
    signs = []
    while 1:
        points = ctx.linspace(a,b,N)
        signs = [ctx.sign(f(x)) for x in points]
        ok_intervals = [(points[i],points[i+1]) for i in range(N-1) \
            if signs[i]*signs[i+1] == -1]
        if len(ok_intervals) == n:
            return ok_intervals
        N = N*2

def find_in_interval(ctx, f, ab):
    return ctx.findroot(f, ab, solver='illinois', verify=False)

def bessel_zero(ctx, kind, prime, v, m, isoltol=0.01, _interval_cache={}):
    prec = ctx.prec
    workprec = max(prec, ctx.mag(v), ctx.mag(m))+10
    try:
        ctx.prec = workprec
        v = ctx.mpf(v)
        m = int(m)
        prime = int(prime)
        assert v >= 0
        assert m >= 1
        assert prime in (0,1)
        if kind == 1:
            if prime: f = lambda x: ctx.besselj(v,x,derivative=1)
            else:     f = lambda x: ctx.besselj(v,x)
        if kind == 2:
            if prime: f = lambda x: ctx.bessely(v,x,derivative=1)
            else:     f = lambda x: ctx.bessely(v,x)
        # The first root of J' is very close to 0 for small
        # orders, and this needs to be special-cased
        if kind == 1 and prime and m == 1:
            if v == 0:
                return ctx.zero
            if v <= 1:
                # TODO: use v <= j'_{v,1} < y_{v,1}?
                r = 2*ctx.sqrt(v*(1+v)/(v+2))
                return find_in_interval(ctx, f, (r/10, 2*r))
        if (kind,prime,v,m) in _interval_cache:
            return find_in_interval(ctx, f, _interval_cache[kind,prime,v,m])
        r, err = mcmahon(ctx, kind, prime, v, m)
        if err < isoltol:
            return find_in_interval(ctx, f, (r-isoltol, r+isoltol))
        # An x such that 0 < x < r_{v,1}
        if kind == 1 and not prime: low = 2.4
        if kind == 1 and prime: low = 1.8
        if kind == 2 and not prime: low = 0.8
        if kind == 2 and prime: low = 2.0
        n = m+1
        while 1:
            r1, err = mcmahon(ctx, kind, prime, v, n)
            if err < isoltol:
                r2, err2 = mcmahon(ctx, kind, prime, v, n+1)
                intervals = generalized_bisection(ctx, f, low, 0.5*(r1+r2), n)
                for k, ab in enumerate(intervals):
                    _interval_cache[kind,prime,v,k+1] = ab
                return find_in_interval(ctx, f, intervals[m-1])
            else:
                n = n*2
    finally:
        ctx.prec = prec

@defun
def besseljzero(ctx, v, m, derivative=0):
    r"""
    For a real order `\nu \ge 0` and a positive integer `m`, returns
    `j_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
    first kind `J_{\nu}(z)` (see :func:`~mpmath.besselj`). Alternatively,
    with *derivative=1*, gives the first nonnegative simple zero
    `j'_{\nu,m}` of `J'_{\nu}(z)`.

    The indexing convention is that used by Abramowitz & Stegun
    and the DLMF. Note the special case `j'_{0,1} = 0`, while all other
    zeros are positive. In effect, only simple zeros are counted
    (all zeros of Bessel functions are simple except possibly `z = 0`)
    and `j_{\nu,m}` becomes a monotonic function of both `\nu`
    and `m`.

    The zeros are interlaced according to the inequalities

    .. math ::

        j'_{\nu,k} < j_{\nu,k} < j'_{\nu,k+1}

        j_{\nu,1} < j_{\nu+1,2} < j_{\nu,2} < j_{\nu+1,2} < j_{\nu,3} < \cdots

    **Examples**

    Initial zeros of the Bessel functions `J_0(z), J_1(z), J_2(z)`::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> besseljzero(0,1); besseljzero(0,2); besseljzero(0,3)
        2.404825557695772768621632
        5.520078110286310649596604
        8.653727912911012216954199
        >>> besseljzero(1,1); besseljzero(1,2); besseljzero(1,3)
        3.831705970207512315614436
        7.01558666981561875353705
        10.17346813506272207718571
        >>> besseljzero(2,1); besseljzero(2,2); besseljzero(2,3)
        5.135622301840682556301402
        8.417244140399864857783614
        11.61984117214905942709415

    Initial zeros of `J'_0(z), J'_1(z), J'_2(z)`::

        0.0
        3.831705970207512315614436
        7.01558666981561875353705
        >>> besseljzero(1,1,1); besseljzero(1,2,1); besseljzero(1,3,1)
        1.84118378134065930264363
        5.331442773525032636884016
        8.536316366346285834358961
        >>> besseljzero(2,1,1); besseljzero(2,2,1); besseljzero(2,3,1)
        3.054236928227140322755932
        6.706133194158459146634394
        9.969467823087595793179143

    Zeros with large index::

        >>> besseljzero(0,100); besseljzero(0,1000); besseljzero(0,10000)
        313.3742660775278447196902
        3140.807295225078628895545
        31415.14114171350798533666
        >>> besseljzero(5,100); besseljzero(5,1000); besseljzero(5,10000)
        321.1893195676003157339222
        3148.657306813047523500494
        31422.9947255486291798943
        >>> besseljzero(0,100,1); besseljzero(0,1000,1); besseljzero(0,10000,1)
        311.8018681873704508125112
        3139.236339643802482833973
        31413.57032947022399485808

    Zeros of functions with large order::

        >>> besseljzero(50,1)
        57.11689916011917411936228
        >>> besseljzero(50,2)
        62.80769876483536093435393
        >>> besseljzero(50,100)
        388.6936600656058834640981
        >>> besseljzero(50,1,1)
        52.99764038731665010944037
        >>> besseljzero(50,2,1)
        60.02631933279942589882363
        >>> besseljzero(50,100,1)
        387.1083151608726181086283

    Zeros of functions with fractional order::

        >>> besseljzero(0.5,1); besseljzero(1.5,1); besseljzero(2.25,4)
        3.141592653589793238462643
        4.493409457909064175307881
        15.15657692957458622921634

    Both `J_{\nu}(z)` and `J'_{\nu}(z)` can be expressed as infinite
    products over their zeros::

        >>> v,z = 2, mpf(1)
        >>> (z/2)**v/gamma(v+1) * \
        ...     nprod(lambda k: 1-(z/besseljzero(v,k))**2, [1,inf])
        ...
        0.1149034849319004804696469
        >>> besselj(v,z)
        0.1149034849319004804696469
        >>> (z/2)**(v-1)/2/gamma(v) * \
        ...     nprod(lambda k: 1-(z/besseljzero(v,k,1))**2, [1,inf])
        ...
        0.2102436158811325550203884
        >>> besselj(v,z,1)
        0.2102436158811325550203884

    """
    return +bessel_zero(ctx, 1, derivative, v, m)

@defun
def besselyzero(ctx, v, m, derivative=0):
    r"""
    For a real order `\nu \ge 0` and a positive integer `m`, returns
    `y_{\nu,m}`, the `m`-th positive zero of the Bessel function of the
    second kind `Y_{\nu}(z)` (see :func:`~mpmath.bessely`). Alternatively,
    with *derivative=1*, gives the first positive zero `y'_{\nu,m}` of
    `Y'_{\nu}(z)`.

    The zeros are interlaced according to the inequalities

    .. math ::

        y_{\nu,k} < y'_{\nu,k} < y_{\nu,k+1}

        y_{\nu,1} < y_{\nu+1,2} < y_{\nu,2} < y_{\nu+1,2} < y_{\nu,3} < \cdots

    **Examples**

    Initial zeros of the Bessel functions `Y_0(z), Y_1(z), Y_2(z)`::

        >>> from mpmath import *
        >>> mp.dps = 25; mp.pretty = True
        >>> besselyzero(0,1); besselyzero(0,2); besselyzero(0,3)
        0.8935769662791675215848871
        3.957678419314857868375677
        7.086051060301772697623625
        >>> besselyzero(1,1); besselyzero(1,2); besselyzero(1,3)
        2.197141326031017035149034
        5.429681040794135132772005
        8.596005868331168926429606
        >>> besselyzero(2,1); besselyzero(2,2); besselyzero(2,3)
        3.384241767149593472701426
        6.793807513268267538291167
        10.02347797936003797850539

    Initial zeros of `Y'_0(z), Y'_1(z), Y'_2(z)`::

        >>> besselyzero(0,1,1); besselyzero(0,2,1); besselyzero(0,3,1)
        2.197141326031017035149034
        5.429681040794135132772005
        8.596005868331168926429606
        >>> besselyzero(1,1,1); besselyzero(1,2,1); besselyzero(1,3,1)
        3.683022856585177699898967
        6.941499953654175655751944
        10.12340465543661307978775
        >>> besselyzero(2,1,1); besselyzero(2,2,1); besselyzero(2,3,1)
        5.002582931446063945200176
        8.350724701413079526349714
        11.57419546521764654624265

    Zeros with large index::

        >>> besselyzero(0,100); besselyzero(0,1000); besselyzero(0,10000)
        311.8034717601871549333419
        3139.236498918198006794026
        31413.57034538691205229188
        >>> besselyzero(5,100); besselyzero(5,1000); besselyzero(5,10000)
        319.6183338562782156235062
        3147.086508524556404473186
        31421.42392920214673402828
        >>> besselyzero(0,100,1); besselyzero(0,1000,1); besselyzero(0,10000,1)
        313.3726705426359345050449
        3140.807136030340213610065
        31415.14112579761578220175

    Zeros of functions with large order::

        >>> besselyzero(50,1)
        53.50285882040036394680237
        >>> besselyzero(50,2)
        60.11244442774058114686022
        >>> besselyzero(50,100)
        387.1096509824943957706835
        >>> besselyzero(50,1,1)
        56.96290427516751320063605
        >>> besselyzero(50,2,1)
        62.74888166945933944036623
        >>> besselyzero(50,100,1)
        388.6923300548309258355475

    Zeros of functions with fractional order::

        >>> besselyzero(0.5,1); besselyzero(1.5,1); besselyzero(2.25,4)
        1.570796326794896619231322
        2.798386045783887136720249
        13.56721208770735123376018

    """
    return +bessel_zero(ctx, 2, derivative, v, m)